Mass Spectral Fragmentation of Pelargonium graveolens Essential Oil Using GC–MS Semi-Empirical Calculations and Biological Potential
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC–MS
2.2. Mass Spectrometric Observations about the Fragmentation of the Studied Compounds Under EI Conditions
2.2.1. Fragmentation Pattern of Citronellol Compound
2.2.2. Fragmentation Pattern of Linalool Compound
2.2.3. Fragmentation Pattern of Menthone Compound
2.2.4. Fragmentation Pattern of Eudesmol Compound
2.2.5. Fragmentation Pattern of Geraniol Formate Compound
2.2.6. Fragmentation Pattern of Rose Oxide Compound
3. Computation Method
3.1. Possible Correlation Between the Activity and the Semi-Empirical Calculations
3.2. Antibacterial Activities
3.3. Antifungal Activities
4. Materials and Methods
4.1. Essential Oil Extraction
4.2. Gas Chromatography-Mass-Spectrometry Analysis
4.3. Antibacterial Activity
4.4. Antifungal Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salem, M.Z.M.; Elansary, H.O.; Ali, H.M.; El-Settawy, A.A.; Elshikh, M.S.; Abdel-Salam, E.M.; Skalicka-Wozniak, K. Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt. BMC Complement. Altern. Med. 2018, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Skalicka-Wozniak, K.; Grzegorczyk, A.; Swiatek, L.; Walasek, M.; Widelski, J.; Rajtar, B.; Polz-Dacewicz, M.; Maim, A.; Elansary, H.O. Biological activity and safety profile of the essential oil from fruits of Heracleum mantegazzianum Sommier & Levier (Apiaceae). Food Chem. Toxicol. 2017, 109, 820–826. [Google Scholar] [PubMed]
- Mahmoud, E.A.; Elansary, H.O.; El-Ansary, D.O.; Al-Mana, F.A. Elevated Bioactivity of Ruta graveolens against Cancer Cells and Microbes Using Seaweeds. Processes 2020, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- El-Hefny, M.; Mohamed, A.A.; Salem, M.Z.M.; Abd El-Kareem, M.S.M.; Ali, H.M. Chemical composition, antioxidant capacity and antibacterial activity against some potato bacterial pathogens of fruit extracts from Phytolacca dioica and Ziziphus spina-christi grown in Egypt. Sci. Hortic. 2018, 233, 225–232. [Google Scholar] [CrossRef]
- Das, S.; Horváth, B.; Šafranko, S.; Jokić, S.; Széchenyi, A.; Kőszegi, T. Antimicrobial Activity of Chamomile Essential Oil: Effect of Different Formulations. Molecules 2019, 24, 4321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dosoky, N.S.; Satyal, P.; Barata, L.M.; da Silva, J.K.R.; Setzer, W.N. Volatiles of Black Pepper Fruits (Piper nigrum L). Molecules 2019, 24, 4244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elansary, H.O.; Abdelgaleil, S.A.M.; Mahmoud, E.A.; Yessoufou, K.; Elhindi, K.; El-Hendawy, S. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement. Altern. Med. 2018, 18, 214. [Google Scholar] [CrossRef]
- CharlwoodK, B.V.C.A. Pelargonium spp. (Geranium). In Medicinal and Aromatic Plants III. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; Volume 15, pp. 339–352. [Google Scholar]
- Bouslimani, A.; Sanchez, L.M.; Garg, N.; Dorrestein, P.C. Mass spectrometry of natural products: Current, emerging and future technologies. Nat. Prod. Rep. 2014, 31, 718–729. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Zheng, Y.; Sun, J.; Shang, L.; Wang, G.; Zhang, H. Simultaneous Quantification of Benazepril, Gliclazide and Valsartan in Human Plasma by LC–MS–MS and Application for Rapidly Measuring Protein Binding Interaction between Rhein and These Three Drugs. Chromatographia 2009, 69, 843–852. [Google Scholar] [CrossRef]
- Bourcier, S.; Hoppilliard, Y. Fragmentation Mechanisms of Protonated Benzylamines. Electrospray Ionisation-Tandem Mass Spectrometry Study and ab Initio Molecular Orbital Calculations. Eur. J. Mass Spectrom. 2003, 9, 351–360. [Google Scholar] [CrossRef]
- Husch, T.; Reiher, M. Comprehensive Analysis of the Neglect of Diatomic Differential Overlap Approximation. J. Chem. Theor. Comput. 2018, 14, 5169–5179. [Google Scholar] [CrossRef] [Green Version]
- Tamara, H.; Alain, C.; Vaucher, M.R. Semiempirical molecular orbital models based on the neglect of diatomic differential overlap approximation. Int. J. Quantum Chem. 2018, 118, e25799. [Google Scholar]
- Gieseking, R.L.M.; Ratner, M.A.; Schatz, G.C. Benchmarking Semiempirical Methods to Compute Electrochemical Formal Potentials. J. Phys. Chem. A 2018, 122, 6809–6818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, M.A.; Cardoso, M.G.; Batista, L.R.; Freire, J.M.; Nelson, D.L. Antimicrobial activity and chemical composition of essential oil of Pelargonium odoratissimum. Rev. Bras. Farmacogn. 2011, 21, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Moutaouafiq, S.; Farah, A.; Ez Zoubi, Y.; Ghanmi, M.; Satrani, B.; Bousta, D. Antifungal Activity of Pelargonium graveolens Essential Oil and its Fractions against Wood Decay Fungi. J. Essent. Oil Bear. Plants 2019, 22, 1104–1114. [Google Scholar] [CrossRef]
- Carmen, G.; Hancu, G. Antimicrobial and Antifungal Activity of Pelargonium roseum Essential Oils. Adv. Pharm. Bull. 2014, 4 (Suppl. 2), 511–514. [Google Scholar]
- Ghannadi, A.; Bagherinejad, M.; Abedi, D.; Jalali, M.; Absalan, B.; Sadeghi, N. Antibacterial activity and composition of essential oils from Pelargonium graveolens L’Her and Vitex agnus-castus L. Iran. J. Microbiol. 2012, 4, 171–176. [Google Scholar]
- Waikedre, J.; Vitturo, C.I.; Molina, A.; Theodoro, P.N.E.T.; do Rosário Rodrigues Silva, M.; Espindola, L.S.; Maciuk, A.; Fournet, A. Antifungal Activity of the Essential Oils of Callitris neocaledonica and C. sulcata Heartwood (Cupressaceae). Chem. Biodivers. 2012, 9, 644–653. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Ali, H.M.; Elshikh, M.S.; Abdel-Salam, E.M.; El-Esawi, M.; El-Ansary, D.O. Bioactivities of Traditional Medicinal Plants in Alexandria. Evid. Based Complement. Altern. Med. 2018, 2018, 1463579. [Google Scholar] [CrossRef] [Green Version]
- Elansary, H.O.; Zin El-Abedin, T.K. Omeprazole alleviates water stress in peppermint and modulates the expression of menthol biosynthesis genes. Plant Physiol. Biochem. 2019, 139, 578–586. [Google Scholar] [CrossRef]
- Elansary, H.O. Tree Bark Phenols Regulate the Physiological and Biochemical Performance of Gladiolus Flowers. Processes 2020, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Rana, V.S.; Juyal, J.P.; Amparo Blazquez, M. Chemical constituents of essential oil of Pelargonium graveolens leaves. Int. J. Aromather. 2002, 12, 216–218. [Google Scholar] [CrossRef]
- Boukhris, M.; Simmonds, M.S.J.; Sayadi, S.; Bouaziz, M. Chemical Composition and Biological Activities of Polar Extracts and Essential Oil of Rose-scented Geranium, Pelargonium graveolens. Phytother. Res. 2013, 27, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Bendjeddou, A.; Abbaz, T.; Drissi, S.M.; Gouasmia, A.; Villemin, D. Quantum Chemical Studies on Molecular Structure and Reactivity Descriptors of A Series of Trimethyltetrathiafulvalene Functionalized by Conjugated Substituent. J. Adv. Chem. Sci. 2016, 2, 318–322. [Google Scholar]
- Lewis, D.F.V.; Ioannides, C.; Parke, D.V. Interaction of a series of nitriles with the alcohol-inducible isoform of P450: Computer analysis of structure—activity relationships. Xenobiotica 1994, 24, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Cammi, R. The Role of Computational Chemistry in the Experimental Determination of the Dipole Moment of Molecules in Solution. J. Comput. Chem. 2019, 40, 2309–2317. [Google Scholar] [CrossRef]
- Świsłocka, R.; Regulska, E.; Karpińska, J.; Świderski, G.; Lewandowski, W. Molecular Structure and Antioxidant Properties of Alkali Metal Salts of Rosmarinic Acid. Experimental and DFT Studies. Molecules 2019, 24, 2645. [Google Scholar] [CrossRef] [Green Version]
- Coulibaly, W.N.D.J.; Koné, M.; Dago, C.; Ambeu, C.; Bazureau, J.; Ziao, N. Studies of the Chemical Reactivity of a Series of Rhodanine Derivatives by Approaches to Quantum Chemistry. Comput. Mol. Biosci. 2019, 9, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Romero, J.C.; Gonzale- Ríos, H.; Borges, A.; Simões, M. Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evid. Based Complement. Altern. Med. 2015, 2015, 9. [Google Scholar] [CrossRef] [Green Version]
- Hajlaoui, H.; Snoussi, M.; Ben Jannet, H.; Mighri, Z.; Bakhrouf, A. Comparison of chemical composition and antimicrobial activities of Mentha longifolia L. ssp.longifolia essential oil from two Tunisian localities (Gabes and Sidi Bouzid). Ann. Microbiol. 2008, 58, 513–520. [Google Scholar] [CrossRef]
- Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 2001, 47, 565–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, I.J.; Trajano, E.R.I.S.; Castro, R.D.; Ferreira, G.L.S.; Medeiros, H.C.M.; Gomes, D.Q.C. Antifungal activity of linalool in cases of Candida spp. isolated from individuals with oral candidiasis. Braz. J. Biol. 2018, 78, 368–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elansary, H.O.; Yessoufou, K.; Shokralla, S.; Mahmoud, E.A.; Skaicka-Wozniak, K. Enhancing mint and basil oil composition and antibacterial activity using seaweed extracts. Ind. Crops Prod. 2016, 92, 50–56. [Google Scholar] [CrossRef]
- Miltiadous, G.; Elisaf, M. Native valve endocarditis due to Micrococcus luteus: A case report and review of the literature. J. Med. Case Rep. 2011, 5, 251. [Google Scholar] [CrossRef] [Green Version]
- Temple, M.E.; Nahata, M.C. Treatment of Listeriosis. Ann. Pharmacother. 2000, 34, 656–661. [Google Scholar] [CrossRef]
- Tewari, A.; Abdullah, S. Bacillus cereus food poisoning: International and Indian perspective. J. Food Sci. Technol. 2015, 52, 2500–2511. [Google Scholar] [CrossRef] [Green Version]
Compound | ∆HF (M) kcal.mol−1 | ∆HF(M)+ kcal.mol−1 | ∆HF(M)-kcal.mol−1 | EA eV | Total Energy (M) kcal.mol−1 | Total Energy (M)+ kcal.mol−1 | I.E eV | Binding Energy (M) kcal.mol−1 | Dipole Moment (M) D |
---|---|---|---|---|---|---|---|---|---|
1-Citronellol | −70 | 133 | −69 | −0.043 | −43491 | −43288 | 8.8 | −2880 | 1.4 |
2-Linalool | −36 | 165 | −31 | −0.260 | −42803 | −42603 | 8.7 | −2742 | 1.5 |
3-cis-Menthone | −63 | 157 | −66 | 0.130 | −42831 | −42610 | 9.5 | −2770 | 2.4 |
4-ç-Eudesmol | −54 | 139 | −63 | 0.390 | −60183 | −59991 | 8.4 | −4032 | 1.3 |
5-Geraniol formate | −73 | 132 | −75 | 0.086 | −53181 | −52976 | 8.9 | −3010 | 3.9 |
6-Rose oxide | 110 | 275 | 91 | 0.823 | −42657 | −42492 | 7.1 | −2596 | 0.6 |
Compound | HOMO (eV) | LUMO (eV) | Energy Gap (∆) (eV) |
---|---|---|---|
1. -Citronellol | −9.621878 | 0.767305 | 8.854573 |
2. -Linalool | −9.535233 | 0.848275 | 8.686958 |
3. -cis-Menthone | −10.48469 | 0.747289 | 9.737401 |
4. -ç-Eudesmol | −9.398919 | 0.718945 | 8.679973 |
5. -Geraniol formate | −9.72253 | 0.688588 | 9.033941 |
6. -Rose oxide | −9.383857 | 1.121181 | 8.262676 |
P. aeruginosa MIC MBC | B. cereus MIC MBC | L. monocytogenes MIC MBC | E. coli MIC MBC | M. flavus MIC MBC | S. aureus MIC MBC | |
---|---|---|---|---|---|---|
P. graveolens | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.13 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.18 ± 0.02 |
0.17 ± 0.01 | 0.18 ± 0.01 | 0.28 ± 0.02 | 0.23 ± 0.02 | 0.26 ± 0.02 | 0.36 ± 0.03 | |
Citronellol | 0.08 ± 0.01 | 0.10 ± 0.01 | 0.13 ± 0.01 | 0.007 ± 0.0003 | 0.15 ± 0.01 | 0.2 ± 0.01 |
0.20 ± 0.01 | 0.24 ± 0.01 | 0.29 ± 0.01 | 0.016 ± 0.005 | 0.31 ± 0.01 | 0.44 ± 0.02 | |
cis-Menthone | 0.09 ± 0.01 | 0.12 ± 0.01 | 0.16 ± 0.02 | 0.15 ± 0.01 | 0.14 ± 0.01 | 0.43 ± 0.02 |
0.25 ± 0.02 | 0.24 ± 0.02 | 0.34 ± 0.03 | 0.33 ± 0.02 | 0.29 ± 0.02 | 0.81 ± 0.01 | |
linalool | 0.31 ± 0.01 | 0.23 ± 0.01 | 0.17 ± 0.01 | 0.25 ± 0.01 | 0.20 ± 0.01 | 0.21 ± 0.01 |
0.59 ± 0.03 | 0.52 ± 0.03 | 0.34 ± 0.03 | 0.55 ± 0.02 | 0.41 ± 0.03 | 0.43 ± 0.03 | |
eudesmol | 0.39 ± 0.03 | 0.48 ± 0.02 | 0.79 ± 0.05 | 0.38 ± 0.03 | 0.79 ± 0.04 | 0.48 ± 0.05 |
0.86 ± 0.04 | 0.92 ± 0.03 | 1.79 ± 0.12 | 1.03 ± 0.09 | 2.36 ± 0.15 | 1.63 ± 0.14 | |
Streptomycin | 0.07 ± 0.01 | 0.08 ± 0.01 | 0.15 ± 0.01 | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.16 ± 0.02 |
0.15 ± 0.01 | 0.16 ± 0.02 | 0.31 ± 0.03 | 0.23 ± 0.02 | 0.21 ± 0.02 | 0.33 ± 0.02 |
Aspergillus flavus MIC MFC | Aspergillus ochraceus MIC MFC | Aspergillus niger MIC MFC | Candida albicans MIC MFC | Penicillium funiculosum MIC MFC | Penicillium ochrochloron MIC MFC | |
---|---|---|---|---|---|---|
Pelargonium graveolens | 0.23 ± 0.01 | 0.24 ± 0.03 | 0.25 ± 0.02 | 0.23 ± 0.01 | 0.21 ± 0.01 | 0.23 ± 0.01 |
0.59 ± 0.03 | 0.52 ± 0.02 | 0.56 ± 0.03 | 0.40 ± 0.03 | 0.43 ± 0.02 | 0.45 ± 0.03 | |
citronellol | 0.25 ± 0.02 | 0.34 ± 0.02 | 0.13 ± 0.01 | 0.19 ± 0.01 | 0.28 ± 0.02 | 0.33 ± 0.01 |
0.52 ± 0.03 | 0.69 ± 0.03 | 0.27 ± 0.03 | 0.40 ± 0.03 | 0.59 ± 0.03 | 0.73 ± 0.04 | |
cis-Menthone | 0.07 ± 0.01 | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.15 ± 0.01 | 0.14 ± 0.02 | 0.17 ± 0.01 |
0.15 ± 0.01 | 0.23 ± 0.02 | 0.25 ± 0.02 | 0.36 ± 0.02 | 0.35 ± 0.03 | 0.37 ± 0.03 | |
linalool | 0.53 ± 0.05 | 0.35 ± 0.03 | 0.37 ± 0.03 | 0.93 ± 0.05 | 0.57 ± 0.05 | 0.46 ± 0.02 |
1.19 ± 0.12 | 0.68 ± 0.05 | 0.72 ± 0.04 | 1.62 ± 0.13 | 1.15 ± 0.12 | 0.94 ± 0.05 | |
eudesmol | 0.35 ± 0.03 | 0.47 ± 0.02 | 0.25 ± 0.02 | 0.21 ± 0.01 | 0.44 ± 0.03 | 0.42 ± 0.03 |
0.81 ± 0.03 | 0.93 ± 0.04 | 0.68 ± 0.03 | 0.44 ± 0.03 | 0.89 ± 0.04 | 0.93 ± 0.04 | |
KTZ | 0.21 ± 0.02 | 0.19 ± 0.01 | 0.10 ± 0.01 | 0.21 ± 0.02 | 1.98 ± 0.10 | 0.22 ± 0.01 |
0.42 ± 0.03 | 0.40 ± 0.03 | 0.21 ± 0.02 | 0.42 ± 0.02 | 3.60 ± 0.09 | 0.43 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
S. M. Abd El-Kareem, M.; A. Rabbih, M.; Elansary, H.O.; A. Al-Mana, F. Mass Spectral Fragmentation of Pelargonium graveolens Essential Oil Using GC–MS Semi-Empirical Calculations and Biological Potential. Processes 2020, 8, 128. https://doi.org/10.3390/pr8020128
S. M. Abd El-Kareem M, A. Rabbih M, Elansary HO, A. Al-Mana F. Mass Spectral Fragmentation of Pelargonium graveolens Essential Oil Using GC–MS Semi-Empirical Calculations and Biological Potential. Processes. 2020; 8(2):128. https://doi.org/10.3390/pr8020128
Chicago/Turabian StyleS. M. Abd El-Kareem, Mamoun, Mohamed A. Rabbih, Hosam O. Elansary, and Fahed A. Al-Mana. 2020. "Mass Spectral Fragmentation of Pelargonium graveolens Essential Oil Using GC–MS Semi-Empirical Calculations and Biological Potential" Processes 8, no. 2: 128. https://doi.org/10.3390/pr8020128
APA StyleS. M. Abd El-Kareem, M., A. Rabbih, M., Elansary, H. O., & A. Al-Mana, F. (2020). Mass Spectral Fragmentation of Pelargonium graveolens Essential Oil Using GC–MS Semi-Empirical Calculations and Biological Potential. Processes, 8(2), 128. https://doi.org/10.3390/pr8020128