Analysis of Selected Physicochemical Properties of Commercial Apple Juices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- M1M-manufacturer 1, mixture of varieties, clear juice,
- M2M-manufacturer 2, mixture of varieties, clear juice,
- M1Sz-manufacturer 1, Szampion variety, cloudy juice,
- M2Sz-manufacturer 2, Szampion variety, cloudy juice,
- M1A-manufacturer 1, Antonówka variety, cloudy juice,
- M2A-manufacturer 2, Antonówka variety, cloudy juice.
2.2. Experimental Model
2.3. Physical Properties
2.3.1. Soluble Solid Content
2.3.2. Density
2.3.3. Viscosity
2.4. Chemical Properties
2.4.1. Total Phenolic Content
2.4.2. Antiradical Activity (AA)
2.4.3. Determination of phenolic acids by HPLC
2.4.4. pH
2.4.5. Repeatability and Reproducibility of TPC and Antiradical Activity
2.5. Statistical Analysis
3. Results
3.1. Soluble Solid Content
3.2. Density
3.3. Viscosity
3.4. pH
3.5. Total Phenolic Content
3.6. Concentration of Phenolic Acids
3.7. Antiradical Activity
3.8. Correlation Analysis between Selected Properties of Apple Juice
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Concise Statistical Yearbook of Poland. Warsaw. 2020. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/maly-rocznik-statystyczny-polski-2020,1,22.html (accessed on 30 August 2020).
- Płocharski, W.; Mieszczakowska-Frąc, M.; Rutkowski, K.; Konopacka, D. Tradycyjne i Innowacyjne Kierunki Zagospodarowania Jabłek w Polsce. Skierniewice. 2019. Available online: http://www.inhort.pl/files/program_wieloletni/PW_2015_2020_IO/spr_2019/Broszura_Plocharski_2019_Tradycyjne_zad.3.5.pdf (accessed on 30 August 2020).
- Awolu, O.O.; Aderinola, T.A.; Adebayo, I.A. Physicochemical and rheological behaviour of African star apple (Chrysophyllum albidium) juice as affected by concentration and temperature variation. J. Food Process Technol. 2013, 4, 229–234. [Google Scholar]
- Adou, M.; Tetchi, F.A.; Gbané, M.; Kouassi, K.N.; Amani, N.G.G. Physico-chemical characterization of cashew apple juice (Anacardium occidentale) from Yamoussoukro (Côte d’Ivoire). Innov. Rom. Food Biotechnol. 2012, 11, 32–43. [Google Scholar]
- Souci, S.W.; Fachmann, W.; Kraut, H. Food Composition and Nutrition Tables, 6th ed.; Medpharm GmbH Scientific Publishers: Stuttgart, Germany, 2005. [Google Scholar]
- Gerhauser, C. Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Med. 2008, 74, 1608–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akazone, Y. Characteristic and physiological functions of polyphenols from apple. Biofactors 2004, 22, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Aprikian, O.; Levrat-verny, M.A.; Besson, C.; Busserolles, J.; Remesy, C.; Demigne, C. Apple favorably affect parameters of cholesterol metabolism and of anti-oxidative protection in cholesterol feed rats. Food Chem. 2001, 75, 445–452. [Google Scholar] [CrossRef]
- Oszmianski, J.; Wojdylo, A. Soki naturalnie mętne—Dobry kierunek w przetwórstwie jabłek. Przem. Ferm. Owoc.-War. 2006, 2, 20–22. [Google Scholar]
- Wilczyński, K.; Kobus, Z.; Dziki, D. Effect of press construction on yield and quality of apple juice. Sustainability 2019, 11, 3630. [Google Scholar] [CrossRef] [Green Version]
- Czerwonka, M.; Waszkiewicz-Robak, B. Wpływ procesu technologicznego na zawartość związków polifenolowych i aktywność przeciwutleniającą jabłek i przetworów jabłkowych. Postępy Tech. Przetw. Spoż. 2009, 2, 61–64. [Google Scholar]
- Wojdyło, A.; Oszmiański, J.; Bielecki, P. Chemical composition, phenolic compounds and antioxidant activity of three varieties of apple from organic and conventional farming. J. Res. Appl. Agric. Eng. 2010, 55, 173–177. [Google Scholar]
- Teleszko, M.; Kolniak, J.; Wojdyło, A.; Oszmiański, J. Wpływ odmiany jabłek na zawartość polifenoli i aktywność przeciwutleniającą w sokach mętnych. Przem. Ferm. Owoc.-War. 2010, 7–8, 40–42. [Google Scholar]
- Kadakal, C.; Nas, S. Effect of heat treatment and evaporation on patulin and some other properties of apple juice. J. Sci. Food Agric. 2003, 83, 987–990. [Google Scholar] [CrossRef]
- Suárez-Jacobo, A.; Rüfer, C.E.; Gervilla, R.; Guamis, B.; Roig-Sagués, A.X.; Saldo, J. Influence of ultra-high pressure homogenization on antioxidant capacity, polyphenol and vitamin content of clear apple juice. Food Chem. 2011, 127, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Braun, G. World market(s) for apple juice concentrate 2003—Missing apples? Fruit Proc. 2003, 13, 422–425. [Google Scholar]
- Oszmiański, J.; Wolniak, M.; Wojdylo, A.; Wawer, I. Comparative study of polyphenolic content and antiradical activity of cloudy and clear apple juices. J. Sci. Food Agric. 2007, 87, 573–579. [Google Scholar] [CrossRef]
- Nadulski, R.; Kobus, Z.; Wilczyński, K.; Zawiślak, K.; Grochowicz, J.; Guz, T. Application of freezing and thawing in apple (Malus domestica) juice extraction. J. Food Sci. 2016, 81, E2718–E2725. [Google Scholar] [CrossRef]
- Cliff, M.; Dever, M.C.; Gayton, R. Juice extraction process and apple cultivar influences on juice properties. J. Food Sci. 1991, 56, 1614–1617. [Google Scholar] [CrossRef]
- Eisele, T.A.; Drake, S.R. The partial compositional characteristics of apple juice from 175 apple varieties. J. Food Compos. Anal. 2005, 18, 213–221. [Google Scholar] [CrossRef]
- Wilczyński, K.; Kobus, Z.; Nadulski, R.; Szmigielski, M. Assessment of the usefulness of the twin-screw press in terms of the pressing efficiency and antioxidant properties of apple juice. Processes 2020, 8, 101. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Wrolstad, R.E. Stable isotopic carbon composition of apples and their subfractions—Juice, seeds, sugars, and nonvolatile acids. J. Assoc. Off. Anal. Chem. 1988, 71, 795–797. [Google Scholar] [CrossRef]
- Vieira, F.G.K.; Borges, G.D.S.C.; Copetti, C.; Pietro, P.F.D.; Nuens, E.D.C.; Fett, R. Phenolic compounds and antioxidant activity of the apple flesh and peel of eleven cultivars grown in Brazil. Sci. Hortic. 2011, 128, 261–266. [Google Scholar] [CrossRef]
- Tsen, J.-H.; King, V.A.-E. Density of banana puree as a function of soluble solids concentration and temperature. J. Food Eng. 2002, 55, 305–308. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Sharma, S.; Kori, S.; Parmar, A. Surfactant mediated extraction of total phenolic content (TPC) and antioxidants from fruits juices. Food Chem. 2015, 185, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Alberti, A.; Zielinski, A.A.F.; Zardo, D.M.; Demiate, I.M.; Nogueira, A.; Mafra, L.I. Optimisation of the extraction of phenolic compounds from apples using response surface methodology. Food Chem. 2014, 149, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalczyk, R. Wydajność tłoczenia i wskaźnik zużycia jabłek w procesie wytwarzania zagęszczonego soku jabłkowego. Probl. Inż. Spoż. 2004, 12, 20–30. [Google Scholar]
- Directive 2012/12/EU of the European Parliament and of the Council of 19 April 2012 Amending Council Directive 2001/112/EC Relating to Fruit Juices and Certain Similar Products Intended for Human Consumption. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:115:0001:0011:EN:PDF (accessed on 30 August 2020).
- Żywica, R.; Banach, J.K. Mathematical correlations between selected quality attributes and electrical parameters of apple juice. J. Food Process. Preserv. 2019, 43, e14107. [Google Scholar] [CrossRef]
- Kobus, Z.; Nadulski, R.; Anifantis, A.; Santoro, F. Effect of press construction on yield of pressing and selected quality characteristics of apple juice. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 23–25 May 2018; Available online: https://www.researchgate.net/publication/325386311_Effect_of_press_construction_on_yield_of_pressing_and_selected_quality_characteristics_of_apple_juice (accessed on 24 January 2019).
- Nadulski, R.; Kobus, Z.; Guz, T.; Strzałkowska, K.; Kosik, D. Usefulness of the selected apple cultivars for pressing in farm conditions. Agric. Eng. 2014, 1, 147–154. [Google Scholar]
- AIJN Code of Practice for the Evaluation of Fruit and Vegetable Juice. Latest Amendments. 2007. Available online: http://www.aijn.org (accessed on 30 August 2020).
- Will, F.; Roth, M.; Olk, M.; Ludwig, M.; Dietrich, H. Processing and analytical characterization of pulp-enriched cloudy apple juices. LWT-Food Sci. Technol. 2008, 41, 2057–2063. [Google Scholar] [CrossRef]
- Rao, M.A.; Cooley, H.J. Rheology of tomato pastes in steady dynamic shear. J. Texture Stud. 1992, 12, 521–538. [Google Scholar] [CrossRef]
- Karaman, K.; Sagdic, O.; Yilmaz, M.T. Potential of natamycin to control growth of Zygosaccharomyces spp. in apple juice during storage. Int. J. Food Microbiol. 2020, 332, 108771. [Google Scholar] [CrossRef]
- Giryn, H.; Szteke, B.; Szymczyk, K. Wpływ procesu technologicznego i przechowywania na zawartość kwasów organicznych w zagęszczonych sokach jabłkowych. Żywn-Nauk.Technol. Jakość 2004, 2, 92–107. [Google Scholar]
- Markowski, J.; Baron, A.; Mieszczakowska, M.; Plocharski, W. Chemical composition of french and polish cloudy apple juices. J. Hortic. Sci. Biotechnol. Isafruit Spec. Issue 2009, 84, 68–74. [Google Scholar] [CrossRef]
- Gökmen, V.; Artik, N.; Acar, J.; Kahraman, N.; Poyrazoglu, E. Effects of various clarification treatments on patulin, phenolic compound and organic acid compositions of apple juice. Eur. Food Res. Technol. 2001, 213, 194–199. [Google Scholar] [CrossRef]
- Escarpa, A.; Gonzalez, M.C. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J. Chromatogr. A 1998, 823, 331–337. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Ndjoko, K.; Queiroz, E.F.; Ioset, J.R.; Hostettmann, K.; Berrueta, L.A.; Gallo, B.; Vicente, F. On-line characterization of apple polyphenols by liquid chromatography coupled with mass spectrometry and ultraviolet absorbance detection. J. Chromatogr. A 2004, 1046, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Kahle, K.; Kraus, M.; Richling, E. Polyphenol profiles of apple juices. Mol. Nutr. Food Res. 2005, 49, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Okos, M.R. The thermal properties of tomato juice concentrates. Trans. ASAE 1983, 26, 305–311. [Google Scholar] [CrossRef]
- Bayindirli, L. Density and viscosity of grape juice as a function of concentration and temperature. J. Food Process. Preserv. 1993, 17, 147–151. [Google Scholar] [CrossRef]
- Ramos, A.M.; Ibarz, A. Density of juice and fruit puree as a function of soluble solids content and temperature. J. Food Eng. 1998, 35, 57–63. [Google Scholar] [CrossRef]
- Telis-Romero, J.; Telis, V.R.N.; Gabas, A.L.; Yamashita, F. Thermophysical properties of Brazilian orange juice as affected by temperature and water content. J. Food Eng. 1998, 38, 27–40. [Google Scholar] [CrossRef]
- Ibarz, A.; Barbosa-Cánovas, G.V. Unit Operations in Food Engineering; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Rao, M.A. Rheological behaviour of processed fluid and semisolid foods. In Rheology of Fluid and Semisolid Foods; Aspen Publishers Inc.: Gaithersburg, MD, USA, 1999; pp. 221–223. [Google Scholar]
- Kobus, Z.; Nadulski, R.; Guz, T.; Mazur, J.; Panasiewicz, M. Effect of pasteurization on rheological properties of white carrot juice. Agric. Agric. Sci. Procedia 2015, 7, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Wilczyński, K.; Kobus, Z.; Nadulski, R.; Panasiewicz, M.; Kusz, A. The effect of ultrasound on the rheological properties of apple juice. In Proceedings of the IX International Scientific Symposium Farm Machinery and Processes Management in Sustainable Agriculture, Lublin, Poland, 22–24 November 2017; pp. 422–425. [Google Scholar]
- Alvarez, S.; Alvarez, R.; Riera, F.A.; Coca, J. Influence of depectinization on apple juice ultrafiltration. Colloid Surf. A Physicochem. Eng. Asp. 1998, 138, 377–382. [Google Scholar] [CrossRef]
- Chinnici, F.; Bendini, A.; Gaiani, A.; Riponi, C. Radical scavenging activities of peels and pulps from cv. Golden Delicious apples as related to their phenolic composition. J. Agric. Food Chem. 2004, 52, 4684–4689. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasha, G.K.; Patil, B.S. In vitro evaluation of the antioxidant activities in fruit extracts from citron and blood orange. Food Chem. 2007, 101, 410–418. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 2000, 68, 81–85. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and blackcurrant drink. Food Chem. 1997, 60, 331–337. [Google Scholar] [CrossRef]
- Schempp, H.; Christof, S.; Mayr, U.; Treutter, D. Phenolic compounds in juices of apple cultivars and their relation to antioxidant activity. J. Appl. Bot. Food Qual. 2016, 89, 11–20. [Google Scholar]
Chemical Composition | Juice Type | |||||
---|---|---|---|---|---|---|
M1M | M2M | M1Sz | M2Sz | M1A | M2A | |
Protein | 0.0 | <0.5 | 0.1 | <0.5 | 0.2 | 0.1 |
Fat | 0.0 | <0.5 | 0.1 | <0.5 | 0.2 | 0.1 |
Carbohydrates (including sugars) | 11.0 11.0 | 11.0 11.0 | 10.2 10.2 | 11.0 11.0 | 10.5 10.4 | 11.0 11.0 |
Vitamin C | 6.5 mg | no data | 40 mg | 12 mg | 40 mg | no data |
Chemical Composition | Juice Type | |||||
---|---|---|---|---|---|---|
M1M | M2M | M1Sz | M2Sz | M1A | M2A | |
Gallic acid | 1.45 ± 0.21a | 1.62 ± 0.18a | 0.57 ± 0.05b | 0.42 ± 0.04c | 0.48 ± 0.04c | 0.33 ± 0.03d |
Chlorogenic acid | 12.68 ± 0.54a | 6.71 ± 0.41b | 46.41 ± 0.83c | 32.11 ± 0.76d | 48.32 ± 0.91c | 30.28 ± 0.61d |
Caffeic acid | 1.88 ± 0.22a | 1.46 ± 0.19b | 2.72 ± 0.20c | 2.17 ± 0.22d | 2.72 ± 0.21c | 2.47 ± 0.21e |
Vanillic acid | TA | TA | TA | TA | TA | TA |
Total acids | 16.00 ± 0.97a | 9.79 ± 0.78b | 49.69 ± 1.08c | 34.69 ± 1.02d | 51.52 ± 1.15c | 33.07 ± 0.84d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rydzak, L.; Kobus, Z.; Nadulski, R.; Wilczyński, K.; Pecyna, A.; Santoro, F.; Sagan, A.; Starek-Wójcicka, A.; Krzywicka, M. Analysis of Selected Physicochemical Properties of Commercial Apple Juices. Processes 2020, 8, 1457. https://doi.org/10.3390/pr8111457
Rydzak L, Kobus Z, Nadulski R, Wilczyński K, Pecyna A, Santoro F, Sagan A, Starek-Wójcicka A, Krzywicka M. Analysis of Selected Physicochemical Properties of Commercial Apple Juices. Processes. 2020; 8(11):1457. https://doi.org/10.3390/pr8111457
Chicago/Turabian StyleRydzak, Leszek, Zbigniew Kobus, Rafał Nadulski, Kamil Wilczyński, Anna Pecyna, Francesco Santoro, Agnieszka Sagan, Agnieszka Starek-Wójcicka, and Monika Krzywicka. 2020. "Analysis of Selected Physicochemical Properties of Commercial Apple Juices" Processes 8, no. 11: 1457. https://doi.org/10.3390/pr8111457
APA StyleRydzak, L., Kobus, Z., Nadulski, R., Wilczyński, K., Pecyna, A., Santoro, F., Sagan, A., Starek-Wójcicka, A., & Krzywicka, M. (2020). Analysis of Selected Physicochemical Properties of Commercial Apple Juices. Processes, 8(11), 1457. https://doi.org/10.3390/pr8111457