Emulsions Stabilized by Soy Protein Isolate Microgels: Encapsulation of β-Carotene and Incorporation into Yogurts
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Production and Characterization of SPI Microgels (MSPI)
2.2.1. Determination of the Zeta Potential, Polydispersity Index (PDI), and Average Diameter
2.2.2. Protein-to-Microgel Conversion Factor
2.2.3. Quantification of Free Sulfhydryl (SHF) Groups
2.2.4. Determination of the Contact Angle
2.2.5. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS–PAGE)
2.3. Production and Characterization of Emulsions Stabilized by SPI Microgels
2.3.1. Determination of the Droplet Size Distribution
2.3.2. Determination of Creaming Index (Ci)
2.3.3. Accelerated Stability Test
2.3.4. Morphology by Confocal Laser Scanning Microscopy (CLSM)
2.4. Incorporation of β-Carotene-Loaded Emulsions in Yogurt and Characterization of Dairy Products
2.4.1. Rheological Characterization of Yogurts
2.4.2. Physicochemical Characterization of Yogurts
2.4.3. Determination of Lactic Acid Bacteria
2.4.4. Sensory Evaluation of Yogurts
2.5. Statistical Analyses
3. Results and Discussion
3.1. Development of SPI Microgels (MSPIs): Characterization and Choice of Microgel for Emulsion Stabilization
3.1.1. Determination of Average Particle Size and Particle Size Distribution, Zeta Potential, and the Protein–Microgel Conversion Factor
3.1.2. Quantification of Free Sulfhydryl Groups
3.1.3. Contact Angle
3.1.4. Electrophoretic Patterns by Gel Electrophoresis (SDS–PAGE)
3.2. Characterization of MSPI-Stabilized Emulsions
3.2.1. Average Particle Size and Physical Stability of MSPI-Stabilized Emulsions
3.2.2. Morphology of MSPI-Stabilized Emulsions
3.3. Characterization of Beta-Carotene-Enriched Yogurts
3.3.1. Physicochemical Characterization of Yogurt
3.3.2. Microbiological Characterization of Yogurt
3.3.3. Rheological Characterization
3.3.4. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPI | Soy protein isolate |
MSPI | Microgel of soy protein isolate |
E6 | Emulsion stabilized with MSPI6 |
E8 | Emulsion stabilized with MSPI8 |
YE5 | Yogurt with 5% added emulsion |
YE10 | Yogurt with 10% added emulsion |
YE15 | Yogurt with 15% added emulsion |
PDI | Polydispersity index |
SHF | Free sulfhydryl |
Ci | Creaming index |
Appendix A
Emulsion | Storage Day | D10 (µm) | D50 (µm) | D90 (µm) | Span |
---|---|---|---|---|---|
E6 | Fresh emulsion | 3.08 | 5.75 | 12.06 | 1.56 |
Day 1 | 3.01 | 9.62 | 18.28 | 1.59 | |
Day 7 | 1.70 | 6.91 | 17.77 | 2.33 | |
Day 14 | 3.24 | 5.85 | 11.79 | 1.46 | |
E8 | Fresh emulsion | 3.70 | 7.41 | 20.88 | 2.32 |
Day 1 | 5.58 | 12.74 | 22.54 | 1.33 | |
Day 7 | 1.94 | 7.82 | 14.97 | 1.46 | |
Day 14 | 4.16 | 8.91 | 17.60 | 1.51 |
References
- Jin, H.; Wang, L.; Yang, S.; Wen, J.; Zhang, Y.; Jiang, L.; Sui, X. Producing Mixed-Soy Protein Adsorption Layers on Alginate Microgels to Controlled-Release β-Carotene. Food Res. Int. 2023, 164, 112319. [Google Scholar] [CrossRef]
- Geng, M.; Feng, X.; Yang, H.; Wu, X.; Li, L.; Li, Y.; Teng, F. Comparison of Soy Protein Isolate-(–)-Epigallocatechin Gallate Complexes Prepared by Mixing, Chemical Polymerization, and Ultrasound Treatment. Ultrason. Sonochem. 2022, 90, 106172. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Xin, Y.; Wu, B.; Jiang, X.; Wu, X.; Hou, P.; Qi, J.; Zhang, J. Pickering Emulsions Stabilized by Ternary Complexes Involving Curcumin-Modified Zein and Polysaccharides with Different Charge Amounts for Encapsulating β-Carotene. Food Chem. 2024, 433, 137338. [Google Scholar] [CrossRef]
- Lavelli, V.; Sereikaitė, J. Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods 2022, 11, 437. [Google Scholar] [CrossRef] [PubMed]
- Gomes, G.V.d.L.; Borrin, T.R.; Cardoso, L.P.; Souto, E.; Pinho, S.C. Characterization and Shelf Life of β-Carotene Loaded Solid Lipid Microparticles Produced With Stearic Acid and Sunflower Oil. Arch. Biol. Technol. 2013, 56, 663–671. [Google Scholar] [CrossRef]
- Lin, Q.; Jiang, H.; Li, X.; McClements, D.J.; Sang, S.; Wang, J.; Jiao, A.; Jin, Z.; Qiu, C. Encapsulation and Protection of β-Carotene in Pickering Emulsions Stabilized by Chitosan-Phytic Acid-Cyclodextrin Nanoparticles. Food Biosci. 2024, 59, 103845. [Google Scholar] [CrossRef]
- Tang, X.M.; Liu, P.D.; Chen, Z.J.; Li, X.Y.; Huang, R.; Liu, G.D.; Dong, R.S.; Chen, J. Encapsulation of a Desmodium Intortum Protein Isolate Pickering Emulsion of β-Carotene: Stability, Bioaccesibility and Cytotoxicity. Foods 2022, 11, 936. [Google Scholar] [CrossRef]
- Dickinson, E. Microgels—An Alternative Colloidal Ingredient for Stabilization of Food Emulsions. Trends Food Sci. Technol. 2015, 43, 178–188. [Google Scholar] [CrossRef]
- Guan, X.; Jiang, H.; Lin, J.; Ngai, T. Pickering Emulsions: Microgels as Alternative Surfactants. Curr. Opin. Colloid Interface Sci. 2024, 73, 101827. [Google Scholar] [CrossRef]
- Ribeiro, E.F.; Morell, P.; Nicoletti, V.R.; Quiles, A.; Hernando, I. Protein- and Polysaccharide-Based Particles Used for Pickering Emulsion Stabilisation. Food Hydrocoll. 2021, 119, 106839. [Google Scholar] [CrossRef]
- Zhang, S.; Holmes, M.; Ettelaie, R.; Sarkar, A. Pea Protein Microgel Particles as Pickering Stabilisers of Oil-in-Water Emulsions: Responsiveness to PH and Ionic Strength. Food Hydrocoll. 2020, 102, 105583. [Google Scholar] [CrossRef]
- Zhang, L.; Zaky, A.A.; Zhou, C.; Chen, Y.; Su, W.; Wang, H.; Abd El-Aty, A.M.; Tan, M. High Internal Phase Pickering Emulsion Stabilized by Sea Bass Protein Microgel Particles: Food 3D Printing Application. Food Hydrocoll. 2022, 131, 107744. [Google Scholar] [CrossRef]
- Hei, X.; Li, S.; Liu, Z.; Wu, C.; Ma, X.; Jiao, B.; Hu, H.; Zhu, J.; Adhikari, B.; Wang, Q.; et al. Characteristics of Pickering Emulsions Stabilized by Microgel Particles of Five Different Plant Proteins and Their Application. Food Chem. 2024, 449, 139187. [Google Scholar] [CrossRef]
- Hou, G.; Liu, Y.; Zhang, L.; Han, Y.; Zhou, F.; Zhang, Z.; Zhang, L. Soy Protein Isolate Emulsion Microgel Particles for Encapsulating Oil. J. Food Eng. 2024, 371, 111993. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, B.; Lu, K.; Dou, J.; Ning, Y.; Wang, H.; Li, Y.; Qi, B.; Jiang, L. Construction and Characterization of Pickering Emulsions Stabilized by Soy Protein Hydrolysate Microgel Particles and Quercetin-Loaded Performance in Vitro Digestion. Food Res. Int. 2023, 169, 112844. [Google Scholar] [CrossRef]
- Mao, J.; Cui, L.; Meng, Z. Stabilization of Oil-in-water Emulsion Gels by PH-induced Electrostatic Interactions between Soybean Protein Isolate Microgel Particles and Xanthan Gum. J. Am. Oil Chem. Soc. 2024, 101, 1287–1298. [Google Scholar] [CrossRef]
- Yu, R.; Zheng, M.; Zhou, F.; Hou, G.; Zou, Z.; Miao, S.; Zhang, L.; Zheng, B. SPI/SA Microgels Prepared by Phase Separation Improved the Water Retention and Sensory Perception of Low-Salt Pork Gels. Food Hydrocoll. 2024, 156, 110370. [Google Scholar] [CrossRef]
- Bourouis, I.; McClements, D.J.; Chen, C.; Li, H.; Pang, Z.; Liu, X. Formulations and Evaluations of Structural and Physico-Chemical Properties of Soy Yogurts: Effect of Incorporating Soy Protein Isolate/Chitosan Complexed Microgels. LWT 2024, 206, 116569. [Google Scholar] [CrossRef]
- Silva, J.T.D.P.; Benetti, J.V.M.; Alexandrino, T.T.d.B.; Assis, O.B.G.; de Ruiter, J.; Schroën, K.; Nicoletti, V.R. Whey Protein Isolate Microgel Properties Tuned by Crosslinking with Organic Acids to Achieve Stabilization of Pickering Emulsions. Foods 2021, 10, 1296. [Google Scholar] [CrossRef]
- Jiang, S.; Ding, J.; Andrade, J.; Rababah, T.M.; Almajwal, A.; Abulmeaty, M.M.; Feng, H. Modifying the Physicochemical Properties of Pea Protein by PH-Shifting and Ultrasound Combined Treatments. Ultrason. Sonochem. 2017, 38, 835–842. [Google Scholar] [CrossRef]
- Instituto Adolfo Lutz. Métodos Físico-Químicos Para Análise em Alimentos. Available online: https://www.ial.sp.gov.br/ial/publicacoes/livros/metodos-fisico-quimicos-para-analise-de-alimentos (accessed on 21 July 2025).
- Brito-Oliveira, T.C.; Gonçalves, G.A.; Ferreira, L.S.; Santos, Y.J.S.; Turatti, R.C.; de Oliveira, G.C.; Pinho, S.C.; Callejon, D.R. Production of Yogurts Fortified with Nanoencapsulated Coenzyme Q10: Technological Feasibility and Bioactive’s Release during in Vitro Digestion. Int. J. Dairy Technol. 2024, 77, 905–915. [Google Scholar] [CrossRef]
- Chaves, M.A.; Franckin, V.; Sinigaglia-Coimbra, R.; Pinho, S.C. Nanoliposomes Coencapsulating Curcumin and Vitamin D3 Produced by Hydration of Proliposomes: Effects of the Phospholipid Composition in the Physicochemical Characteristics of Vesicles and after Incorporation in Yoghurts. Int. J. Dairy Technol. 2021, 74, 107–117. [Google Scholar] [CrossRef]
- Wang, T.; Wang, N.; Li, N.; Ji, X.; Zhang, H.; Yu, D.; Wang, L. Effect of High-Intensity Ultrasound on the Physicochemical Properties, Microstructure, and Stability of Soy Protein Isolate-Pectin Emulsion. Ultrason. Sonochem. 2022, 82, 105871. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhu, L.; Zhang, H.; Liu, T.; Wu, G. Fabrication of Soy Protein Microgels via Two Top-down Methods and Characterization of the Foaming Behavior. Food Biosci. 2024, 59, 103950. [Google Scholar] [CrossRef]
- Geisel, K.; Isa, L.; Richtering, W. The Compressibility of PH-Sensitive Microgels at the Oil–Water Interface: Higher Charge Leads to Less Repulsion. Angew. Chem. Int. Ed. 2014, 53, 4905–4909. [Google Scholar] [CrossRef] [PubMed]
- Niizawa, I.; Sihufe, G.A.; Zorrilla, S.E. Design of Whey Protein Aggregates towards Microgel-Stabilized Emulsion Generation. LWT 2021, 152, 112324. [Google Scholar] [CrossRef]
- Iwabuchi, S.; Watanabe, H.; Yamauchi, F. Thermal Denaturation of.Beta.-Conglycinin. Kinetic Resolution of Reaction Mechanism. J. Agric. Food Chem. 1991, 39, 27–33. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J.; Li-Chan, E.C.Y.; Zhu, L.; Zhang, F.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S. Effects of Ultrasound on Structural and Physical Properties of Soy Protein Isolate (SPI) Dispersions. Food Hydrocoll. 2013, 30, 647–655. [Google Scholar] [CrossRef]
- Yan, S.; Xu, J.; Zhang, S.; Li, Y. Effects of Flexibility and Surface Hydrophobicity on Emulsifying Properties: Ultrasound-Treated Soybean Protein Isolate. LWT 2021, 142, 110881. [Google Scholar] [CrossRef]
- Zheng, T.; Li, X.; Taha, A.; Wei, Y.; Hu, T.; Fatamorgana, P.B.; Zhang, Z.; Liu, F.; Xu, X.; Pan, S.; et al. Effect of High Intensity Ultrasound on the Structure and Physicochemical Properties of Soy Protein Isolates Produced by Different Denaturation Methods. Food Hydrocoll. 2019, 97, 105216. [Google Scholar] [CrossRef]
- Cao, J.; Tong, X.; Wang, M.; Tian, T.; Yang, S.; Sun, M.; Lyu, B.; Cao, X.; Wang, H.; Jiang, L. Soy Protein Isolate/Sodium Alginate Microparticles under Different PH Conditions: Formation Mechanism and Physicochemical Properties. Foods 2022, 11, 790. [Google Scholar] [CrossRef]
- Qin, X.; Guo, Y.; Zhao, X.; Liang, B.; Sun, C.; Li, X.; Ji, C. Fabricating Pea Protein Micro-Gel-Stabilized Pickering Emulsion as Saturated Fat Replacement in Ice Cream. Foods 2024, 13, 1511. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, S.; Sun, N.; Zhu, T.; Lian, Z.; Dai, S.; Xu, J.; Tong, X.; Wang, H.; Jiang, L. Soybean Isolate Protein Complexes with Different Concentrations of Inulin by Ultrasound Treatment: Structural and Functional Properties. Ultrason. Sonochem. 2024, 105, 106864. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Nguyen, N.; Biers, M.; Sun, G. Conformational Changes of Soy Proteins under High-Intensity Ultrasound and High-Speed Shearing Treatments. ACS Sustain. Chem. Eng. 2019, 7, 8117–8125. [Google Scholar] [CrossRef]
- Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G.O. Soy Proteins: A Review on Composition, Aggregation and Emulsification. Food Hydrocoll. 2014, 39, 301–318. [Google Scholar] [CrossRef]
- Ma, X.; Hou, F.; Zhao, H.; Wang, D.; Chen, W.; Miao, S.; Liu, D. Conjugation of Soy Protein Isolate (SPI) with Pectin by Ultrasound Treatment. Food Hydrocoll. 2020, 108, 106056. [Google Scholar] [CrossRef]
- Yang, H.; Su, Z.; Meng, X.; Zhang, X.; Kennedy, J.F.; Liu, B. Fabrication and Characterization of Pickering Emulsion Stabilized by Soy Protein Isolate-Chitosan Nanoparticles. Carbohydr. Polym. 2020, 247, 116712. [Google Scholar] [CrossRef]
- Dickinson, E. Biopolymer-Based Particles as Stabilizing Agents for Emulsions and Foams. Food Hydrocoll. 2017, 68, 219–231. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Wang, K.; Yao, X.; Shan, Y.; Lv, X.; Jin, Y.; Liu, Y. A Natural Protein-Lipid Co-Assembly as Efficient Pickering Emulsifier from Egg Yolk Sphere Microgel Prepared via High-Pressure Homogenization. Food Hydrocoll. 2025, 158, 110517. [Google Scholar] [CrossRef]
- Loi, C.C.; Eyres, G.T.; Birch, E.J. Protein-Stabilised Emulsions. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 404–409. [Google Scholar] [CrossRef]
- Low, L.E.; Siva, S.P.; Ho, Y.K.; Chan, E.S.; Tey, B.T. Recent Advances of Characterization Techniques for the Formation, Physical Properties and Stability of Pickering Emulsion. Adv. Colloid Interface Sci. 2020, 277, 102117. [Google Scholar] [CrossRef]
- Niu, H.; Wang, W.; Dou, Z.; Chen, X.; Chen, X.; Chen, H.; Fu, X. Multiscale Combined Techniques for Evaluating Emulsion Stability: A Critical Review. Adv. Colloid Interface Sci. 2023, 311, 102813. [Google Scholar] [CrossRef] [PubMed]
- Schröder, A.; Sprakel, J.; Schroën, K.; Spaen, J.N.; Berton-Carabin, C.C. Coalescence Stability of Pickering Emulsions Produced with Lipid Particles: A Microfluidic Study. J. Food Eng. 2018, 234, 63–72. [Google Scholar] [CrossRef]
- Ferreira, L.S.; Brito-Oliveira, T.C.; Pinho, S.C. Emulsion-Filled Gels of Soy Protein Isolate for Vehiculation of Vitamin D3: Effect of Protein Solubility on Their Mechanical and Rheological Characteristics. Food Biosci. 2022, 45, 101455. [Google Scholar] [CrossRef]
- Ho, K.W.; Ooi, C.W.; Mwangi, W.W.; Leong, W.F.; Tey, B.T.; Chan, E.S. Comparison of Self-Aggregated Chitosan Particles Prepared with and without Ultrasonication Pretreatment as Pickering Emulsifier. Food Hydrocoll. 2016, 52, 827–837. [Google Scholar] [CrossRef]
- Feng, T.; Wang, X.; Wang, X.; Xia, S.; Huang, Q. Plant Protein-Based Antioxidant Pickering Emulsions and High Internal Phase Pickering Emulsions against Broad PH Range and High Ionic Strength: Effects of Interfacial Rheology and Microstructure. LWT 2021, 150, 111953. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Z.; Hei, X.; Li, S.; Jiao, B.; Ma, X.; Hu, H.; McClements, D.J.; Wang, Q.; Shi, A. Effect of Oil and Particles Content on Microstructure, Rheology, and Thermosensitive 3D Printability of Particles -Stabilized High Internal Phase Pickering Emulsions. Food Hydrocoll. 2025, 160, 110833. [Google Scholar] [CrossRef]
- Brasil Ministério Da Agricultura, Pecuária e Abastecimento. Instrução Normativa N° 46, de 23/10/2007. In Regulamento Técnico de Identidade e Qualidade de Leites Fermentados; Brasil Ministério Da Agricultura, Pecuária e Abastecimento: Brasília, Brazil, 2007; pp. 4–7. [Google Scholar]
- Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Saleh, A.; Ibraheem, M.A.; Qasem, A.A.A.; Shamlan, G.; Ababtain, I.A. Rheological, Textural, and Sensory Properties of Non-Fat Yogurt Containing Cress (Lepidium Sativum) Seed Gum and Various Starches. Food Sci. Technol. 2022, 42, e30121. [Google Scholar] [CrossRef]
- Molina, C.V.; Lima, J.G.; Moraes, I.C.F.; Pinho, S.C. Physicochemical Characterization and Sensory Evaluation of Yogurts Incorporated with Beta-Carotene-Loaded Solid Lipid Microparticles Stabilized with Hydrolyzed Soy Protein Isolate. Food Sci. Biotechnol. 2019, 28, 59–66. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Li, D.; Wang, L.J.; Bi, C.H.; Adhikari, B. Effect of Gums on the Rheological Characteristics and Microstructure of Acid-Induced SPI-Gum Mixed Gels. Carbohydr. Polym. 2014, 108, 183–191. [Google Scholar] [CrossRef]
Microgel | SPI Concentration (w/v) % | Ultrasonication Time (min) |
---|---|---|
MSPI4-3 | 4 | 3 |
MSPI4-6 | 4 | 6 |
MSPI6-3 | 6 | 3 |
MSPI6-6 | 6 | 6 |
MSPI8-3 | 8 | 3 |
MSPI8-6 | 8 | 6 |
MSPI10-3 | 10 | 3 |
MSPI10-6 | 10 | 6 |
Microgel | Average Particle Size (nm) | PDI | Zeta Potential (mV) | Conversion Factor (%) |
---|---|---|---|---|
MSPI4-3 | 279 ± 2.17 e | 0.345 ± 0.03 cd | −36.5 ± 0.29 a | 50.63 ± 0.41 d |
MSPI4-6 | 291 ± 3.37 d | 0.393 ± 0.01 bc | −33.6 ± 0.62 b | 47.22 ± 1.64 e |
MSPI6-3 | 278 ± 3.64 e | 0.314 ± 0.03 de | −32.5 ± 0.50 bc | 56.02 ± 1.37 bc |
MSPI6-6 | 236 ± 0.31 f | 0.265 ± 0.01 e | −31.0 ± 0.44 d | 50.94 ± 0.08 d |
MSPI8-3 | 375 ± 2.43 a | 0.550 ± 0.03 e | −30.3 ± 0.17 d | 59.46 ± 0.91 a |
MSPI8-6 | 236 ± 2.03 f | 0.253 ± 0.01 a | −31.3 ± 1.0 cd | 52.88 ± 0.35 cd |
MSPI10-3 | 356 ± 3.50 b | 0.413 ± 0.04 bc | −31.2 ± 0.30 cd | 57.87 ± 0.34 ab |
MSPI10-6 | 322 ± 5.93 c | 0.416 ± 0.02 b | −31.1 ± 0.21 cd | 55.23 ± 0.23 bc |
Protein Concentration (%) | SPI Dispersion | MSPI-3 min | MSPI-6 min |
---|---|---|---|
4 | 3.2 ± 0.04 cB | 11.36 ± 1.13 aA | 12.38 ± 0.63 aA |
6 | 3.0 ± 0.13 bcA | 11.63 ± 0.25 abB | 13.95 ± 0.59 abC |
8 | 2.85 ± 0.13 abB | 11.5 ± 1.00 aA | 13.63 ± 1.44 abA |
10 | 2.72 ± 0.09 aB | 14.55 ± 1.74 bA | 14.86 ± 0.45 bA |
Index | Day | E6 | E8 |
---|---|---|---|
Creaming index | Fresh emulsion | 6.38 ± 0.94 aB | 6.69 ± 0.78 aC |
Day 1 | 15.15 ± 0.01 aA | 16.50 ± 0.28 bB | |
Day 7 | 14.06 ± 0.57 aA | 15.15 ± 0.23 bAB | |
Day 14 | 13.06 ± 1.62 aA | 14.14 ± 0.69 aA | |
Instability index | Fresh emulsion | 0.684 ± 0.01 a | 0.652 ± 0.01 a |
Sample | Parameter | Storage Week | ||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | ||
Control | L* | 90.89 ± 0.37 ab | 90.31 ± 1.51 a | 91.17 ± 0.84 ab | 92.39 ± 1.15 ab | 92.95 ± 0.16 b |
a* | −3.33 ± 0.04 b | −3.46 ±0.08 ab | −3.49 ± 0.03 a | −3.65 ± 0.08 c | −3.49 ±0.05 a | |
b* | 3.12 ± 0.03 b | 3.96 ± 0.26 ab | 3.60 ± 0.32 ab | 4.26 ± 0.54 a | 4.21 ± 0.26 a | |
C* | 4.56 ± 0.05 b | 5.26 ± 0.23 a | 5.02 ± 0.24 ab | 5.61 ± 0.42 a | 5.47 ± 0.18 a | |
Hue° | 136.83 ± 0.18 b | 131.14 ± 1.61 ab | 134.13 ± 2.46 ab | 130.74 ± 3.60 ab | 129.65 ± 2.01 a | |
YE5 | L* | 89.38 ± 1.26 a | 89.79 ± 1.30 a | 92.75 ± 0.67 a | 92.180 ± 2.18 a | 92.99 ± 0.91 a |
a* | −3.22 ± 0.17 b | −3.30 ± 0.11 ab | −3.51 ± 0.09 ab | −3.57 ± 0.16 a | −3.55 ± 0.07 ab | |
b* | 3.54 ± 0.80 b | 4.11 ± 0.14 ab | 4.43 ± 0.32 ab | 4.85 ± 0.35 a | 5.20 ± 0.17 a | |
C* | 4.79 ± 0.72 b | 5.27 ± 0.17 ab | 5.65 ± 0.30 ab | 6.02 ± 0.37 a | 6.29 ± 0.12 a | |
Hue° | 132.75 ± 4.75 b | 128.75 ± 0.41 ab | 128.43 ± 1.36 ab | 126.47 ± 1.04 a | 124.34 ±1.24 a | |
YE10 | L* | 88.20 ± 1.13 b | 90.03 ± 0.41 ab | 91.28 ± 0.93 a | 91.00 ± 0.84 a | 91.73 ± 1.48 a |
a* | −3.27 ± 0.09 a | −3.68 ± 0.59 a | −3.42 ± 0.11 a | −3.54 ± 0.07 a | −3.57 ± 0.08 a | |
b* | 4.23 ± 0.09 b | 4.84 ± 0.33 bc | 5.30 ± 0.48 ac | 5.67 ± 0.19 a | 5.85 ± 0.23 a | |
C* | 5.34 ± 0.13 b | 6.08 ± 0.55 ab | 6.31 ± 0.46 a | 6.69 ± 0.19 a | 6.86 ± 0.23 a | |
Hue° | 127.67 ± 0.19 b | 127.11 ± 3.54 b | 122.93 ± 1.76 ab | 121.98 ± 0.55 a | 121.36 ± 0.52 a | |
YE15 | L* | 91.48 ± 1.80 a | 88.95 ± 1.78 a | 91.51 ± 0.52 a | 91.91 ± 0.89 a | 91.87 ± 1.70 a |
a* | −3.58 ± 0.12 a | −3.28 ± 0.14 b | −3.51 ± 0.06 ab | −3.62 ± 0.07 a | −3.53 ± 0.07 ab | |
b* | 5.79 ± 0.50 ab | 5.19 ± 0.82 b | 6.07 ± 0.23 ab | 6.52 ± 0.05 a | 6.88 ± 0.37 a | |
C* | 6.81 ± 0.48 ab | 6.14 ± 0.73 b | 7.02 ± 0.23 ab | 7.46 ± 0.06 a | 7.73 ± 0.34 a | |
Hue° | 121.80 ± 1.43 ab | 122.58 ± 3.73 b | 120.03 ± 0.58 ab | 119.00 ± 0.45 ab | 117.22 ± 1.16 a |
Sample | Storage Week | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |
Control | 4 × 107 | 2.4 × 107 | 2.5 × 107 | 1.9 × 107 | 1.4 × 107 |
YE5 | 3.7 × 107 | 2 × 107 | 2.8 × 107 | 3.2 × 107 | 1.9 × 107 |
YE10 | 4.1 × 107 | 3.7 × 107 | 3.9 × 107 | 3.6 × 107 | 3.2 × 107 |
YE15 | 3.4 × 107 | 3.0 × 107 | 2.9 × 107 | 3.0 × 107 | 2.9 × 107 |
Rheological Parameters | Control | YE5 | YE10 | YE15 |
---|---|---|---|---|
τ0 | 0.33 ± 0.07 a | 0.24 ± 0.23 a | 0.09 ± 0.03 a | 0.35 ± 0.01 a |
n | 0.52 ± 0.03 a | 0.41 ± 0.11 a | 0.51 ± 0.03 a | 0.29 ± 0.01 a |
k (Pa.sn) | 3.21 ± 0.20 b | 1.09 ± 0.60 a | 0.76 ± 0.10 a | 1.56 ± 0.10 a |
Yogurt | Color | Texture | Percentage of Residual Flavor Perception (%) |
---|---|---|---|
YE5 | 7.47 ± 1.58 a | 7.69 ± 1.60 a | 25.6 |
YE10 | 7.64 ± 1.36 a | 7.64 ± 1.58 a | 31.2 |
YE15 | 7.06 ± 1.47 b | 6.98 ± 1.89 b | 44.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez-Champi, D.; Chaves, M.A.; Sangalli, J.R.; Ferreira, L.S.; Silva, J.T.P.; Pinho, S.C. Emulsions Stabilized by Soy Protein Isolate Microgels: Encapsulation of β-Carotene and Incorporation into Yogurts. Processes 2025, 13, 2705. https://doi.org/10.3390/pr13092705
Jimenez-Champi D, Chaves MA, Sangalli JR, Ferreira LS, Silva JTP, Pinho SC. Emulsions Stabilized by Soy Protein Isolate Microgels: Encapsulation of β-Carotene and Incorporation into Yogurts. Processes. 2025; 13(9):2705. https://doi.org/10.3390/pr13092705
Chicago/Turabian StyleJimenez-Champi, Diana, Matheus A. Chaves, Juliano R. Sangalli, Leticia S. Ferreira, Jéssica T. P. Silva, and Samantha C. Pinho. 2025. "Emulsions Stabilized by Soy Protein Isolate Microgels: Encapsulation of β-Carotene and Incorporation into Yogurts" Processes 13, no. 9: 2705. https://doi.org/10.3390/pr13092705
APA StyleJimenez-Champi, D., Chaves, M. A., Sangalli, J. R., Ferreira, L. S., Silva, J. T. P., & Pinho, S. C. (2025). Emulsions Stabilized by Soy Protein Isolate Microgels: Encapsulation of β-Carotene and Incorporation into Yogurts. Processes, 13(9), 2705. https://doi.org/10.3390/pr13092705