Optimization of Oxidative Leaching for Vanadium Extraction from Low-Grade Stone Coal Using Response Surface Methodology
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Experimental and Analytical Methods
2.3. Optimization of Experimental Design
3. Results and Discussion
3.1. Optimization and Analysis of the Leaching Process
3.1.1. Single-Factor Experiments
3.1.2. Data Analysis
3.1.3. Internal Relationships between Factors
3.1.4. Process Optimization
3.2. Kinetics of Leaching Process
3.2.1. Controlling Mechanism of Leaching
3.2.2. Determination of Activation Energy
3.2.3. Changes of the Mineral Structure before and after Leaching
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Z.; Chen, L.; Aldahrib, T.; Li, C.; Liu, W.; Zhang, G.; Yang, Y.; Luo, D. Direct recovery of low valence vanadium from vanadium slag—Effect of roasting on vanadium leaching. Hydrometallurgy 2020, 191, 105156. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Y.; Liu, T.; Hu, P.; Zheng, Q. Optimization of microwave roasting-acid leaching process for vanadium extraction from shale via response surface methodology. J. Clean. Prod. 2019, 234, 494–502. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, Y.; Tao, L.; Jing, H.; Bao, S. A methodology for assessing cleaner production in the vanadium extraction industry. J. Clean. Prod. 2014, 84, 598–605. [Google Scholar] [CrossRef]
- Zhang, Y.; Bao, S.; Liu, T.; Chen, T.; Huang, J. The technology of extracting vanadium from stone coal in China: History, current status and future prospects. Hydrometallurgy 2011, 109, 116–124. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, Y.; Lin, H.; Liu, C. Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus. Trans. Nonferrous Met. Soc. China 2019, 29, 849–858. [Google Scholar] [CrossRef]
- Wang, M.; Huang, S.; Chen, B.; Wang, X. A review of processing technologies for vanadium extraction from stone coal. Miner. Process. and Extr. Metall. 2018. [Google Scholar] [CrossRef]
- Imtiaz, M.; Rizwan, M.S.; Xiong, S.; Li, H.; Ashraf, M.; Shahzad, S.M.; Shahzad, M.; Rizwan, M.; Tu, S. Vanadium, recent advancements and research prospects: A review. Environ. Int. 2015, 80, 79–88. [Google Scholar] [CrossRef]
- Li, M.; Wei, C.; Fan, G.; Wu, H.; Li, C.; Li, X. Acid leaching of black shale for the extraction of vanadium. Int. J. Miner. Process. 2010, 95, 62–67. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, Y.; Liu, T.; Huang, J.; Xue, N. Vanadium extraction from black shale: Enhanced leaching due to fluoride addition. Hydrometallurgy 2019, 187, 141–148. [Google Scholar] [CrossRef]
- Feng, Q.; He, D.; Zhang, G.; Ou, L.; Lu, Y. Effect of vanadium oxidation and conversion on vanadium leaching in extraction process of vanadium from stone coal. Chin. J. Nonferr. Met. 2007, 17, 134–138. [Google Scholar]
- Li, M.; Wei, C.; Qiu, S.; Zhou, X.; Li, C.; Deng, Z. Kinetics of vanadium dissolution from black shale in pressure acid leaching. Hydrometallurgy 2010, 104, 193–200. [Google Scholar] [CrossRef]
- Deng, Z.G.; WEI, C.; FAN, G.; LI, M.; LI, C.; LI, X. Extracting vanadium from stone-coal by oxygen pressure acid leaching and solvent extraction. Trans. Nonferr. Met. Soc. China 2010, 20, s118–s122. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, X.; Tian, X.; Yang, Y.; Chen, Y. Leaching of vanadium from chromium residue. Hydrometallurgy 2010, 103, 7–11. [Google Scholar]
- Liu, Z.; Xiang, Y.; Yin, Z.; Wu, X.; Jiang, J.; Chen, Y.; Xiong, L. Oxidative leaching behavior of metalliferous black shale in acidic solution using persulfate as oxidant. Trans. Nonferr. Met. Soc. China 2016, 26, 565–574. [Google Scholar] [CrossRef]
- Yan, W.; Hu, L.; Gao, F.; Hua, J.; He, X. Effect of manganese dioxide on acid leaching of vanadium from stone coal. Chin. J. Rare Met. 2013, 37, 130–134. [Google Scholar]
- Golpayegani, M.H.; Abdollahzadeh, A.A. Optimization of operating parameters and kinetics for chloride leaching of lead from melting furnace slag. Trans. Nonferr. Met. Soc. China 2017, 27, 2704–2714. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, Y.; Liu, T.; Huang, J. Mechanisms of Vanadium Recovery from Stone Coal by Novel BaCO3/CaO Composite Additive Roasting and Acid Leaching Technology. Minerals 2016, 6, 26. [Google Scholar] [CrossRef]
- Cao, L.; Chen, H.; Tsang, D.C.W.; Luo, G.; Hao, S.; Zhang, S.; Chen, J. Optimizing xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis by response surface methodology. J. Clean. Prod. 2018, 178, 572–579. [Google Scholar] [CrossRef]
- Mirazimi, S.M.J.; Rashchi, F.; Saba, M. Vanadium removal from roasted LD converter slag: Optimization of parameters by response surface methodology (RSM). Sep. Purif. Technol. 2013, 116, 175–183. [Google Scholar] [CrossRef]
- Nazari, E.; Rashchi, F.; Saba, M.; Mirazimi, S.M. Simultaneous recovery of vanadium and nickel from power plant fly-ash: Optimization of parameters using response surface methodology. Waste Manag. 2014, 34, 2687–2696. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Huang, J.; Liu, T.; Xue, N. Effect of manganese dioxide on direct acid leaching of extracting vanadium from stone coal. Chem. Ind. Eng. Prog. 2017, 36, 1126–1133. [Google Scholar]
- Crundwell, F.K. The mechanism of dissolution of minerals in acidic and alkaline solutions: Part II Application of a new theory to silicates, aluminosilicates and quartz. Hydrometallurgy 2014, 149, 265–275. [Google Scholar] [CrossRef]
- Crundwell, F.K. The mechanism of dissolution of minerals in acidic and alkaline solutions: Part VI a molecular viewpoint. Hydrometallurgy 2016, 161, 34–44. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, Y.; Liu, T.; Huang, J.; Xue, N. Removal Process of Structural Oxygen from Tetrahedrons in Muscovite during Acid Leaching of Vanadium-Bearing Shale. Minerals 2018, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhang, Y.; Huang, J.; Liu, T.; Wang, Y. A kinetics study of multi-stage counter-current circulation acid leaching of vanadium from stone coal. Int. J. Miner. Process. 2012, 114–117, 1–6. [Google Scholar] [CrossRef]
- Wang, B.; Liu, T.; Zhang, Y.; Huang, J. Effect of CaF2/CaO Composite Additive on Roasting of Vanadium-Bearing Stone Coal and Acid Leaching Kinetics. Minerals 2017, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Tromans, D. Oxygen solubility modeling in inorganic solutions: Concentration, temperature and pressure effects. Hydrometallurgy 1998, 50, 279–296. [Google Scholar] [CrossRef]
- Tavakoli, M.R.; Dreisinger, D.B. The kinetics of oxidative leaching of vanadium trioxide. Hydrometallurgy 2014, 147–148, 83–89. [Google Scholar] [CrossRef]
- Chen, B.; Huang, S.; Liu, B.; Ge, Q.; Xie, S.; Wang, M.; Wang, X. Thermodynamic analysis for separation of vanadium and chromium in V(IV)–Cr(III)–H2O system. Trans. Nonferr. Met. Soc. China 2018, 28, 567–573. [Google Scholar] [CrossRef]
- Zhou, X.; Wei, C.; Li, M.; Qiu, S.; Li, X. Thermodynamics of vanadium–sulfur–water systems at 298K. Hydrometallurgy 2011, 106, 104–112. [Google Scholar] [CrossRef]
- Peng, H.; Liu, Z.; Tao, C. Leaching Kinetics of Vanadium with Electro-oxidation and H2O2 in Alkaline Medium. Energy Fuels 2016, 30, 7802–7807. [Google Scholar] [CrossRef]
- Pritzker, M.D. Shrinking-core model for systems with facile heterogeneous and ho-mogeneous reactions. Chem. Eng. Sci 1996, 51, 3631–3645. [Google Scholar] [CrossRef]
- Ju, Z.; Wang, C.; Yin, F. Dissolution kinetics of vanadium from black shale by activated sulfuric acid leaching in atmosphere pressure. Int. J. Miner. Process. 2015, 138, 1–5. [Google Scholar] [CrossRef]
V | Si | Al | K | Na | Mg | Ca | Ba | Fe | Cr | S | Loss |
---|---|---|---|---|---|---|---|---|---|---|---|
0.30 | 36.12 | 2.37 | 0.56 | 0.09 | 0.94 | 0.05 | 0.11 | 0.56 | 0.05 | 0.54 | 11.00 |
Parameter | Range and Levels | ||||
---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | |
A: H2SO4 concentration (%) | 8 | 16 | 24 | 32 | 40 |
B: leaching temperature (°C) | 60 | 70 | 80 | 90 | 100 |
C: leaching time (h) | 2 | 4 | 6 | 8 | 10 |
D: MnO2 dosage (%) | 0 | 1 | 2 | 3 | 4 |
Number | H2SO4 Concentration (%) | Leaching Temperature (°C) | Leaching Time (h) | MnO2 (%) | V Leaching Efficiency (%) |
---|---|---|---|---|---|
1 | 30.7166 | 89.9453 | 7.9357 | 2.99625 | 90.2 |
2 | 31 | 90 | 7.9 | 3 | 89.3 |
3 | 30 | 85 | 9 | 0 | 76.1 |
4 | 30 | 95 | 6 | 0 | 74.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Chen, T.; Zhou, Y.; Xu, W.; Lin, H.; Yan, B. Optimization of Oxidative Leaching for Vanadium Extraction from Low-Grade Stone Coal Using Response Surface Methodology. Processes 2020, 8, 1534. https://doi.org/10.3390/pr8121534
Huang Z, Chen T, Zhou Y, Xu W, Lin H, Yan B. Optimization of Oxidative Leaching for Vanadium Extraction from Low-Grade Stone Coal Using Response Surface Methodology. Processes. 2020; 8(12):1534. https://doi.org/10.3390/pr8121534
Chicago/Turabian StyleHuang, Zulv, Tao Chen, Yang Zhou, Wenbin Xu, Hanzhi Lin, and Bo Yan. 2020. "Optimization of Oxidative Leaching for Vanadium Extraction from Low-Grade Stone Coal Using Response Surface Methodology" Processes 8, no. 12: 1534. https://doi.org/10.3390/pr8121534
APA StyleHuang, Z., Chen, T., Zhou, Y., Xu, W., Lin, H., & Yan, B. (2020). Optimization of Oxidative Leaching for Vanadium Extraction from Low-Grade Stone Coal Using Response Surface Methodology. Processes, 8(12), 1534. https://doi.org/10.3390/pr8121534