Forensic Narcotics Drug Analysis: State-of-the-Art Developments and Future Trends
Abstract
1. Introduction
1.1. Background About the Most Common Narcotic Drugs in EU
1.2. Analytical Approaches for Narcotics Detection in Forensic Science
2. Cannabis sativa
Chromatographic Methods | |||||
---|---|---|---|---|---|
Method | Mobile Phase | Detector | Selectivity | Specificity | Ref. |
Cannabis sativa | |||||
HPTLC | 10 different mp | 254 nm and 366 nm | / | / | [27] |
HPTLC | Cyclohexane: Diethyl ether: Diethylamine (7:3:1, v/v/v) | Fujifilm X-S10 | / | / | [28] |
HPLC | A: 0.1% formic acid in water; B: 0.1% formic acid in acetonitrile | PAD | / | / | [30] |
LC-ESI/MS/MS | Solvent A: 2 mM ammonium formate with 0.011% (v/v) formic acid, pH 3.6; Solvent B: Acetonitrile | Mass Spectrometer | / | / | [32] |
LC | Solvent A: 0.015% (v/v) formic acid in water; Solvent B: 75:25 (v/v) methanol/acetonitrile | DAD | Good | / | [33] |
LC | Solvent A: 0.1% trifluoroacetic acid (TFA) in water; Solvent B: methanol | DAD | High | Good | [34] |
LC | Solvent A: water (H2O) with 0.085% phosphoric acid (PA); Solvent B: acetonitrile (ACN) with 0.085% PA | PDA | High | / | [35] |
HPLC | Acetonitrile (ACN): orthophosphoric acid (pH = 2.2) | DAD | / | / | [37] |
GC-MS | / | Mass Spectrometer | High | High | [40] |
GC-MS; GC-FID | Carrier Gas: Helium | Mass Spectrometer; FID | / | / | [42] |
GC-MS | Carrier Gas: Helium, purity 99.999% | Mass Spectrometer | / | / | [43] |
Heroin | |||||
GC-MS | Carrier Gas: Helium | MS | High | / | [45] |
GC-FID | Carrier Gas: Helium | FID system | / | / | [46] |
GC-FID | Nitrogen/Helium mixture | FID | / | / | [47] |
Cocaine | |||||
LC-MS/MS | Mobile Phase A: 0.1% formic acid in Milli-Q water Mobile Phase B: 10% Mobile Phase A in acetonitrile (i.e., 90% acetonitrile) | Mass Spectrometer | / | / | [48] |
GC-MS | Carrier Gas: Helium | Mass Spectrometer | Good | Good | [49] |
GC-MS/MS | Carrier Gas: Helium | Quadrupole Mass Spectrometer | High (0.01 ng/mg) | / | [50] |
Lysergic acid diethylamide | |||||
LC-MS/MS | Solvent A: 5 mM aqueous formic acid; Solvent B: Acetonitrile (ACN) | Mass Spectrometer | 0.025 ng/mL for LSD | / | [51] |
LC-MS/MS | 0.1% formic acid in H2O (A) and ACN (B), gradient from 10% to 50% B | Mass Spectrometer in MRM mode | / | / | [52] |
Amphetamine-type | |||||
GC-MS | Carrier Gas: Helium, 1 mL/min | MSD with EI ionization, SIM acquisition mode | / | / | [53] |
Spectroscopic methods | |||||
Method | Excitation wavelength | Detector | Sens. | Spec. | Ref. |
Cannabis sativa | |||||
RS | 1064 nm | BWTEK and-Raman Ex | / | / | [54] |
Fourier transform near-infrared spectroscopy (FT-NIR) | 1350–2560 nm | InGaAs photodetector array | / | / | [21] |
FT-NIR | 700–2500 nm | InGaAs photodetector | / | 1 | [55] |
RS | 830 nm | PIXIS:400BR CCD | / | / | [20] |
Heroin | |||||
LIF spectroscopy | 405 nm | / | / | / | [56] |
New psychoactive substances | |||||
NIR | 1350–2600 nm | Mobile detection | / | / | [57] |
Surface-enhanced RS (SERS) | 785 nm | / | High | / | [58] |
Electrode | Modifying Agent | Detection Method | Linear Range | Sensitivity | LOD | Ref. |
---|---|---|---|---|---|---|
Cannabis sativa | ||||||
Screen-printed electrode (SPE) | Carbon Black (CB N220) | Differential Pulse Voltammetry (DPV) | / | / | / | [59] |
Unmodified carbon SPEs | CTAB | Square Wave Voltammetry (SWV) | / | / | / | [60] |
Sensor pristine electrodes (screen-printed) | / | SWV | / | / | 0.85 ng mL−1 Δ9-THC (THC) | [61] |
Capillary-driven microfluidic electrochemical device (CDMFE) | / | DPV (for total Δ9-THC + CBD); | 0–120 μg/mL (Δ9-THC and CBD. | 0.16 μA/μg mL (Δ9-THC + CBD) | 0.26 μg/mL (Δ9-THC + CBD) | [62] |
Heroin | ||||||
Flexible screen-printed electrode (SPE) | Nitrogen (N)- and tungsten boride (WB)-doped carbon nanotubes (CNTs) | CV | / | / | 100 nM | [63] |
Glassy carbon electrode (GCE) | Graphene oxide/Carboxymethylcellulose/Magnesium oxide | DPV; CV | / | / | 1 × 10−7 µM | [64] |
Electrode modified with ZnO/Fe3O4/carbon MHNTA | ZnO/Fe3O4/Carbon composite nanotubes | Voltammetry | 0.01–500.0 μM | / | 4.7 nM | [65] |
Rotating GCE | Chitosan-ionic liquid (Ch-IL) composite film | DPV; CV | MO: 1–20 pM COD: 0.5–12 pM | / | 0.81 fM MO; 0.22 fM COD | [66] |
Electrochemically pretreated (p-SPE) | Anodic electrochemical pretreatment | Voltammetry | / | 0.019 μA μM−1 | 5.2 μM | [67] |
Cocaine | ||||||
Ion-selective electrode with potentiometric transducer | Molecularly imprinted polymer nanoparticles (nanoMIPs) incorporated in PVC matrix | Potentiometry | 1 nM–1 mM | / | / | [68] |
/ | / | TdT and CRISPR-Cas12a | 40 pM–150 nM | / | 15 pM | [69] |
Carbon paste electrode | Multi-walled carbon nanotubes | SWV | 2.36 × 10−6 to 1.38 × 10−5 mol/L | 0.99 | 5.75 × 10−7 mol/L | [70] |
Electrochemical aptamer-based biosensor | / | / | 0.5 fM–30 fM | / | 0.16 fM | [71] |
Lysergic acid diethylamide | ||||||
Carbon-SPE | / | Voltammetric | >0.99 | / | 0.69 μmol/L | [72] |
Boron-doped diamond electrode (BDDE) | / | SWV | 5.0–100 μmol L−1 | 0.45 μmol L− 1 | 0.5 μmol L−1 | [73] |
Graphite screen-printed electrode (SPE-Gr) | / | Differential Pulse Stripping Adsorptive Voltammetry (AdSDPV) | 10–1000 μg mL−1 | / | 0.3 μg mL−1 | [74] |
Paper-based electrode drawn with 8B graphite pencil + silver paint | / | SWV | / | / | 0.38 μmol/L | [75] |
3,4-Methylenedioxy- Methamphetamine | ||||||
SPE | / | SWV | / | / | / | [76] |
Carbon-SPE | / | CV; SWV | 1.75–19.98 µg mL−1 | / | 1.75 µg mL−1 | [77] |
3. Heroin
4. Cocaine
5. Lysergic Acid Diethylamide
6. Amphetamine-Type Stimulants
7. New Psychoactive Substances
8. Microsampling
8.1. Dried Blood Spot (DBS)
8.2. Volumetric Adsorptive Microsampling (VAMS)
8.3. Fabric Phase Sorptive Extraction (FPSE)
8.4. Dried Matrix Spot (DMS)
9. Green Aspects of Forensic Methods
10. Application of Chemometrics in Forensic Analysis
11. Conclusions
12. Future Directions in Forensic Drug Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Europol. Available online: https://www.europol.europa.eu/media-press/newsroom (accessed on 1 June 2025).
- Otašević, B.; Kolarević, D. Characteristics of Illegal Laboratories for Marijuana Production in Serbia. Bezb. Beogr. 2020, 62, 5–27. [Google Scholar] [CrossRef]
- Maksimović, R.; Bošković, M.; Todorić, U. Methods of Physics, Chemistry, and Physical Chemistry in Criminalistics; Police Academy: Belgrade, Serbia, 1998; p. 750. [Google Scholar]
- Johnson, C.S.; Bogun, B. Chemical Camouflage: Illicit Drug Concealment Using Di-Tert-Butyldicarbonate. Aust. J. Forensic Sci. 2019, 51, S217–S219. [Google Scholar] [CrossRef]
- Andreasen, M.F.; Lindholst, C.; Kaa, E. Adulterants and Diluents in Heroin, Amphetamine, and Cocaine Found on the Illicit Drug Market in Aarhus, Denmark. Open Forensic Sci. J. 2009, 2, 16–20. [Google Scholar] [CrossRef]
- Bobić, V.; Tončić, J. Diluents in Samples of Controlled Psychoactive Substances on the Territory of the Republic of Serbia. Bezb. Beogr. 2023, 65, 107–121. [Google Scholar] [CrossRef]
- Dufey, V.; Dujourdy, L.; Besacier, F.; Chaudron, H. A Quick and Automated Method for Profiling Heroin Samples for Tactical Intelligence Purposes. Forensic Sci. Int. 2007, 169, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Lociciro, S.; Hayoz, P.; Esseiva, P.; Dujourdy, L.; Besacier, F.; Margot, P. Cocaine Profiling for Strategic Intelligence Purposes, a Cross-Border Project between France and Switzerland: Part I. Optimisation and Harmonisation of the Profiling Method. Forensic Sci. Int. 2007, 167, 220–228. [Google Scholar] [CrossRef]
- Besacier, F.; Guilluy, R.; Brazier, J.L.; Chaudron-Thozet, H.; Girard, J.; Lamotte, A. Isotopic analysis of 13C as a tool for comparison and origin assignment of seized heroin samples. J. Forensic Sci. 1997, 42, 429–433. [Google Scholar] [CrossRef]
- European Union Drugs Agency (EUDA). Available online: https://www.euda.europa.eu/publications/european-drug-report/2024_en (accessed on 6 June 2025).
- Simonović, B. Kriminalistika; Pravni Fakultet Univerziteta u Kragujevcu, Institut za Pravne i Društvene Nauke: Kragujevac, Serbia, 2012; ISBN 978-86-7623-030-3. [Google Scholar]
- European Network of Forensic Science Institutes (ENFSI). Available online: https://enfsi.eu/about-enfsi/structure/working-groups/documents-page/documents/best-practice-manuals/ (accessed on 21 February 2020).
- Harper, L.; Powell, J.; Pijl, E.M. An Overview of Forensic Drug Testing Methods and Their Suitability for Harm Reduction Point-of-Care Services. Harm Reduct. J. 2017, 14, 52. [Google Scholar] [CrossRef]
- Ahmed, R.; Altamimi, M.J.; Hachem, M. State-of-the-Art Analytical Approaches for Illicit Drug Profiling in Forensic Investigations. Molecules 2022, 27, 6602. [Google Scholar] [CrossRef]
- Zerell, U. Guidelines on Sampling of Illicit Drugs for Qualitative Analysis, 2nd ed.; European Network of Forensic Science Institutes (ENFSI): Wiesbaden, Germany, 2016. [Google Scholar]
- Bovens, M.; Nagy, J.; Csesztregi, T.; Dujourdy, L.; Franc, A. Guidelines on Sampling of Illicit Drugs for Qualitative Analysis; European Network of Forensic Science Institutes—Drugs Working Group (ENFSI DWG): Wiesbaden, Germany, 2014. [Google Scholar]
- Dong, W.; Yuan, J.; Yang, X.; Zhang, N.; Zhang, M. Quantitative Analysis of Cannabinoids by Zone Heat-Assisted DART-MS with in-Situ Flash Derivatization. Forensic Chem. 2025, 42, 100641. [Google Scholar] [CrossRef]
- Chambers, M.I.; Musah, R.A. DART-HRMS as a Triage Approach for the Rapid Analysis of Cannabinoid-Infused Edible Matrices, Personal-Care Products and Cannabis sativa Hemp Plant Material. Forensic Chem. 2022, 27, 100382. [Google Scholar] [CrossRef]
- Chambers, M.I.; Musah, R.A. DART-HRMS Triage Approach Part 2—Application to the Detection of Cannabinoids and Terpenes in Recreational Cannabis Products. Forensic Chem. 2023, 33, 100469. [Google Scholar] [CrossRef]
- Sanchez, L.; Baltensperger, D.; Kurouski, D. Raman-Based Differentiation of Hemp, Cannabidiol-Rich Hemp, and Cannabis. Anal. Chem. 2020, 92, 7733–7737. [Google Scholar] [CrossRef]
- Yao, S.; Ball, C.; Miyagusuku-Cruzado, G.; Giusti, M.M.; Aykas, D.P.; Rodriguez-Saona, L.E. A Novel Handheld FT-NIR Spectroscopic Approach for Real-Time Screening of Major Cannabinoids Content in Hemp. Talanta 2022, 247, 123559. [Google Scholar] [CrossRef]
- Rao, P.K.; Dey, A.; Pratik, P.; Singh, A.; Kubavat, J. Current Research Trends in Green Analytical Tools for the Detection of Selected Illicit Drugs in Different Matrices. Green Anal. Chem. 2024, 9, 100109. [Google Scholar] [CrossRef]
- European Commission. Available online: https://food.ec.europa.eu/plants/plant-reproductive-material/plant-variety-catalogues-databases-information-systems_en (accessed on 12 June 2025).
- Acosta, A.; Li, L.; Weaver, M.; Capote, R.; Perr, J.; Almirall, J. Validation of a Combined Fast Blue BB and 4-Aminophenol Colorimetric Test for Indication of Hemp-Type and Marijuana-Type Cannabis. Forensic Chem. 2022, 31, 100448. [Google Scholar] [CrossRef]
- Jornet-Martínez, N.; Biosca-Micó, J.; Campíns-Falcó, P.; Herráez-Hernández, R. A Colorimetric Method for the Rapid Esti-mation of the Total Cannabinoid Content in Cannabis Samples. Molecules 2023, 28, 1303. [Google Scholar] [CrossRef]
- Acosta, A.; Almirall, J. Differentiation between Hemp-Type and Marijuana-Type Cannabis Using the Fast Blue BB Colorimetric Test. Forensic Chem. 2021, 26, 100376. [Google Scholar] [CrossRef]
- Liu, Y.; Victoria, J.; Wood, M.; Staretz, M.E.; Brettell, T.A. High Performance Thin-Layer Chromatography (HPTLC) Data of Cannabinoids in Ten Mobile Phase Systems. Data Brief 2020, 31, 105955. [Google Scholar] [CrossRef]
- Radosavljević-Stevanović, N.; Kovačević, A.; Manojlović, D.; Ristivojević, P. High-Performance Thin-Layer Chromatography Hyphenated with Image Processing and Chemometrics as a Tool for Forensic Discrimination of Cannabis sativa L. Chemotypes. Forensic Chem. 2023, 36, 100528. [Google Scholar] [CrossRef]
- Radosavljević-Stevanović, N.; Andrić, F.; Manojlović, D.; Ristivojević, P.M. Green Analytical Strategy for Distinguishing Cannabis sativa L. Chemotypes via Planar Chromatography and Partial Least Squares Regression. JPC-J. Planar Chromat 2024, 37, 499–509. [Google Scholar] [CrossRef]
- Huang, S.; Qiu, R.; Fang, Z.; Min, K.; van Beek, T.A.; Ma, M.; Chen, B.; Zuilhof, H.; Salentijn, G.I. Semiquantitative Screening of THC Analogues by Silica Gel TLC with an Ag(I) Retention Zone and Chromogenic Smartphone Detection. Anal. Chem. 2022, 94, 13710–13718. [Google Scholar] [CrossRef]
- Wilson, W.B.; Urbas, A.A.; Jensen, H.; Sander, L.C. High-Throughput LC-PDA Method for Determination of Δ9-THC and Related Cannabinoids in Cannabis sativa. Forensic Chem. 2024, 41, 100610. [Google Scholar] [CrossRef]
- Meyer, G.; Adisa, M.; Dodson, Z.; Adejumo, E.; Jovanovich, E.; Song, L. A Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry Method for Quantification of up to Eighteen Cannabinoids in Hemp-Derived Products. J. Pharm. Biomed. Anal. 2024, 238, 115847. [Google Scholar] [CrossRef]
- Song, L.; Provis, J.; Al-Bataineh, A.M.; Fabien, K.J.; Kotler, M. Development of a Liquid Chromatographic Method with a Different Selectivity for the Quantification of Eighteen Phytocannabinoids in Hemp. Talanta Open 2024, 10, 100336. [Google Scholar] [CrossRef]
- Song, L.; LeBlanc, L.; Jovanovich, E.; Mohammad Al-Bataineh, A.; Jervelle Fabien, K. A Rapid and Accurate Liquid Chro-matographic Method for Hemp Compliance Testing. Forensic Chem. 2024, 40, 100592. [Google Scholar] [CrossRef]
- Wilson, W.B.; Yarberry, A.J.; Goldman, S. Chromatographic Interferences Potentially Inflating the Levels of Δ9-THC in Cannabis sativa Plant Samples and Possible Solutions. J. Chromatogr. A 2025, 1748, 465871. [Google Scholar] [CrossRef]
- Zeger, V.R.; Bell, D.S.; Herrington, J.S.; Anderson, J.L. Selective Isolation of Pesticides and Cannabinoids Using Polymeric Ionic Liquid-Based Sorbent Coatings in Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography. J. Chromatogr. A 2022, 1680, 463416. [Google Scholar] [CrossRef]
- De Luca, C.; Buratti, A.; Umstead, W.; Franco, P.; Cavazzini, A.; Felletti, S.; Catani, M. Investigation of Retention Behavior of Natural Cannabinoids on Differently Substituted Polysaccharide-Based Chiral Stationary Phases under Reversed-Phase Liquid Chromatographic Conditions. J. Chromatogr. A 2022, 1672, 463076. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Kerrigan, S. Differentiation of Hemp from Marijuana Using a Qualitative Decision-Point Assay. Forensic Chem. 2024, 37, 100541. [Google Scholar] [CrossRef]
- Ishii, A.; Sato, K.; Kusakabe, K.; Kato, N.; Wada, T. Development of a Quick Preparation Method for the Analysis of 11-nor-9-Carboxy-∆9-Tetrahydrocannabinol in Human Urine by Phenylboronic-Acid Solid-Phase Extraction. J. Pharm. Biomed. Anal. 2023, 234, 115556. [Google Scholar] [CrossRef]
- Mulloor, J.; Wilson, W.B.; Sander, L.C. New Perspectives on THCA Decarboxylation and Accurate GC–MS Quantitation of Total THC in Cannabis Using Analyte Protectants. Forensic Chem. 2025, 44, 100668. [Google Scholar] [CrossRef]
- Slosse, A.; Van Durme, F.; Samyn, N.; Mangelings, D.; Vander Heyden, Y. Evaluation of Data Preprocessings for the Com-parison of GC–MS Chemical Profiles of Seized Cannabis Samples. Forensic Sci. Int. 2020, 310, 110228. [Google Scholar] [CrossRef]
- Micalizzi, G.; Cucinotta, L.; Chiaia, V.; Alibrando, F.; Cannizzaro, F.; Branca, G.; Maida, P.; Oliveri, P.; Mondello, L.; Sciarrone, D. Profiling of Seized Cannabis sativa L. Flowering Tops by Means of Microwave-Assisted Hydro Distillation and Gas Chro-matography Analyses. J. Chromatogr. A 2024, 1727, 464994. [Google Scholar] [CrossRef]
- Kim, E.J.; Kwon, E.; Oh, S.J.; Choi, M.R.; Lee, S.-R.; Jung, B.H.; Lee, W.; Hong, J. Thermal Transformation of CBD, CBDA, and Δ9-THC during e-Cigarette Vaping: Identification of Conversion Products by GC–MS. J. Chromatogr. A 2025, 1749, 465909. [Google Scholar] [CrossRef]
- Laanet, P.-R.; Vaher, M.; Saar-Reismaa, P. Micellar Electrokinetic Chromatography Method for the Analysis of Synthetic and Phytocannabinoids. J. Chromatogr. A 2022, 1673, 463080. [Google Scholar] [CrossRef]
- Karakasi, C.; Nikolaou, P.; Petropoulou, G.; Athanaselis, S.; Sakelliadis, E.; Dona, A.; Papoutsis, I. Determination of Indirect Heroin Biomarkers in Biological Samples of Heroin Users. Forensic Sci. Int. Rep. 2024, 10, 100383. [Google Scholar] [CrossRef]
- Sripratumwong, C. Determination of Heroin Hydrochloride Contents in Seized Samples by Gas Chromatographic Techniques. Procedia Multidiscip. Res. 2024, 2, 3. [Google Scholar]
- Baheri, T.; Shokoohi Rad, S.; Khoshnood, M.; Kargar, A. Determination of Medicinal Impurities of Exposed Heroin Using Gas Chromatography. J. Police Med. 2024, 13, 1–12. [Google Scholar] [CrossRef]
- Wei, H.; Deng, J.; Zhang, T.; Zhan, C.-G.; Zheng, F. A Quantitative LC-MS/MS Method for Investigation of Polysubstance Use Involving Heroin and Cocaine. J. Pharm. Biomed. Anal. 2024, 250, 116408. [Google Scholar] [CrossRef]
- Menotti, V.S.; Scanferla, D.T.P.; Oliveira, K.O.d.e.; Fratucci, G.F.; Alves Gde, S.; Bando, E.; Nerilo, S.B.; Oliveira, M.L.F.d.e.; Machinski Junior, M.; Mossini, S.A.G. Validation of a Method for Simultaneous Analysis of Cocaine, Benzoylecognine and Cocaethylene in Urine Using Gas Chromatography-Mass Spectrometry. Braz. J. Pharm. Sci. 2021, 56, e18664. [Google Scholar] [CrossRef]
- La Maida, N.; Mannocchi, G.; Giorgetti, R.; Sirignano, A.; Ricci, G.; Busardò, F.P. Optimization of a Rapid Sample Pretreatment for the Quantification of COCAINE and Its Main Metabolites in Hair through a New and Validated GC-MS/MS Method. J. Pharm. Biomed. Anal. 2021, 204, 114282. [Google Scholar] [CrossRef]
- Dimitrova, A.; Di Milia, M.G.; Rensi, R.; Grassi, S.; Gualco, B.; Vaiano, F. Determination of Lysergic Acid Diethylamide and 2-Oxo-3-Hydroxy-LSD in Blood: Validation and Comparison of Two Liquid Chromatography–Tandem Mass Spectrometry Methods. Separations 2023, 10, 502. [Google Scholar] [CrossRef]
- Patton, A.L.; Brown, J.; Heine, K.; Sartori, D.A.; Karschner, E.L.; Walterscheid, J.P. Quantitative Analysis of Lysergic Acid Diethylamide and Metabolite in Urine by Automated Extraction and Liquid Chromatography–Tandem Mass Spectrometry. J. Anal. Toxicol. 2023, 47, 448–454. [Google Scholar] [CrossRef]
- Bouzoukas, C.; Nikolaou, P.; Athanaselis, S.; Dona, A.; Spiliopoulou, C.; Papoutsis, I. Development, Validation and Appli-cations of a GC/MS Method for the Simultaneous Determination of 9 Amphetamines and 12 NPS Analogues in Blood and Urine. Forensic Sci. Int. 2025, 370, 112469. [Google Scholar] [CrossRef]
- Porcu, S.; Tuveri, E.; Palanca, M.; Melis, C.; La Franca, I.M.; Satta, J.; Chiriu, D.; Carbonaro, C.M.; Cortis, P.; De Agostini, A.; et al. Rapid In Situ Detection of THC and CBD in Cannabis sativa L. by 1064 Nm Raman Spectroscopy. Anal. Chem. 2022, 94, 10435–10442. [Google Scholar] [CrossRef]
- Birenboim, M.; Kengisbuch, D.; Chalupowicz, D.; Maurer, D.; Barel, S.; Chen, Y.; Fallik, E.; Paz-Kagan, T.; Shimshoni, J.A. Use of Near-Infrared Spectroscopy for the Classification of Medicinal Cannabis Cultivars and the Prediction of Their Cannabinoid and Terpene Contents. Phytochemistry 2022, 204, 113445. [Google Scholar] [CrossRef]
- Khazaei, S.; Parvin, P.; Ahmadinouri, F.; Shamsi, E.; Dodangeh, M. Optical Assessment of Heroin Using Laser-Induced Flu-orescence Spectroscopy Based on Modified Beer-Lambert Formalism. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 331, 125777. [Google Scholar] [CrossRef]
- Kranenburg, R.F.; Ramaker, H.-J.; van Asten, A.C. Portable near Infrared Spectroscopy for the Isomeric Differentiation of New Psychoactive Substances. Forensic Sci. Int. 2022, 341, 111467. [Google Scholar] [CrossRef]
- Vendrell-Dones, M.O.; Hernandez, E.; Dogruer Erkok, S.; McCord, B. Detection of Synthetic Cathinones in Seized Drugs Using Surface-Enhanced Raman Spectroscopy (SERS). Forensic Chem. 2024, 41, 100613. [Google Scholar] [CrossRef]
- Monari, A.; Foca, G.; Ulrici, A.; Zanfrognini, B.; Brighenti, V.; Verri, P.; Pellati, F.; Zanardi, C.; Pigani, L. Electrochemical Sensors for Fast Classification of Different Cannabis sativa L. Samples According to Total Δ9-Tetrahydrocannabinol Content. Talanta 2025, 282, 126958. [Google Scholar] [CrossRef]
- Felipe Montiel, N.; Sleegers, N.; Barich, H.; Beltrán, V.; De Wael, K. Surfactant-Assisted Electrochemical Sensor for Phyto-cannabinoids. Microchem. J. 2024, 207, 112055. [Google Scholar] [CrossRef]
- Grewal, R.; Ortega, G.A.; Viltres, H.; Srinivasan, S.; Rajabzadeh, A.R. Tetrahydrocannabinol (THC)-Modified Screen-Printed Carbon Electrodes (SPCEs): Insights into Stability. RSC Appl. Interfaces 2024, 1, 1252–1264. [Google Scholar] [CrossRef]
- Pholsiri, T.; Khamcharoen, W.; Suksuwan, A.; Vimolmangkang, S.; Siangproh, W.; Chailapakul, O. Dual-Mode Electrochem-ical/Colorimetric Capillary-Driven Microfluidic Device for Simultaneous Determination of Δ9-Tetrahydrocannabinol and Cannabidiol in Cannabis Flower. Sens. Actuators B Chem. 2024, 417, 136152. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, D.; Cai, W. Carbon Nanotubes Coated with Hybrid Nanocarbon Layers for Electrochemical Sensing of Psy-choactive Drug. Electrochim. Acta 2022, 430, 141001. [Google Scholar] [CrossRef]
- Javed, A.; Fatima, B.; Hussain, D.; Zahra Jawad, S.E.; Subhan, M.; Najam-ul-Haq, M. Effect of Narcotic Drugs on Neuro-transmitter: Electrochemical Determination of Heroin and Dopamine by Graphene Oxide/Carboxymethylcellulose/Magnesium Oxide Nanohybrid Membrane. J. Mol. Liq. 2023, 384, 122154. [Google Scholar] [CrossRef]
- Foroughi, M.M.; Jahani, S.; Aramesh-Boroujeni, Z.; Vakili Fathabadi, M.; Hashemipour Rafsanjani, H.; Rostaminasab Do-latabad, M. Template-Free Synthesis of ZnO/Fe3O4/Carbon Magnetic Nanocomposite: Nanotubes with Hexagonal Cross Sections and Their Electrocatalytic Property for Simultaneous Determination of Oxymorphone and Heroin. Microchem. J. 2021, 170, 106679. [Google Scholar] [CrossRef]
- Jalalvand, A.R.; Chamandoost, S.; Mohammadi, S.; Jalili, C.; Fakhri, S. Engagement of Computerized and Electrochemical Methods to Develop a Novel and Intelligent Electronic Device for Detection of Heroin Abuse. Chemom. Intell. Lab. Syst. 2024, 251, 105176. [Google Scholar] [CrossRef]
- Felipe Montiel, N.; Parrilla, M.; Beltrán, V.; Nuyts, G.; Van Durme, F.; De Wael, K. The Opportunity of 6-Monoacetylmorphine to Selectively Detect Heroin at Preanodized Screen Printed Electrodes. Talanta 2021, 226, 122005. [Google Scholar] [CrossRef]
- Smolinska-Kempisty, K.; Ahmad, O.S.; Guerreiro, A.; Karim, K.; Piletska, E.; Piletsky, S. New Potentiometric Sensor Based on Molecularly Imprinted Nanoparticles for Cocaine Detection. Biosens. Bioelectron. 2017, 96, 49–54. [Google Scholar] [CrossRef]
- Abnous, K.; khakshour Abdolabadi, A.; Ramezani, M.; Alibolandi, M.; Nameghi, M.A.; Zavvar, T.; Khoshbin, Z.; Lavaee, P.; Taghdisi, S.M.; Danesh, N.M. A Highly Sensitive Electrochemical Aptasensor for Cocaine Detection Based on CRISPR-Cas12a and Terminal Deoxynucleotidyl Transferase as Signal Amplifiers. Talanta 2022, 241, 123276. [Google Scholar] [CrossRef]
- dos Santos Conceição, N.; Fernandes Souza dos Santos, G.; Guilherme Aquino Rodrigues, J.; de Barros Gomes Junior, S.; Romão, W.; de Queiroz Ferreira, R. Development of an Electroanalytical Methodology for the Identification and Quantification of Cocaine in Samples Seized Using a Carbon Paste Electrode Modified with Multi-Walled Carbon Nanotubes. Microchem. J. 2024, 201, 110723. [Google Scholar] [CrossRef]
- Hamdi, F.; Roushani, M. Development of an Electrochemical Aptasensor for Cocaine Detection Using CuFe2O4 and Elec-troreduced Graphene Oxide. Sens. Bio-Sens. Res. 2025, 48, 100796. [Google Scholar] [CrossRef]
- Arrieiro, M.O.B.; Arantes, L.C.; Richter, E.M.; Muñoz, R.A.A.; dos Santos, W.T.P. Enhanced Detection of Lysergic Acid Diethylamide Using Ehrlich Reagent and Screen-Printed Electrodes: A Hybrid Method for Application in Forensic Analysis. Microchem. J. 2024, 201, 110717. [Google Scholar] [CrossRef]
- Pimentel, D.M.; Arantes, L.C.; Santos, L.M.; Souza, K.A.O.; Verly, R.M.; Barbosa, S.L.; dos Santos, W.T.P. Rapid and Simple Voltammetric Screening Method for Lysergic Acid Diethylamide (LSD) Detection in Seized Samples Using a Boron-Doped Diamond Electrode. Sens. Actuators B Chem. 2021, 344, 130229. [Google Scholar] [CrossRef]
- Rocha, C.M.; de Almeida Melo, L.M.; Santos, A.C.C.; Pimenta, J.V.C.; Souza, G.A.; Arantes, L.C.; Alves de Barros, W.; Au-gusti, R.; Nascentes, C.C.; dos Santos, W.T.P.; et al. Colorimetric-Electrochemical Combined Method for the Identification of Drugs of Abuse in Blotter Papers: A Powerful Screening Technique Using Three Analytical Responses. ACS Omega 2025, 10, 16648–16657. [Google Scholar] [CrossRef]
- Ribeiro, M.F.M.; Bento, F.; Ipólito, A.J.; de Oliveira, M.F. Development of a Pencil Drawn Paper-Based Analytical Device to Detect Lysergic Acid Diethylamide (LSD). J. Forensic Sci. 2020, 65, 2121–2128. [Google Scholar] [CrossRef]
- Van Echelpoel, R.; Kranenburg, R.F.; van Asten, A.C.; De Wael, K. Electrochemical Detection of MDMA and 2C-B in Ecstasy Tablets Using a Selectivity Enhancement Strategy by in-Situ Derivatization. Forensic Chem. 2022, 27, 100383. [Google Scholar] [CrossRef]
- Naomi Oiye, É.; Midori Toia Katayama, J.; Fernanda Muzetti Ribeiro, M.; Oka Duarte, L.; de Castro Baker Botelho, R.; José Ipólito, A.; Royston McCord, B.; Firmino de Oliveira, M. Voltammetric Detection of 3,4-Methylenedioxymethamphetamine (Mdma) in Saliva in Low Cost Systems. Forensic Chem. 2020, 20, 100268. [Google Scholar] [CrossRef]
- Dams, R.; Benijts, T.; Lambert, W.E.; Massart, D.L.; De Leenheer, A.P. Heroin Impurity Profiling: Trends throughout a Decade of Experimenting. Forensic Sci. Int. 2001, 123, 81–88. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Available online: https://wdr.unodc.org/wdr2020/en/index2020.html (accessed on 12 June 2025).
- European Union Drugs Agency (EUDA). Available online: https://www.euda.europa.eu/publications/edr/trends-developments/2020_en (accessed on 22 September 2020).
- Chandra, S.; Kumar, A.; Yadav, S.; Anjana, S.N. Forensic Examination of Heroin and Its Cutting Agents. J. Forensic Sci. Criminol. 2022, 10, 1–15. [Google Scholar]
- Li, L.; Li, J.; Cao, H.; Wang, Q.; Zhou, Z.; Zhao, H.; Kuang, H. Determination of Metabolic Phenotype and Potential Biomarkers in the Liver of Heroin Addicted Mice with Hepatotoxicity. Life Sci. 2021, 287, 120103. [Google Scholar] [CrossRef]
- Isenschmid, D.S. Cocaine. In Principles of Forensic Toxicology; Levine, B.S., Kerrigan, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 371–387. ISBN 978-3-030-42917-1. [Google Scholar]
- Bilge, S.; Dogan-Topal, B.; Gürbüz, M.M.; Yücel, A.; Sınağ, A.; Ozkan, S.A. Recent Advances in Electrochemical Sensing of Cocaine: A Review. TrAC Trends Anal. Chem. 2022, 157, 116768. [Google Scholar] [CrossRef]
- Bilko, J.; Deng, Y. Determination of Cocaine on Banknotes Using Innovative Sample Preparation Coupled with Multiple Calibration Techniques. Drug Test. Anal. 2022, 14, 1665–1671. [Google Scholar] [CrossRef]
- Dalem, S.; Zamoum, R.; Seddi, R.; Kaddour, S. Determination of Cocaine and Its Metabolites in Blood by Gas Chromatography Coupled with Mass Spectrometry (GC-MS). Batna. J. Med. Sci. 2024, 11, 11–16. [Google Scholar] [CrossRef]
- John, D.K.; dos Santos Souza, K.; Ferrão, M.F. Overview of Cocaine Identification by Vibrational Spectroscopy and Chemo-metrics. Forensic Sci. Int. 2023, 342, 111540. [Google Scholar] [CrossRef]
- Borgul, P.; Sobczak, K.; Rizwan, M.; Kowalski, G.; Poltorak, M.; Banatkiewicz, P.; Walecka, I.; Rudnicki, K.; Skrzypek, S.; Poltorak, L. Electrochemical Detection of Cocaine Metabolites (Benzoylecgonine and Ecgonine) at the Miniaturized Electrified Liquid-Liquid Interface. Sens. Actuators B Chem. 2024, 414, 135895. [Google Scholar] [CrossRef]
- Borgul, P.; Sobczak, K.; Rudnicki, K.; Glazer, P.; Pawlak, P.; Trynda, A.; Skrzypek, S.; Poltorak, L. Electrochemical Behavior of Cocaine Cutting Agents at the Polarized Liquid-Liquid Interface. Electrochim. Acta 2022, 402, 139553. [Google Scholar] [CrossRef]
- Burton, K.; Nic Daeid, N.; Adegoke, O. Surface Plasmon-Enhanced Aptamer-Based Fluorescence Detection of Cocaine Using Hybrid Nanostructure of Cadmium-Free ZnSe/In2S3 Core/Shell Quantum Dots and Gold Nanoparticles. J. Photochem. Photobiol. A Chem. 2022, 433, 114131. [Google Scholar] [CrossRef]
- Jastrzębski, M.K.; Kaczor, A.A.; Wróbel, T.M. Methods of Lysergic Acid Synthesis—The Key Ergot Alkaloid. Molecules 2022, 27, 7322. [Google Scholar] [CrossRef]
- dos Santos, R.G.; Osório, F.L.; Crippa, J.A.S.; Hallak, J.E.C. Classical Hallucinogens and Neuroimaging: A Systematic Review of Human Studies: Hallucinogens and Neuroimaging. Neurosci. Biobehav. Rev. 2016, 71, 715–728. [Google Scholar] [CrossRef]
- United Nations, Division of Narcotic Drugs. 1989. Available online: https://www.unodc.org/pdf/publications/report_testinglsd_1989-01-01_1.pdf (accessed on 20 July 2025).
- Zheng, J.; Wang, X.; Zhang, J.; Ren, H.; Zhao, Y.; Xiang, P. Concentrations of LSD, 2-Oxo-3-Hydroxy-LSD, and Iso-LSD in Hair Segments of 18 Drug Abusers. Forensic Sci. Int. 2023, 344, 111578. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://iris.who.int/bitstream/handle/10665/272729/ats-brief-1.pdf?sequence=1&isAllowed=y (accessed on 24 January 2025).
- Triplett, J.S.; Salyards, J.; Rodriguez-Cruz, S.E.; Morris, J.A.; Creel, D.; Zemmels, J.; Grabenauer, M. Evidence-Based Evalua-tion of the Analytical Schemes in ASTM E2329-17 Standard Practice for Identification of Seized Drugs for Methamphetamine Samples. Forensic Chem. 2024, 38, 100560. [Google Scholar] [CrossRef]
- Hussain, J.H.; Gilbert, N.; Costello, A.; Schofield, C.J.; Kemsley, E.K.; Sutcliffe, O.B.; Mewis, R.E. Quantification of MDMA in Seized Tablets Using Benchtop 1H NMR Spectroscopy in the Absence of Internal Standards. Forensic Chem. 2020, 20, 100263. [Google Scholar] [CrossRef]
- Cunha, R.L.; Oliveira Cda, S.L.; de Oliveira, A.L.; Maldaner, A.O.; do Desterro Cunha, S.; Pereira, P.A.P. An Overview of New Psychoactive Substances (NPS) in Northeast Brazil: NMR-Based Identification and Analysis of Ecstasy Tablets by GC-MS. Forensic Sci. Int. 2023, 344, 111597. [Google Scholar] [CrossRef]
- Gao, J.; Xu, B.; Yang, R.; Zhang, H. Screening Strategy for Ketamine-Based New Psychoactive Substances Using Fragmentation Characteristics from High Resolution Mass Spectrometry. Forensic Sci. Int. 2023, 347, 111677. [Google Scholar] [CrossRef]
- Hwang, J.; Han, M.; An, S.; Moon, J.H.; Shim, G.; Chung, H. Screening of New Psychoactive Substances in Human Plasma by Magnetic Solid Phase Extraction and LC-QTOF-MS. Forensic Sci. Int. 2022, 332, 111176. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.-Y.; Zang, C.-Z.; Shih, P.-H.; Ko, Y.-C.; Hsu, Y.-H.; Lin, M.-C.; Tseng, S.-H.; Wang, D.-Y. Simultaneous LC-MS/MS Screening for Multiple Phenethylamine-Type Conventional Drugs and New Psychoactive Substances in Urine. Forensic Sci. Int. 2021, 325, 110884. [Google Scholar] [CrossRef]
- Birk, L.; Marland, V.; Eller, S.; de Oliveira, T.F.; Nic Daéid, N.; Nisbet, L. Detection and Quantitation of the Semi-Synthetic Cannabinoid Hexahydrocannabinol in Seized Samples from Scottish Prisons. Forensic Chem. 2025, 42, 100640. [Google Scholar] [CrossRef]
- Du, Y.; Hua, Z.; Liu, C.; Lv, R.; Jia, W.; Su, M. ATR-FTIR Combined with Machine Learning for the Fast Non-Targeted Screening of New Psychoactive Substances. Forensic Sci. Int. 2023, 349, 111761. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Song, C.; Jia, W.; Hua, Z.; Liao, Q. The Application of 19F NMR Spectroscopy for the Analysis of Fluorinated New Psychoactive Substances (NPS). Forensic Sci. Int. 2022, 340, 111450. [Google Scholar] [CrossRef]
- Rautio, T.; Connolly, M.J.; Liu, H.; Konradsson, P.; Gréen, H.; Dahlén, J.; Wu, X. Direct and Selective Alkylation of Inda-zole-3-Carboxylic Acid for the Preparation of Synthetic Cannabinoids and Metabolites. Forensic Chem. 2024, 40, 100603. [Google Scholar] [CrossRef]
- Couch, A.N.; Tyler Davidson, J. Development of a Novel Seized Drug Screening Method Utilizing DART-MS and Used Weigh Paper. Forensic Chem. 2024, 39, 100572. [Google Scholar] [CrossRef]
- Jacques, A.L.B.; Santos, M.K.; Gorziza, R.P.; Limberger, R.P. Dried Matrix Spots: An Evolving Trend in the Toxicological Field. Forensic Sci. Med. Pathol. 2022, 18, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Tey, H.Y.; See, H.H. A Review of Recent Advances in Microsampling Techniques of Biological Fluids for Therapeutic Drug Monitoring. J. Chromatogr. A 2021, 1635, 461731. [Google Scholar] [CrossRef] [PubMed]
- Bassotti, E.; Merone, G.M.; D’Urso, A.; Savini, F.; Locatelli, M.; Tartaglia, A.; Dossetto, P.; D’Ovidio, C.; de Grazia, U. A New LC-MS/MS Confirmation Method for the Determination of 17 Drugs of Abuse in Oral Fluid and Its Application to Real Samples. Forensic Sci. Int. 2020, 312, 110330. [Google Scholar] [CrossRef]
- Schmidt, J.; Lindemann, V.; Olsen, M.; Cramer, B.; Humpf, H.-U. Dried Urine Spots as Sampling Technique for Mul-ti-Mycotoxin Analysis in Human Urine. Mycotoxin Res. 2021, 37, 129–140. [Google Scholar] [CrossRef]
- Tartaglia, A.; Kabir, A.; D’Ambrosio, F.; Ramundo, P.; Ulusoy, S.; Ulusoy, H.I.; Merone, G.M.; Savini, F.; D’Ovidio, C.; Grazia, U.D.; et al. Fast off-Line FPSE-HPLC-PDA Determination of Six NSAIDs in Saliva Samples. J. Chromatogr. B 2020, 1144, 122082. [Google Scholar] [CrossRef]
- Greco, V.; Locatelli, M.; Savini, F.; Grazia, U.d.e.; Montanaro, O.; Rosato, E.; Perrucci, M.; Ciriolo, L.; Kabir, A.; Ulusoy, H.I.; et al. New Challenges in (Bio)Analytical Sample Treatment Procedures for Clinical Applications. Separations 2023, 10, 62. [Google Scholar] [CrossRef]
- Greco, V.; Giuffrida, A.; Locatelli, M.; Savini, F.; de Grazia, U.; Ciriolo, L.; Perrucci, M.; Kabir, A.; Ulusoy, H.I.; D’Ovidio, C.; et al. Emerging Trends in Pharmacotoxicological and Forensic Sample Treatment Procedures. Appl. Sci. 2023, 13, 2836. [Google Scholar] [CrossRef]
- Greco, V.; Giuffrida, A.; Locatelli, M.; Savini, F.; de Grazia, U.; Ciriolo, L.; Perrucci, M.; Kabir, A.; Ulusoy, H.I.; D’Ovidio, C.; et al. Emerging Procedures and Solvents in Biological Sample Pre-Treatment. Adv. Sample Prep. 2023, 6, 100066. [Google Scholar] [CrossRef]
- Nugraha, R.V.; Yunivita, V.; Santoso, P.; Hasanah, A.N.; Aarnoutse, R.E.; Ruslami, R. Analytical and Clinical Validation of Assays for Volumetric Absorptive Microsampling (VAMS) of Drugs in Different Blood Matrices: A Literature Review. Molecules 2023, 28, 6046. [Google Scholar] [CrossRef] [PubMed]
- Agadellis, E.; Tartaglia, A.; Locatelli, M.; Kabir, A.; Furton, K.G.; Samanidou, V. Mixed-Mode Fabric Phase Sorptive Extraction of Multiple Tetracycline Residues from Milk Samples Prior to High Performance Liquid Chromatography-Ultraviolet Analysis. Microchem. J. 2020, 159, 105437. [Google Scholar] [CrossRef]
- Ulusoy, H.İ.; Köseoğlu, K.; Kabir, A.; Ulusoy, S.; Locatelli, M. Fabric Phase Sorptive Extraction Followed by HPLC-PDA Detection for the Monitoring of Pirimicarb and Fenitrothion Pesticide Residues. Mikrochim. Acta 2020, 187, 337. [Google Scholar] [CrossRef]
- Locatelli, M.; Tartaglia, A.; D’Ambrosio, F.; Ramundo, P.; Ulusoy, H.I.; Furton, K.G.; Kabir, A. Biofluid Sampler: A New Gateway for Mail-in-Analysis of Whole Blood Samples. J. Chromatogr. B 2020, 1143, 122055. [Google Scholar] [CrossRef] [PubMed]
- Câmara, J.S.; Perestrelo, R.; Berenguer, C.V.; Andrade, C.F.; Gomes, T.M.; Olayanju, B.; Kabir, A.; MRRocha, C.; Teixeira, J.A.; Pereira, J.A. Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules 2022, 27, 2953. [Google Scholar] [CrossRef]
- Stocka, J.; Tankiewicz, M.; Biziuk, M.; Namieśnik, J. Green Aspects of Techniques for the Determination of Currently Used Pesticides in Environmental Samples. Int. J. Mol. Sci. 2011, 12, 7785–7805. [Google Scholar] [CrossRef]
- Bogdanowicz, R.; Jönsson-Niedziółka, M.; Vereshchagina, E.; Dettlaff, A.; Boonkaew, S.; Pierpaoli, M.; Wittendorp, P.; Jain, S.; Tyholdt, F.; Thomas, J.; et al. Microfluidic Devices for Photo-and Spectroelectrochemical Applications. Curr. Opin. Electrochem. 2022, 36, 101138. [Google Scholar] [CrossRef]
- Vagnini, M.; Gabrieli, F.; Daveri, A.; Sali, D. Handheld New Technology Raman and Portable FT-IR Spectrometers as Com-plementary Tools for the in Situ Identification of Organic Materials in Modern Art. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 176, 174–182. [Google Scholar] [CrossRef]
- Passerini, B.; Breitkreitz, M. Recent Developments in Green Chromatography. Braz. J. Anal. Chem. 2023, 10, 17–34. [Google Scholar] [CrossRef]
- Sisco, E.; Forbes, T.P. Forensic Applications of DART-MS: A Review of Recent Literature. Forensic Chem. 2021, 22, 100294. [Google Scholar] [CrossRef] [PubMed]
- Gozdzialski, L.; Aasen, J.; Larnder, A.; Ramsay, M.; Borden, S.A.; Saatchi, A.; Gill, C.G.; Wallace, B.; Hore, D.K. Portable Gas Chromatography–Mass Spectrometry in Drug Checking: Detection of Carfentanil and Etizolam in Expected Opioid Samples. Int. J. Drug Policy 2021, 97, 103409. [Google Scholar] [CrossRef] [PubMed]
- Fiorentin, T.R.; Logan, B.K.; Martin, D.M.; Browne, T.; Rieders, E.F. Assessment of a Portable Quadrupole-Based Gas Chromatography Mass Spectrometry for Seized Drug Analysis. Forensic Sci. Int. 2020, 313, 110342. [Google Scholar] [CrossRef] [PubMed]
- Fanali, C.; D’Orazio, G.; Gentili, A.; Fanali, S. Potentiality of Miniaturized Techniques for the Analysis of Drugs of Abuse. Electrophoresis 2022, 43, 190–200. [Google Scholar] [CrossRef]
- Böck, F.C.; Helfer, G.A.; da Costa, A.B.; Dessuy, M.B.; Ferrão, M.F. PhotoMetrix and Colorimetric Image Analysis Using Smartphones. J. Chemom. 2020, 34, e3251. [Google Scholar] [CrossRef]
- Gonçalves Dias Diniz, P.H. Chemometrics-Assisted Color Histogram-Based Analytical Systems. J. Chemom. 2020, 34, e3242. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; de la Guardia, M. The Role of Green Extraction Techniques in Green Analytical Chemistry. TrAC Trends Anal. Chem. 2015, 71, 2–8. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
- Tobiszewski, M. Metrics for Green Analytical Chemistry. Anal. Methods 2016, 8, 2993–2999. [Google Scholar] [CrossRef]
- Kowtharapu, L.P.; Katari, N.K.; Muchakayala, S.K.; Marisetti, V.M. Green Metric Tools for Analytical Methods Assessment Critical Review, Case Studies and Crucify. TrAC Trends Anal. Chem. 2023, 166, 117196. [Google Scholar] [CrossRef]
- González-Martín, R.; Gutiérrez-Serpa, A.; Pino, V.; Sajid, M. A Tool to Assess Analytical Sample Preparation Procedures: Sample Preparation Metric of Sustainability. J. Chromatogr. A 2023, 1707, 464291. [Google Scholar] [CrossRef]
- Sena, M.M.; Rocha, W.F.C.; Braga, J.W.B.; Silva, C.S.; Urbas, A. 4.06—Chemometrics in Forensics. In Comprehensive Chemometrics, 2nd ed.; Brown, S., Tauler, R., Walczak, B., Eds.; Elsevier: Oxford, UK, 2020; pp. 113–148. ISBN 978-0-444-64166-3. [Google Scholar]
- Tzimas, P.S.; Petrakis, E.A.; Papadimitriou, A.; Beteinakis, S.; Halabalaki, M.; Skaltsounis, A.L. Analytical and Chemometric Approaches for Quality Characterization of Cannabis sativa L. with Focus on Cannabinoids. In Proceedings of the GA – 69th Annual Meeting 2021, Virtual, 5–8 September 2021; Georg Thieme Verlag: Stuttgart, Germany; Volume 87, p. PC4–20. [Google Scholar]
- Gröger, T.; Schäffer, M.; Pütz, M.; Ahrens, B.; Drew, K.; Eschner, M.; Zimmermann, R. Application of Two-Dimensional Gas Chromatography Combined with Pixel-Based Chemometric Processing for the Chemical Profiling of Illicit Drug Samples. J. Chromatogr. A 2008, 1200, 8–16. [Google Scholar] [CrossRef]
- Deconinck, E.; Duchateau, C.; Balcaen, M.; Gremeaux, L.; Courselle, P. Chemometrics and Infrared Spectroscopy—A Winning Team for the Analysis of Illicit Drug Products. Rev. Anal. Chem. 2022, 41, 228–255. [Google Scholar] [CrossRef]
- O’Connell, M.-L.; Ryder, A.G.; Leger, M.N.; Howley, T. Qualitative Analysis Using Raman Spectroscopy and Chemometrics: A Comprehensive Model System for Narcotics Analysis. Appl. Spectrosc. 2010, 64, 1109–1121. [Google Scholar] [CrossRef] [PubMed]
- Gadžurić, S.B.; Kuzmanović, S.O.P.; Vraneš, M.B.; Petrin, M.; Bugarski, T.; Kovačević, S.Z. Multivariate Chemometrics with Regression and Classification Analyses in Heroin Profiling Based on the Chromatographic Data. Iran. J. Pharm. Res. 2016, 15, 725–734. [Google Scholar]
Method | Advantages | Disadvantages |
---|---|---|
FTIR | Rapid and non-destructive, minimal sample preparation. | Limited sensitivity, less effective in mixtures, requires reference spectra. |
RS | Non-destructive and portable, effective through containers (e.g., glass/plastic), minimal sample preparation. | Fluorescence interference, limited quantitative ability, expensive equipment. |
GC-MS | High sensitivity and specificity, excellent for complex mixtures | Requires volatile/thermally stable compounds, long analysis time, requires skilled operator. |
GC-FID | Sensitive for organic compounds, quantitative analysis, cost-effective | Lacks compound identification, requires standards, not suitable for non-volatile drugs. |
HPLC-DAD | Suitable for thermally labile and non-volatile drugs, high resolution and precision, good reproducibility. | Limited compound identification, requires extensive method development, solvent use and disposal issues. |
HPLC-MS | High sensitivity and selectivity, capable of structural elucidation, detects low concentrations. | High cost, requires expert handling, matrix effects may interfere |
Sensors | Low-cost and portable, rapid response, good for field testing. | Lower selectivity and sensitivity, limited lifetime and stability, calibration challenges |
CV | Sensitive to redox-active drugs, small sample volume, Fast analysis | Limited selectivity, not suitable for complex mixtures, complex interpretation of data |
HPTLC | Fast and inexpensive, parallel analysis of multiple samples, minimal solvent use | Lower sensitivity and resolution, not ideal for complex matrices |
NMR | Excellent structural elucidation, non-destructive, capable for complex mixtures | High cost, Low sensitivity, Requires large sample amounts and trained staffs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ristivojević, P.; Otašević, B.; Todorović, P.; Radosavljević-Stevanović, N. Forensic Narcotics Drug Analysis: State-of-the-Art Developments and Future Trends. Processes 2025, 13, 2371. https://doi.org/10.3390/pr13082371
Ristivojević P, Otašević B, Todorović P, Radosavljević-Stevanović N. Forensic Narcotics Drug Analysis: State-of-the-Art Developments and Future Trends. Processes. 2025; 13(8):2371. https://doi.org/10.3390/pr13082371
Chicago/Turabian StyleRistivojević, Petar, Božidar Otašević, Petar Todorović, and Nataša Radosavljević-Stevanović. 2025. "Forensic Narcotics Drug Analysis: State-of-the-Art Developments and Future Trends" Processes 13, no. 8: 2371. https://doi.org/10.3390/pr13082371
APA StyleRistivojević, P., Otašević, B., Todorović, P., & Radosavljević-Stevanović, N. (2025). Forensic Narcotics Drug Analysis: State-of-the-Art Developments and Future Trends. Processes, 13(8), 2371. https://doi.org/10.3390/pr13082371