Investigation of the Influencing Parameters of the H2O2-Assisted Photochemical Treatment of Waste Liquid from the Hydrothermal Carbonization Process in a Microreactor Flow System
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. The Test Sample of the HTC Liquid
2.3. The Photochemical Treatment Procedure
2.4. Analytical Methods
3. Results
3.1. The Effectiveness of Photochemical Treatment in TOC/COD Removal
3.2. The Organic Acids and Total Phenolics Content
3.3. Nitrogen and Phosphorus Fluctuations
3.4. The Influence of the pH Value
3.5. Changes in the Functional Properties and the UV-VIS, and 3D-EEM Spectra
3.6. The Influence of Photochemical Treatment on the Fate of Volatile Organic Compounds
3.7. Evaluation of the Acute Toxicity of Untreated and Photo-Treated HTC Liquids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOPs | Advanced oxidation processes |
ATR | Attenuated total reflectance |
COD | Chemical oxygen demand |
DES | Deep eutectic solvent |
Ex | Excitation |
Em | Emission |
FTIR | Fourier transform infrared spectroscopy |
GC-MS | Gas chromatography–mass spectrometry |
HTC | Hydrothermal carbonization |
SUVA | Specific ultraviolet absorbance |
TN | Total nitrogen |
TOC | Total organic carbon |
TP | Total phosphorus |
TPC | Total phenolic compounds |
UV-VIS | Ultraviolet–visible spectroscopy |
3D-EEM | 3-dimensional excitation–emission matrix fluorescence spectroscopy |
XRD | X-ray diffraction method |
References
- Ambaye, T.G.; Vaccari, M.; Bonilla-Petriciolet, A.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. J. Environ. Manag. 2021, 290, 112627. [Google Scholar] [CrossRef]
- Seraj, S.; Azargohar, R.; Dalai, A.K. Dry torrefaction and hydrothermal carbonization of biomass to fuel pellets. Renew. Sust. Energy Rev. 2025, 210, 115186. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Yan, B.; Zhou, S.; Zhu, X.; Cheng, Z.; Chen, G. Thermochemical processing of digestate derived from anaerobic digestion of lignocellulosic biomass: A review. Renew. Sust. Energy Rev. 2024, 199, 114518. [Google Scholar] [CrossRef]
- Chen, W.-H.; Biswas, P.P.; Zhang, C.; Kwon, E.E.; Chang, J.-S. Achieving carbon credits through biomass torrefaction and hydrothermal carbonization: A review. Renew. Sust. Energy Rev. 2025, 208, 115056. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, J.; Shan, R.; Yuan, H.; Chen, Y. Advances in thermochemical valorization of biomass towards carbon neutrality. Resour. Conserv. Recycl. 2025, 212, 107905. [Google Scholar] [CrossRef]
- Cavali, M.; Libardi Junior, N.; de Sena, J.D.; Woiciechowski, A.L.; Soccol, C.R.; Belli Filho, P.; Bayard, R.; Benbelkacem, H.; de Castilhos Junior, A.B. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. Sci. Total Environ. 2023, 857, 159627. [Google Scholar] [CrossRef]
- Czerwińska, K.; Śliz, M.; Wilk, M. Thermal Disposal of Post-processing Water Derived from the Hydrothermal Carbonization Process of Sewage Sludge. Waste Biomass. Valori. 2024, 15, 1671–1680. [Google Scholar] [CrossRef]
- Shan, G.; Li, W.; Zhou, Y.; Bao, S.; Zhu, L.; Tan, W. Effects of persulfate-assisted hydrothermal treatment of municipal sludge on aqueous phase characteristics and phytotoxicity. J. Environ. Sci. 2023, 126, 163–173. [Google Scholar] [CrossRef]
- Blach, T.; Engelhart, M. Electrochemical oxidation of refractory compounds from hydrothermal carbonization process waters. Chemosphere 2024, 352, 141310. [Google Scholar] [CrossRef]
- Marzban, N.; Libra, J.A.; Rotter, V.S.; Ro, K.S.; Moloeznik Paniagua, D.; Filonenko, S. Changes in Selected Organic and Inorganic Compounds in the Hydrothermal Carbonization Process Liquid While in Storage. ACS Omega 2023, 8, 4234–4243. [Google Scholar] [CrossRef]
- Kanchanatip, E.; Kiattisaksiri, P.; Neramittagapong, A. Photocatalytic treatment of real liquid effluent from hydrothermal carbonization of agricultural waste using metal doped TiO2/UV system. J. Environ. Sci. Health Part A 2023, 58, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Urbanowska, A.; Kabsch-Korbutowicz, M.; Wnukowski, M.; Seruga, P.; Baranowski, M.; Pawlak-Kruczek, H.; Serafin-Tkaczuk, M.; Krochmalny, K.; Niedzwiecki, L. Treatment of Liquid By-Products of Hydrothermal Carbonization (HTC) of Agricultural Digestate Using Membrane Separation. Energies 2020, 13, 262. [Google Scholar] [CrossRef]
- Pagés-Díaz, J.; Huiliñir, C. Valorization of the liquid fraction of co-hydrothermal carbonization of mixed biomass by anaerobic digestion: Effect of the substrate to inoculum ratio and hydrochar addition. Bioresour. Technol. 2020, 317, 123989. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska, K.; Marszałek, A.; Kudlek, E.; Śliz, M.; Dudziak, M.; Wilk, M. The treatment of post-processing liquid from the hydrothermal carbonization of sewage sludge. Sci. Total Environ. 2023, 885, 163858. [Google Scholar] [CrossRef]
- Xie, H.; Li, Q.; Wang, M.; Feng, Y.; Wang, B. Unraveling the photochemical behavior of dissolved organic matter derived from hydrothermal carbonization process water: Insights from molecular transformation and photoactive species. J. Hazard. Mater. 2024, 469, 133946. [Google Scholar] [CrossRef]
- Quispe-Arpasi, D.; de Souza, R.; Stablein, M.; Liu, Z.; Duan, N.; Lu, H.; Zhang, Y.; Oliveira, A.L.d.; Ribeiro, R.; Tommaso, G. Anaerobic and photocatalytic treatments of post-hydrothermal liquefaction wastewater using H2O2. Bioresour. Technol. Rep. 2018, 3, 247–255. [Google Scholar] [CrossRef]
- Ren, G.; Han, H.; Wang, Y.; Liu, S.; Zhao, J.; Meng, X.; Li, Z. Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials 2021, 11, 1804. [Google Scholar] [CrossRef]
- González-Arias, J.; de la Rubia, M.A.; Sánchez, M.E.; Gómez, X.; Cara-Jiménez, J.; Martínez, E.J. Treatment of hydrothermal carbonization process water by electrochemical oxidation: Assessment of process performance. Environ. Res. 2023, 216, 114773. [Google Scholar] [CrossRef]
- Yusuf, I.; Flagiello, F.; Ward, N.I.; Arellano-García, H.; Avignone-Rossa, C.; Felipe-Sotelo, M. Valorisation of banana peels by hydrothermal carbonisation: Potential use of the hydrochar and liquid by-product for water purification and energy conversion. Bioresour. Technol. Rep. 2020, 12, 100582. [Google Scholar] [CrossRef]
- Armandsefat, F.; Hamzehzadeh, S.; Azizi, N.; Shokr Chalaki, B. Sustainable and versatile selective oxidation of sulfides to sulfones in deep eutectic solvent. Curr. Res. Green Sustain. Chem. 2024, 8, 100414. [Google Scholar] [CrossRef]
- Kaur, P.; Rajani, N.; Kumawat, P.; Singh, N.; Kushwaha, J.P. Performance and mechanism of dye extraction from aqueous solution using synthesized deep eutectic solvents. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 85–91. [Google Scholar] [CrossRef]
- Wu, L.; Jiao, Z.; Xun, S.; He, M.; Fan, L.; Wang, C.; Yang, W.; Zhu, W.; Li, H. Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents. Chin. J. Chem. Eng. 2022, 44, 205–211. [Google Scholar] [CrossRef]
- ISO 7890-1:1986; Water Quality—Determination of Nitrate—Part 1: 2,6-Dimethylphenol Spectrometric Method. International Organization of Standardization: Geneve, Switzerland, 1986.
- ISO 6777:1984; Water Quality—Determination of Nitrite—Molecular Absorption Spectrometric Method. International Organization of Standardization: Geneve, Switzerland, 1984.
- ISO 11348-3:2007; Water quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent bacteria test); Part 3: Method Using Freeze-Dried Bacteria. International Organization for Standardization (ISO): Geneva, Switzerland, 2007.
- SIST EN ISO 6341:2013; Water Quality—Determination of the Inhibition of the Mobility of Daphnia magna Straus (Cladocera, Crustacea)—Acute Toxicity Test (ISO 6341:2012). International Organization for Standardization (ISO): Geneva, Switzerland, 2013.
- Anisuzzaman, S.M.; Joseph, C.G.; Pang, C.K.; Affandi, N.A.; Maruja, S.N.; Vijayan, V. Current Trends in the Utilization of Photolysis and Photocatalysis Treatment Processes for the Remediation of Dye Wastewater: A Short Review. ChemEngineering 2022, 6, 58. [Google Scholar] [CrossRef]
- Mostafa, S.; Rosario-Ortiz, F.L. Singlet oxygen formation from wastewater organic matter. Environ. Sci. Technol. 2013, 47, 8179–8186. [Google Scholar] [CrossRef] [PubMed]
- Deniz, F.; Mazmanci, M.A. Advanced oxidation of high concentrations of formaldehyde in aqueous solution under fluorescent and UV light. Environ. Health Eng. Manag. J. 2021, 8, 267–276. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Pedrazzani, R.; Sorlini, S.; Abbà, A.; Bertanza, G. H2O2 Based Oxidation Processes for the Treatment of Real High Strength Aqueous Wastes. Sustainability 2017, 9, 244. [Google Scholar] [CrossRef]
- Al-Nuaim, M.A.; Alwasiti, A.A.; Shnain, Z.Y. The photocatalytic process in the treatment of polluted water. Chem. Pap. 2023, 77, 677–701. [Google Scholar] [CrossRef]
- Liu, L.; Zhai, Y.; Wang, H.; Liu, X.; Liu, X.; Wang, Z.; Zhou, Y.; Zhu, Y.; Xu, M. Treatment of sewage sludge hydrothermal carbonization aqueous phase by Fe(II)/CaO2 system: Oxidation behaviors and mechanism of organic compounds. Waste Manag. 2023, 158, 164–175. [Google Scholar] [CrossRef]
- Di Carmine, G.; Abbott, A.P.; D’Agostino, C. Deep eutectic solvents: Alternative reaction media for organic oxidation reactions. React. Chem. Eng. 2021, 6, 582–598. [Google Scholar] [CrossRef]
- Kim, C.; Debusmann, P.; Abdighahroudi, M.S.; Schumacher, J.; Lutze, H.V. Fenton–coagulation process for simultaneous abatement of micropollutants and dissolved organic carbon in treated wastewater. Water Res. 2025, 281, 123583. [Google Scholar] [CrossRef]
- Liu, L.; Zhai, Y.; Liu, X.; Liu, X.; Wang, Z.; Zhu, Y.; Xu, M. Features and mechanisms of sewage sludge hydrothermal carbonization aqueous phase after ferrous/persulfate-based process: The selective effect of oxidation and coagulation. J. Clean. Prod. 2022, 366, 132831. [Google Scholar] [CrossRef]
- Sindelar, H.R.; Lloyd, J.; Brown, M.T.; Boyer, T.H. Transformation of dissolved organic phosphorus to phosphate using UV/H2O2. Environ. Prog. Sustain. Energy 2016, 35, 680–691. [Google Scholar] [CrossRef]
- Köchermann, J.; Görsch, K.; Wirth, B.; Mühlenberg, J.; Klemm, M. Hydrothermal carbonization: Temperature influence on hydrochar and aqueous phase composition during process water recirculation. J. Environ. Chem. Eng. 2018, 6, 5481–5487. [Google Scholar] [CrossRef]
- Pavel, M.; Anastasescu, C.; State, R.-N.; Vasile, A.; Papa, F.; Balint, I. Photocatalytic Degradation of Organic and Inorganic Pollutants to Harmless End Products: Assessment of Practical Application Potential for Water and Air Cleaning. Catalysts 2023, 13, 380. [Google Scholar] [CrossRef]
- Ossola, R.; Gruseck, R.; Houska, J.; Manfrin, A.; Vallieres, M.; McNeill, K. Photochemical Production of Carbon Monoxide from Dissolved Organic Matter: Role of Lignin Methoxyarene Functional Groups. Environ. Sci. Technol. 2022, 56, 13449–13460. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, M.; Chen, B.; Wang, L.; Zhu, R. Effects of pH and H2O2 on ammonia, nitrite, and nitrate transformations during UV254nm irradiation: Implications to nitrogen removal and analysis. Chemosphere 2017, 184, 1003–1011. [Google Scholar] [CrossRef]
- Ortiz-Marin, A.D.; Amabilis-Sosa, L.E.; Bandala, E.R.; Guillén-Garcés, R.A.; Treviño-Quintanilla, L.G.; Roé-Sosa, A.; Moeller-Chávez, G.E. Using sequentially coupled UV/H2O2-biologic systems to treat industrial wastewater with high carbon and nitrogen contents. Process Saf. Environ. Prot. 2020, 137, 192–199. [Google Scholar] [CrossRef]
- Venkiteshwaran, K.; Kennedy, E.; Graeber, C.; Mallick, S.P.; McNamara, P.J.; Mayer, B.K. Conversion of soluble recalcitrant phosphorus to recoverable orthophosphate form using UV/H2O2. Chemosphere 2021, 278, 130391. [Google Scholar] [CrossRef]
- Liu, F.; Xue, H.; Kang, T.; Lei, Q.; Chen, J.; Zuo, Z.; Han, B.; Lu, X.; Yang, X.; Shan, X.; et al. Efficient photodegradation of perfluoroalkyl substances under visible light by hexagonal ZnIn2S4 nanosheets. J. Environ. Sci. 2025, 148, 116–125. [Google Scholar] [CrossRef]
- Petrovič, A.; Cenčič Predikaka, T.; Vohl, S.; Hostnik, G.; Finšgar, M.; Čuček, L. Hydrothermal conversion of oilseed cakes into valuable products: Influence of operating conditions and whey as an alternative process liquid on product properties and their utilization. Energy Convers. Manag. 2024, 313, 118640. [Google Scholar] [CrossRef]
- Thomas, O.; Brogat, M. Chapter 3—Organic Constituents. In UV-Visible Spectrophotometry of Water and Wastewater, 2nd ed.; Thomas, O., Burgess, C., Eds.; Elsevier: Cambridge, UK, 2017; pp. 73–138. [Google Scholar]
- Workman, J., Jr.; Weyer, L. Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Yin, S.; Xie, L.; Qu, X.; Fu, H.; Shi, Q.; Zhou, F.; Xu, F.; Tao, S.; et al. Comparing Photoactivities of Dissolved Organic Matter Released from Rice Straw-Pyrolyzed Biochar and Composted Rice Straw. Environ. Sci. Technol. 2022, 56, 2803–2815. [Google Scholar] [CrossRef]
- Prasse, C.; Ford, B.; Nomura, D.K.; Sedlak, D.L. Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. Environ. Sci. 2018, 115, 2311–2316. [Google Scholar] [CrossRef] [PubMed]
- Shan, G.; Li, W.; Bao, S.; Li, Y.; Tan, W. Co-hydrothermal carbonization of agricultural waste and sewage sludge for product quality improvement: Fuel properties of hydrochar and fertilizer quality of aqueous phase. J. Environ. Manag. 2023, 326, 116781. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Xu, Q.; Zuo, W.; Zhou, H.; Wu, S.; Xu, Z.; Fang, J.; Huang, Y.; Zhang, H. Enhancing nitrogen removal from sludge-derived hydrochar via hydrothermal carbonization fortified with advanced oxidation process pretreatment. J. Anal. Appl. Pyrolysis 2023, 174, 106132. [Google Scholar] [CrossRef]
- Mihajlovic, M.; Petrović, J.; Maletić, S.; Kragulj Isakovski, M.; Stojanovic, M.; Lopičić, Z.; Trifunovic, S. Hydrothermal carbonization of Miscanthus × giganteus: Structural and fuel properties of hydrochars and organic profile with the ecotoxicological assessment of the liquid phase. Energy Convers. Manag. 2018, 159, 254–263. [Google Scholar] [CrossRef]
- Mantovani, M.; Collina, E.; Marazzi, F.; Lasagni, M.; Mezzanotte, V. Microalgal treatment of the effluent from the hydrothermal carbonization of microalgal biomass. J. Water Process Eng. 2022, 49, 102976. [Google Scholar] [CrossRef]
- Blach, T.; Engelhart, M. Limitations of treating hydrothermal carbonization process water in a membrane bioreactor and a sequencing batch reactor on pilot scale. J. Environ. Chem. Eng. 2025, 13, 115304. [Google Scholar] [CrossRef]
Parameter (Unit) | Value |
---|---|
pH (/) | 5.60 ± 0.02 |
Conductivity (mS/cm) | 15.98 ± 0.10 |
Turbidity (NTU) | 978 ± 8 |
TOC (mg/L) | 22,700 ± 250 |
COD (mg O2/L) | 98,000 ± 1300 |
TN (mg/L) | 4850 ± 50 |
NH4-N (mg/L) | 1660 ± 24 |
TP (mg/L) | 2200 ± 32 |
PO4-P (mg/L) | 1920 ± 11 |
NO2 (mg/L) | 34.41 ± 1.45 |
NO3 (mg/L) | 13,590 ± 98 |
TPC (mg/L) | 4068 ± 30 |
Organic acids (mg/L) | 8300 ± 23 |
Exp. No. | Sample Name | Liquid Flow (µL/min) | Air Flow (µL/min) | Retention Time (min) | Oxidant/ Catalyst | Wavelength (nm) | Radiation Flux (W) |
---|---|---|---|---|---|---|---|
E1 | P420 (no air) | 200 | / | 20 | / | 420 | 35.7 |
E2 | P420 | 200 | 200 | 10 | / | ||
E3 | P420-0.2%H2O2 | 200 | 200 | 10 | 0.2% H2O2 | ||
E4 | P365-0.2%H2O2 | 200 | 200 | 10 | 0.2% H2O2 | 365 | 48.5 |
E5 | P365-1%H2O2 | 200 | 200 | 10 | 1% H2O2 | ||
E6 | P365-1%H2O2-20min | 100 | 100 | 20 | 1% H2O2 | ||
E7 | P365-1%H2O2-pH7.5 | 200 | 200 | 10 | 1% H2O2 | ||
E8 | P365-2%H2O2-5%DES | 200 | 200 | 10 | 2% H2O2 + 5% DES | ||
E9 | C(1 g/L FeSO4)-P365-1%H2O2 | 200 | 200 | 10 | 1 g/L FeSO4 + 1% H2O2 | ||
E10 | C(2 g/L FeSO4)-P365-1%H2O2 | 200 | 200 | 10 | 2 g/L FeSO4 + 1% H2O2 |
Exp. No. | Sample | Removal Efficiency (%) | ||||||
---|---|---|---|---|---|---|---|---|
TOC | COD | NH4-N | TN | PO4-P | TP | NO3 | ||
E1 | P420 (no air) | 0.44 | 12.24 | 3.61 | 3.09 | 9.90 | 10.45 | 57.86 |
E2 | P420 | 0.88 | 14.29 | 0.60 | 5.15 | 13.02 | 13.18 | 70.57 |
E3 | P420-0.2%H2O2 | 7.49 | 16.33 | 9.64 | 6.19 | 14.58 | 15.45 | 70.94 |
E4 | P365-0.2%H2O2 | 15.86 | 20.92 | 15.66 | 7.22 | 14.84 | 11.82 | 71.82 |
E5 | P365-1%H2O2 | 17.62 | 31.63 | 16.87 | 5.36 | 17.19 | 22.27 | 27.36 |
E6 | P365-1%H2O2-20min | 15.42 | 29.59 | 30.72 | 18.56 | 30.21 | 29.55 | 76.23 |
E7 | P365-1%H2O2-pH7.5 | 5.73 | 22.45 | 21.69 | 4.12 | 36.46 | 41.36 | 79.18 |
E8 | P365-2%H2O2-5%DES | 6.17 | −4.08 | 9.64 | −25.77 | 4.17 | 14.09 | 58.99 |
E9 | C(1 g/L FeSO4)-P365-1%H2O2 | 13.66 | 33.67 | 10.84 | 3.09 | 27.60 | 27.73 | 22.89 |
E10 | C(2 g/L FeSO4)-P365-1%H2O2 | 14.98 | 35.20 | 12.65 | 3.51 | 16.15 | 26.36 | 65.09 |
Feedstock | Method | Oxidant/ Catalyst | COD/TOC/DOC Removal Efficiency (%) * | Treatment Time | Light Source Wavelength | Reference |
---|---|---|---|---|---|---|
HTC process liquid of hemp oil cake | Photochemical treatment UV/H2O2 | H2O2 | 31.6 (COD), 17.6 (TOC) | 10 min | 365 nm | This study |
HTC process liquid of hemp oil cake | FeSO4/H2O2 (coagulation and photochemical treatment) | FeSO4, H2O2 | 35.2 (COD), 14.9 (TOC) | 10 min | 365 nm | This study |
HTL process liquid of algae | Photocatalytic treatment, UV/H2O2/TiO2 | H2O2, TiO2 | 23.4 (COD) | 24 h | 254 nm | [16] |
HTC process liquid of agricultural waste | Photocatalytic treatment, UV/TiO2 | Metal doped TiO2 | 94.1 (COD) 75.1 (TOC) | 1 h | 365–400 nm | [11] |
HTC process liquid of olive tree pruning | Electrochemical oxidation (Na2SO4 and NaCl as electrolytes) | / | 30–40 (TOC) | 0.5–5 h | / | [18] |
HTC process liquid of sewage sludge | Electrochemical oxidation | / | 97 (COD) | 9.5 h | / | [9] |
HTC process liquid of sewage sludge | Fe (II)/CaO2 oxidization processes | CaO2 | 38.6 (DOC) | 2 h | / | [32] |
HTC process liquid of sewage sludge | Fe(II)/persulfate-method (combined oxidation and coagulation) | FeSO4·7H2O, K2S2O8 | 35.0 (DOC) | 130 min | / | [35] |
Exp. No. | Sample | A254 (nm) | A280 (nm) | SUVA254 (L/(mg·m)) a | SUVA280 (L/(mg·m)) a |
---|---|---|---|---|---|
/ | Untreated HTC liquid | 0.2985 | 0.2567 | 1.32 | 1.13 |
E1 | P420 (no air) | 0.2845 | 0.2458 | 1.28 | 1.09 |
E2 | P420 | 0.2677 | 0.2331 | 1.19 | 1.04 |
E3 | P420-0.2%H2O2 | 0.2599 | 0.2236 | 1.24 | 1.06 |
E4 | P365-0.2% H2O2 | 0.2586 | 0.2275 | 1.35 | 1.19 |
E5 | P365-1% H2O2 | 0.2509 | 0.2147 | 1.34 | 1.15 |
E6 | P365-1% H2O2-20min | 0.2268 | 0.1973 | 1.18 | 1.03 |
E7 | P365-1% H2O2pH7.5 | 0.2696 | 0.2230 | 1.26 | 1.04 |
E8 | P365-2% H2O25%DES | 0.2320 | 0.2431 | 1.09 | 1.14 |
E9 | C(1 g/L FeSO4)-P365-1% H2O2 | 0.2742 | 0.2377 | 1.35 | 1.21 |
E10 | C(2 g/L FeSO4)-P365-1% H2O2 | 0.2310 | 0.1968 | 1.20 | 1.03 |
Organic Compound | Peak Area (abs. %) of the Specific Compound | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Untreated | P420 (No Air) | P420 | P420-0.2%H2O2 | P365-0.2%H2O2 | P365-1%H2O2 | P365-1%H2O2-20min | P365-1%H2O2-pH7.5 | P365-2%H2O2-5%DES | C(1 g/L FeSO4)-P365-1%H2O2 | C(2 g/L FeSO4)-P365-1%H2O2 | |
Aliphatic hydrocarbons | |||||||||||
Hexane | 1.82 | 3.34 | 4.49 | 3.67 | 4.28 | 4.02 | 4.03 | 5.69 | 3.93 | 3.49 | 3.64 |
Heptadecane | 0.88 | / | / | / | / | / | / | / | / | / | / |
Octadecane | 0.78 | / | / | / | / | / | / | / | / | / | / |
Aldehydes and ketones | |||||||||||
Acetone | 3.05 | 2.35 | / | / | / | / | / | / | 5.91 | / | / |
2-butanone | 2.98 | / | / | / | / | / | / | / | / | / | |
Cyclopentanone | 1.33 | 1.11 | / | 1.25 | / | 0.34 | 0.22 | 0.28 | / | / | / |
2-Cyclopenten-1-one, 2-methyl | 6.8 | 6.58 | 5.98 | 5.81 | 4.87 | 4.09 | 3.68 | / | 3.3 | 2.38 | 2.63 |
2-hydroxi-benzaldehyde | / | / | / | / | / | / | / | / | 0.43 | / | / |
Acids | |||||||||||
Acetic Acid | 1.67 | 6.37 | 4.81 | 9.85 | 14.16 | 16.93 | 25.76 | 9.01 | 57.46 | 34.38 | 27.74 |
1-2-benzendicarboxylic acid | / | / | 2.38 | / | / | / | / | / | / | / | / |
N-heterocyclics | |||||||||||
Pyrimidine (1,3-diazine) | 4.56 | 4.43 | 4.8 | 4.61 | 3.69 | 4.66 | 3.94 | 4.63 | 2.85 | 3.41 | 3.2 |
Pyrazine 2-ethyl-5methyl | 8.47 | 7.21 | 8.17 | 4.99 | 7.66 | 6.96 | 1.46 | / | 0.86 | 7.7 | 3.86 |
Pyrazine 2,6-dimethyl | 13.26 | 12.42 | 13.31 | 11.6 | 13.76 | 12.82 | 11.5 | 15.83 | 3.23 | 9.68 | 10.35 |
Pyrazine 2,3-dimethyl | 2.35 | 2.13 | / | 2.01 | 2.66 | 2.33 | 1.66 | 2.24 | / | 1.82 | 1.61 |
Pyrazine 2-ethyl-3methyl | / | / | / | / | / | / | / | / | / | / | 0.99 |
Methyl-pyrazine | 20.12 | 21.05 | 21.31 | 19.8 | 20.48 | 20.88 | 19.76 | 24.91 | 8.48 | 15.47 | 15.49 |
Ethyl Pyrazine | 6.46 | 6.36 | 6.1 | 5.9 | 5.65 | 5.92 | 4.69 | 5.88 | 2.34 | 3.76 | 3.73 |
Amines and amides | |||||||||||
N-N-dimethyl-4-pyridinamine | 1.87 | 1.63 | 1.74 | 4.28 | / | 1.24 | 6.85 | 9.54 | / | / | 3.28 |
Alcohols and phenols | |||||||||||
Phenol | / | 0.55 | / | 0.8 | 0.93 | 1.11 | 0.97 | 1.2 | 0.69 | 0.9 | 0.66 |
Phenol, 2-methoxy-(Guaiacol) | 7.59 | 6.89 | 7.02 | 6.96 | 7.21 | 7.34 | 5.06 | 6.89 | 0.83 | 3.39 | 3.03 |
Aromatic hydrocarbons | |||||||||||
Ethylbenzene | / | / | / | / | / | / | / | / | / | / | 1.08 |
1,4-dimethylbenzene | 1.46 | / | / | / | / | / | / | / | / | / | / |
Exp. No. | Sample | Inhibition of Bioluminescence of V. fischeri (%) a | Toxicity to Daphnia magna a,b |
---|---|---|---|
/ | Untreated HTC liquid | 0 ± 0 | Non-toxic |
E1 | P420 (no air) | 0 ± 0 | Toxic |
E2 | P420 | 1 ± 0 | Toxic |
E3 | P420-0.2%H2O2 | 8 ± 1 | Toxic |
E4 | P365-0.2%H2O2 | 9 ± 0 | Toxic |
E5 | P365-1%H2O2 | 10 ± 2 | Toxic |
E6 | P365-1%H2O2-20min | 17 ± 1 | Toxic |
E7 | P365-1%H2O2-pH7.5 | 28 ± 3 | Toxic |
E8 | P365-2%H2O2-5%DES | 41 ± 0 | Toxic |
E9 | C(1 g/L FeSO4)-P365-1%H2O2 | 23 ± 1 | Toxic |
E10 | C(2 g/L FeSO4)-P365-1%H2O2 | 30 ± 2 | Toxic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrovič, A.; Cenčič Predikaka, T.; Hribernik, S.; Nemet, A. Investigation of the Influencing Parameters of the H2O2-Assisted Photochemical Treatment of Waste Liquid from the Hydrothermal Carbonization Process in a Microreactor Flow System. Processes 2025, 13, 2934. https://doi.org/10.3390/pr13092934
Petrovič A, Cenčič Predikaka T, Hribernik S, Nemet A. Investigation of the Influencing Parameters of the H2O2-Assisted Photochemical Treatment of Waste Liquid from the Hydrothermal Carbonization Process in a Microreactor Flow System. Processes. 2025; 13(9):2934. https://doi.org/10.3390/pr13092934
Chicago/Turabian StylePetrovič, Aleksandra, Tjaša Cenčič Predikaka, Silvo Hribernik, and Andreja Nemet. 2025. "Investigation of the Influencing Parameters of the H2O2-Assisted Photochemical Treatment of Waste Liquid from the Hydrothermal Carbonization Process in a Microreactor Flow System" Processes 13, no. 9: 2934. https://doi.org/10.3390/pr13092934
APA StylePetrovič, A., Cenčič Predikaka, T., Hribernik, S., & Nemet, A. (2025). Investigation of the Influencing Parameters of the H2O2-Assisted Photochemical Treatment of Waste Liquid from the Hydrothermal Carbonization Process in a Microreactor Flow System. Processes, 13(9), 2934. https://doi.org/10.3390/pr13092934