Fabrication of Macroporous Nafion Membrane from Silica Crystal for Ionic Polymer-Metal Composite Actuator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Macroporous Nafion Membrane
2.3. Preparation of IPMC with Macroprous Structure (M-IPMC)
2.4. Characterization of M-IPMC
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oguro, K.; Kawami, Y.; Takenaka, H. Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J. Micromach. Soc. 1992, 5, 27–30. [Google Scholar]
- Zhao, G.; Sun, Z.; Guo, H.; Zheng, J.; Wang, H.; Wang, Z. Combination mechanism investigation on the muscle-like linear actuator using ionic polymer metal composites. Polym. Compos. 2015, 38, 479–488. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhu, Z.; Wang, J.; He, Q.; Luo, M. The Effects of Dimensions on the Deformation Sensing Performance of Ionic Polymer-Metal Composites. Sensors 2019, 19, 2104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Jain, R.K.; Luqman, M.; Asiri, A.M. Development of sulfonated poly(vinyl alcohol)/aluminium oxide/graphene based ionic polymer-metal composite (IPMC) actuator. Sens. Actuator A Phys. 2018, 280, 114–124. [Google Scholar] [CrossRef]
- Saccardo, M.C.; Zuquello, A.G.; Tozzi, K.A.; Gonçalves, R.; Hirano, L.A.; Scuracchio, C.H. Counter-ion and humidity effects on electromechanical properties of Nafion®/Pt composites. Mater. Chem. Phys. 2020, 244, 122674. [Google Scholar] [CrossRef]
- Jung, S.Y.; Park, J.-O.; Park, S. Replacement of surface roughening using polyvinyl alcohol coating in the fabrication of nafion-based ionic polymer metal composite (IPMC) actuators. J. Polym. Res. 2016, 23, 1–6. [Google Scholar] [CrossRef]
- Guo, D.-J.; Fu, S.-J.; Tan, W.; Dai, Z.-D. A highly porous nafion membrane templated from polyoxometalates-based supramolecule composite for ion-exchange polymer-metal composite actuator. J. Mater. Chem. 2010, 20, 10159–10168. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, F.; Xia, Y.; Li, J.; Tamirat, A.G.; Liu, Y.; Wang, L.; Wang, Y.; Xia, Y.-Y. In situ encapsulation of core–shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. J. Mater. Chem. A 2018, 6, 1443–1453. [Google Scholar] [CrossRef]
- Yu, Q.; Nie, Y.; Cui, Y.; Zhang, J.; Jiang, F. Single-ion Polyelectrolyte/ Mesoporous Hollow-Silica Spheres, Composite Electrolyte Membranes for Lithium-ion Batteries. Electrochimica Acta 2015, 182, 297–304. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, R.; Zhong, Y.; Jiang, F.; Hu, M.; Yu, Q. Nafion/IL Intermediate Temperature Proton Exchange Membranes Improved by Mesoporous Hollow Silica Spheres. Fuel Cells 2018, 18, 389–396. [Google Scholar] [CrossRef]
- He, Q.; Yu, M.; Yu, D.; Ding, Y.; Dai, Z. Significantly Enhanced Actuation Performance of IPMC by Surfactant-Assisted Processable MWCNT/Nafion Composite. J. Bionic Eng. 2013, 10, 359–367. [Google Scholar] [CrossRef]
- Tas, S.; Zoetebier, B.; Sukas, O.S.; Bayraktar, M.; Hempenius, M.A.; Vancso, G.J.; Nijmeijer, D.C. Ion-Selective Ionic Polymer Metal Composite (IPMC) Actuator Based on Crown Ether Containing Sulfonated Poly(Arylene Ether Ketone). Macromol. Mater. Eng. 2016, 302, 1600381. [Google Scholar] [CrossRef]
- Tripathi, A.S.; Chattopadhyay, B.P.; Das, S. Cost-effective fabrication of ionic polymer based artificial muscles for catheter-guidewire maneuvering application. Microsyst. Technol. 2018, 25, 1129–1136. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, L.; Shan, N.; Sun, T.; Chen, J.; Yan, Y. Enhanced Electrocatalytic Activity and Durability of Pt Particles Supported on Ordered Mesoporous Carbon Spheres. ACS Catal. 2014, 4, 1926–1930. [Google Scholar] [CrossRef]
- Mehraeen, S.; Sadeghi, S.; Cebeci, F.Ç.; Papila, M.; Gürsel, S.A. Polyvinylidene fluoride grafted poly(styrene sulfonic acid) as ionic polymer-metal composite actuator. Sens. Actuator A Phys. 2018, 279, 157–167. [Google Scholar] [CrossRef]
- Li, Y.; Intikhab, S.; Malkani, A.; Xu, B.; Snyder, J.D. Ionic Liquid Additives for the Mitigation of Nafion Specific Adsorption on Platinum. ACS Catal. 2020, 10, 7691–7698. [Google Scholar] [CrossRef]
- Naji, L.; Chudek, J.A.; Abel, E.W.; Baker, R.T. Electromechanical behaviour of Nafion-based soft actuators. J. Mater. Chem. B 2013, 1, 2502–2514. [Google Scholar] [CrossRef]
- Kalyva, M.; Sunding, M.F.; Gunnæs, A.E.; Diplas, S.; Redekop, E.A. Correlation between surface chemistry and morphology of PtCu and Pt nanoparticles during oxidation-reduction cycle. Appl. Surf. Sci. 2020, 532, 147369. [Google Scholar] [CrossRef]
- Yaqoob, L.; Noor, T.; Iqbal, N.; Nasir, H.; Zaman, N.; Talha, K. Electrochemical synergies of Fe–Ni bimetallic MOF CNTs catalyst for OER in water splitting. J. Alloys Compd. 2021, 850, 156583. [Google Scholar] [CrossRef]
- He, Q.; Yu, M.; Ding, Y.; Dai, Z.-D. Fabrication and characteristics of a multilayered ionic polymer metal composite based on Nafion/tetraethyl orthosilicate and Nafion/MCNT nanocomposites. J. Nanosci. Nanotechnol. 2014, 14, 7445–7450. [Google Scholar] [CrossRef]
- Wisniewski, H.; Plonecki, L. The dynamic properties of the IPMC polymer. In Proceedings of the 2015 16th International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary, 27–30 May 2015; pp. 594–598. [Google Scholar]
- Yip, J.; Ding, F.; Yick, K.L.; Yuen, C.-W.M.; Lee, T.-T.; Choy, W.-H. Tunable carbon nanotube ionic polymer actuators that are operable in dry conditions. Sens. Actuators B Chem. 2012, 162, 76–81. [Google Scholar] [CrossRef]
- Jain, R.; Datta, S.; Majumder, S.; Mukherjee, S.; Sadhu, D.; Samanta, S.; Banerjee, K. Bio-mimetic Behaviour of IPMC Artificial Muscle Using EMG Signal. In Proceedings of the 2010 International Conference on Advances in Recent Technologies in Communication and Computing, Kottayam, India, 16–17 October 2010; pp. 186–190. [Google Scholar]
- Wei, H.-C.; Su, G.-D.J. A large-stroke deformable mirror by gear shaped IPMC design. In Proceedings of the 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Kaohsiung, Taiwan, 20–23 February 2011; pp. 113–116. [Google Scholar]
- Lian, H.; Qian, W.; Estevez, L.; Liu, H.; Liu, Y.; Jiang, T.; Wang, K.; Guo, W.; Giannelis, E.P. Enhanced actuation in functionalized carbon nanotube–Nafion composites. Sens. Actuators B Chem. 2011, 156, 187–193. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Lee, J.-W.; Yoo, Y. Characteristics and performance of ionic polymer-metal composite actuators based on Nafion/layered silicate and Nafion/silica nanocomposites. Sens. Actuators B Chem. 2007, 120, 529–537. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, M.; Li, M.; Zhang, M.; Zhang, C. Fabrication of Macroporous Nafion Membrane from Silica Crystal for Ionic Polymer-Metal Composite Actuator. Processes 2020, 8, 1389. https://doi.org/10.3390/pr8111389
Zhang X, Wang M, Li M, Zhang M, Zhang C. Fabrication of Macroporous Nafion Membrane from Silica Crystal for Ionic Polymer-Metal Composite Actuator. Processes. 2020; 8(11):1389. https://doi.org/10.3390/pr8111389
Chicago/Turabian StyleZhang, Xiaojun, Man Wang, Manhong Li, Minglu Zhang, and Chengwei Zhang. 2020. "Fabrication of Macroporous Nafion Membrane from Silica Crystal for Ionic Polymer-Metal Composite Actuator" Processes 8, no. 11: 1389. https://doi.org/10.3390/pr8111389
APA StyleZhang, X., Wang, M., Li, M., Zhang, M., & Zhang, C. (2020). Fabrication of Macroporous Nafion Membrane from Silica Crystal for Ionic Polymer-Metal Composite Actuator. Processes, 8(11), 1389. https://doi.org/10.3390/pr8111389