Antiproliferative, Antimicrobial, and Antifungal Activities of Polyphenol Extracts from Ferocactus Species
Abstract
:1. Introduction
2. Results
2.1. Chemical Profiles of the Ferocactus Polyphenolic Extracts
2.2. Anticancer Activities of the Ferocactus Polyphenolic Extracts
2.3. Antibacterial Activities of the Ferocactus Polyphenolic Extracts
2.4. Antifungal Activities of the Ferocactus Polyphenolic Extracts
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of Polyphenolic Extracts
4.3. HPLC Analysis of Phenolic Compounds
4.4. Cell Cultures and Treatments
4.5. MTT Assay
4.6. Apoptotic Assay
4.7. Antibacterial Activity
4.8. Antifungal Activity
4.9. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Di Mauro, M.D.; Giardina, R.C.; Fava, G.; Mirabella, E.F.; Acquaviva, R.; Renis, M.; D’Antona, N. Polyphenolic profile and antioxidant activity of olive mill wastewater from two Sicilian olive cultivars: Cerasuola and Nocellara etnea. Eur. Food Res. Technol. 2017, 243, 1895–1903. [Google Scholar] [CrossRef]
- Elansary, H.O. Tree bark phenols regulate the physiological and biochemical performance of Gladiolus flowers. Processes 2020, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Al-Mana, F.A.; Mahmoud, E.A.; El-Abedin, T.K.A.Z.; Mattar, M.A.; Ekiert, H. Phenolic compounds of Catalpa speciosa, Taxus cuspidata, and Magnolia acuminata have antioxidant and anticancer activity. Molecules 2019, 24, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Mattar, M.A.; Al-Yafrasi, M.A.; El-Ansary, D.O.; Zin El-Abedin, T.K.; Yessoufou, K. Polyphenol profile and pharmaceutical potential of Quercus spp. bark extracts. Plants 2019, 8, 486. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, A.; Schluesener, H. Natural polyphenols against neurodegenerative disorders: Potentials and pitfalls. Ageing Res. Rev. 2012, 11, 329–345. [Google Scholar] [CrossRef]
- Di Mauro, D.M.; Fava, G.; Spampinato, M.; Aleo, D.; Melilli, B.; Saita, G.M.; Centonze, G.; Maggiore, R.; D’Antona, N. Polyphenolic fraction from olive mill wastewater: Scale-up and in vitro studies for ophthalmic nutraceutical applications. Antioxidants 2019, 8, 462. [Google Scholar] [CrossRef] [Green Version]
- Acquaviva, R.; Genovese, C.; Amodeo, A.; Tomasello, B.; Malfa, G.; Sorrenti, V.; Tempera, G.; Addamo, A.P.; Ragusa, S.; Rosa, T.; et al. Biological activities of Teucrium flavum L., Teucrium fruticans L., and Teucrium siculum rafin crude extracts. Plant Biosyst. 2018, 152, 720–727. [Google Scholar] [CrossRef]
- Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary polyphenols and type 2 diabetes: Human study and clinical trial. Crit. Rev. Food Sci. Nutr. 2019, 59, 3371–3379. [Google Scholar] [CrossRef]
- Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 2014, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Abdal Dayem, A.; Choi, H.Y.; Yang, G.M.; Kim, K.; Saha, S.K.; Cho, S.G. The Anti-Cancer Effect of polyphenols against breast cancer and cancer stem cells: Molecular mechanisms. Nutrients 2016, 8, 581. [Google Scholar] [CrossRef]
- Elansary, H.O.; Mahmoud, E.A. In vitro antioxidant and antiproliferative activities of six international basil cultivars. Nat. Prod. Res. 2015, 29, 2149–2154. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; Mahmoud, E.A. Egyptian herbal tea infusions’ antioxidants and their antiproliferative and cytotoxic activities against cancer cells. Nat. Prod. Res. 2015, 29, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; Salem, M.Z.M.; Ashmawy, N.A.; Yessoufou, K.; El-Settawy, A.A.A. In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition. Nat. Prod. Res. 2017, 31, 2927–2930. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; Mahmoud, E.A. Basil cultivar chemotyping still favored over genotyping using core barcodes and possible resources of antioxidants. Essent. Oil Res. 2015, 27, 82–87. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Klimek-Szczykutowicz, M.; Jafernik, K.; Ekiert, H.; Mahmoud, E.A.; Barakat, A.A.; El-Ansary, D.O. Mammillaria Species—polyphenols studies and anti-cancer, anti-oxidant, and anti-bacterial activities. Molecules 2019, 25, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre-Joya, J.A.; Pastrana-Castro, L.; Nieto-Oropeza, D.; Ventura-Sobrevilla, J.; Rojas-Molina, R.; Aguilar, C.N. The physicochemical, antifungal and antioxidant properties of a mixed polyphenol based bioactive film. Heliyon 2018, 4, e00942. [Google Scholar] [CrossRef] [Green Version]
- Yessoufou, K.; Elansary, H.O.; Mahmoud, E.A.; Skalicka-Wozniak, K. Antifungal, antibacterial and anticancer activities of Ficus drupacea L. stem bark extract and biologically active isolated compounds. Ind. Crop Prod. 2015, 74, 752–758. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Ali, H.M.; Elshikh, M.S.; Abdel-Salam, E.M.; El-Esawi, M.; El-Ansary, D.O. Bioactivities of traditional medicinal plants in Alexandria. Evid. Based Complement. Altern. Med. 2018, 2018, 1463579. [Google Scholar] [CrossRef] [Green Version]
- Brinker, F. Prickly pear as food and medicine. J. Diet. Suppl. 2009, 6, 362–376. [Google Scholar] [CrossRef]
- Shah, A.T.; Din, M.I.; Bashir, S.; Qadir, M.A.; Rashid, F. Green synthesis and characterization of silver nanoparticles using Ferocactus echidne extract as a reducing agent. Anal. Lett. 2015, 48, 1180–1189. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography–mass spectrometry. J. Agric. Food Chem. 2011, 59, 9386–9393. [Google Scholar] [CrossRef] [PubMed]
- Nishimuro, H.; Ohnishi, H.; Sato, M.; Ohnishi-Kameyama, M.; Matsunaga, I.; Naito, S.; Ippoushi, K.; Oike, H.; Nagata, T.; Akasaka, H.; et al. Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients 2015, 7, 2345–2358. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, L.; Jordão, N.; da Costa Pereira Soares, N.; deMesquita, J.; Monteiro, M.; Teodoro, A. Pharmacokinetic, antiproliferative and apoptotic effects of phenolic acids in human colon adenocarcinoma cells using in vitro and in silico approaches. Molecules 2018, 23, 2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, A.T.; Poejo, J.; Matias, A.A.; Bronze, M.R.; Duarte, C.M.M. Evaluation of Opuntia spp. derived products as antiproliferative agents in human colon cancer cell line (HT29). Food Res. Int. 2013, 54, 892–901. [Google Scholar] [CrossRef]
- Jacomini, D.; Sinzker, R.C.; Mangolin, C.A.; Grande, P.A.; Nocchi, S.R.; Nakamura, C.V.; de Oliveira, A.J.B.; Gonçalves, R.A.C. Lipid profile and antiproliferative activity of callus cultures of Cereus peruvianus Mill. Ind. Crop Prod. 2015, 69, 408–414. [Google Scholar] [CrossRef]
- Lin, H.H.; Chen, J.H.; Huang, C.C.; Wang, C.J. Apoptotic effect of 3,4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p38 MAPK signaling activation. Int. J. Cancer 2007, 120, 2306–2316. [Google Scholar] [CrossRef]
- Chen, H.; Miao, Q.; Geng, M.; Liu, J.; Hu, Y.; Tian, L.; Pan, J.; Yang, Y. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. Sci. World J. 2013, 2013, 269165. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.; ElFayoumi, H.M.; Youns, M.; Barakat, W. Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 165–175. [Google Scholar] [CrossRef]
- Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; et al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep. 2017, 38, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Arima, H.; Ashida, H.; Danno, G.-I. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci. Biotechnol. Biochem. 2002, 66, 1009–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, M.U.; Khurram, M.; Khattak, B.; Khan, J. Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement. Altern. Med. 2015, 15, 59. [Google Scholar] [CrossRef] [Green Version]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) models. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.M.; Carraro, E.; Auler, M.E.; Khalil, N.M. Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Braz. J. Biol. 2016, 76, 1029–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. J. ISRN Pharmacol. 2014, 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Sulkowska-Ziaja, K.; Maslanka, A.; Szewczyk, A.; Muszynska, B. Physiologically active compounds in four species of Phellinus. Nat. Prod. Commun. 2017, 12, 363–366. [Google Scholar] [CrossRef] [Green Version]
- Szopa, A.; Kokotkiewicz, A.; Bednarz, M.; Luczkiewicz, M.; Ekiert, H. Studies on the accumulation of phenolic acids and flavonoids in different in vitro culture systems of Schisandra chinensis (Turcz.) Baill. using a DAD-HPLC method. Phytochem. Lett. 2017, 20, 462–469. [Google Scholar] [CrossRef]
- Szopa, A.; Kokotkiewicz, A.; Kubica, P.; Banaszczak, P.; Wojtanowska-Krośniak, A.; Krośniak, M.; Marzec-Wróblewska, U.; Badura, A.; Zagrodzki, P.; Bucinski, A.; et al. Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. ×prunifolia and their antioxidant activities. Eur. Food Res. Technol. 2017, 243, 1645–1657. [Google Scholar] [CrossRef] [Green Version]
- Elansary, H.O.; El-Ansary, D.O.; Al-Mana, F.A. 5-aminolevulinic acid and soil fertility enhance the resistance of rosemary to Alternaria dauci and Rhizoctonia solani and modulate plant biochemistry. Plants-Basel 2019, 8, 585. [Google Scholar] [CrossRef]
- Di Mauro, M.D.; Tomasello, B.; Giardina, R.C.; Dattilo, S.; Mazzei, V.; Sinatra, F.; Caruso, M.; D’Antona, N.; Renis, M. Sugar and mineral enriched fraction from olive mill wastewater for promising cosmeceutical application: Characterization, in vitro and in vivo studies. Food Funct. 2017, 8, 4713–4722. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; Abdelgaleil, S.A.M.; Mahmoud, E.A.; Yessoufou, K.; Elhindi, K.; El-Hendawy, S. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement. Altern. Med. 2018, 18, 214. [Google Scholar] [CrossRef]
- Elansary, H.O.; Yessoufou, K.; Shokralla, S.; Mahmoud, E.A.; Skaicka-Wozniak, K. Enhancing mint and basil oil composition and antibacterial activity using seaweed extracts. Ind. Crop Prod. 2016, 92, 50–56. [Google Scholar] [CrossRef]
- Elansary, H.O.; Yessoufou, K. In vitro antioxidant, antifungal and antibacterial activities of five international Calibrachoa cultivars. Nat. Prod Res. 2016, 30, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; Yessoufou, K.; Mahmoud, E.A.; Skalicka-Wozniak, K. In vitro antioxidant and antimicrobial effects of Ceratostigma plumbaginoides. Nat. Prod. Commun. 2016, 11, 1455–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
F. gracilis | F. pottsii | F. herrerae | F. horridus | F. glaucescens | |
---|---|---|---|---|---|
Protocatechuic acid | 3.04 ± 0.24c | 6.87 ± 0.57a | 5.34 ± 0.49b | 3.31 ± 0.31c | 5.14 ± 0.5b |
3,4-Dihydroxyphenylacetic acid | 56.94 ± 5.26c | 75.71 ± 7.26b | 41.12 ± 4.96d | 45.46 ± 4.65d | 132.09 ± 15.51a |
Caffeic acid | 5.46 ± 0.48c | 7.94 ± 0.66b | 8.59 ± 0.81a | 4.23 ± 0.55d | 5.24 ± 0.55c |
Vanillic acid | 2.00 ± 0.2b | 3.01 ± 0.29a | 1.83 ± 0.17c | 1.96 ± 0.23cb | 3.06 ± 0.32a |
Rutoside | 7.83 ± 0.64b | 12.69 ± 1.0b | 10.69 ± 1.0b | 9.23 ± 0.89b | 107.66 ± 10.76a |
Quercitrin | 43.19 ± 3.82a | 24.08 ± 2.1d | 30.16 ± 0.49c | 33.27 ± 2.9b | 42.65 ± 4.06a |
HeLa | Jurkat | T24 | MCF-7 | HT-29 | HEK-293 | |
---|---|---|---|---|---|---|
Control | 6.6 ± 0.1c | 24.0 ± 0.3a | 93.4 ± 3.8a | 20.6 ± 1.6a | 121.9 ± 4.2a | ˃200 |
F. gracilis | 8.4 ± 0.3a | 16.3 ± 0.8c | 26.9 ± 1.3c | 18.2 ± 0.5b | 53.2 ± 2.1d | ˃200 |
F. pottsii | 4.1 ± 0.3e | 9.1 ± 0.3e | 21.2 ± 0.8d | 13.5 ± 0.7c | 41.2 ± 1.1e | ˃200 |
F. herrerae | 7.8 ± 0.10b | 18.8 ± 0.3b | 56.9 ± 2.7b | 18.1 ± 0.4b | 68.2 ± 1.8c | ˃200 |
F. horridus | 7.7 ± 0.20b | 15.7 ± 0.7d | 57.2 ± 0.3b | 17.9 ± 0.3b | 74.7 ± 3.2b | ˃200 |
F. glaucescens | 3.3 ± 0.2f | 8.2 ± 0.2e | 18.4 ± 0.8 | 7.77 ± 0.3d | 37.5 ± 0.1e | ˃200 |
F. emoryi | 5.7 ± 0.1d | 9.2 ± 0.5e | 19.7 ± 0.7d | 9.0 ± 0.2d | 42.6 ± 5.1e | ˃200 |
3,4-Dihydroxy-phenylacetic acid | 3.0 ± 0.1f | 5.7 ± 0.1f | 10.8 ± 0.5e | 6.6 ± 0.2e | 21.2 ± 0.2f | ˃200 |
Rutoside | 4.1 ± 0.2e | 4.1 ± 0.1g | 11.2 ± 0.6e | 5.1± 0.1f | 18.1 ± 1.1f | ˃200 |
Vinblastine sulfate | 2.2 ± 0.06g | 0.1 ± 0.01h | 61.9 ± 2.7b | ‒ | 20.2 ± 0.7f | 48.7 ± 0.9 |
Taxol | ‒ | ‒ | ‒ | 0.09 ± 0.004g | ‒ | ‒ |
P. aeruginosa MIC MBC | B. cereus MIC MBC | L. monocytogenes MIC MBC | E. coli MIC MBC | M. flavus MIC MBC | S. aureus MIC MBC | |
---|---|---|---|---|---|---|
F. gracilis | 0.18 ± 0.01 | 0.35 ± 0.03 | 0.28 ± 0.01 | 0.26 ± 0.02 | 0.21 ± 0.01 | 0.21 ± 0.01 |
0.45 ± 0.03 | 0.70 ± 0.03 | 0.63 ± 0.03 | 0.54 ± 0.03 | 0.42 ± 0.02 | 0.46 ± 0.03 | |
F. pottsii | 0.10 ± 0.01 | 0.23 ± 0.02 | 0.19 ± 0.02 | 0.22 ± 0.01 | 0.17± 0.01 | 0.17 ± 0.01 |
0.22 ± 0.02 | 0.45 ± 0.03 | 0.50 ± 0.03 | 0.46 ± 0.03 | 0.38 ± 0.02 | 0.35 ± 0.00 | |
F. herrerae | 0.16 ± 0.01 | 0.33 ± 0.03 | 0.25 ± 0.01 | 0.27 ± 0.01 | 0.22 ± 0.01 | 0.21 ± 0.02 |
0.38 ± 0.03 | 0.36 ± 0.01 | 0.53 ± 0.03 | 0.65 ± 0.02 | 0.43 ± 0.02 | 0.42 ± 0.01 | |
F. horridus | 0.17 ± 0.01 | 0.38 ± 0.02 | 0.22 ± 0.01 | 0.28 ± 0.01 | 0.23 ± 0.01 | 0.20 ± 0.01 |
0.42 ± 0.03 | 0.72 ± 0.05 | 0.52 ± 0.03 | 0.67 ± 0.03 | 0.45 ± 0.03 | 0.43 ± 0.03 | |
F. glaucescens | 0.09 ± 0.01 | 0.15 ± 0.01 | 0.17 ± 0.02 | 0.13 ± 0.01 | 0.10 ± 0.01 | 0.15 ± 0.01 |
0.20 ± 0.03 | 0.31 ± 0.01 | 0.39 ± 0.03 | 0.28 ± 0.02 | 0.23 ± 0.02 | 0.31 ± 0.01 | |
F. emoryi | 0.10 ± 0.01 | 0.20 ± 0.02 | 0.20 ± 0.01 | 0.25 ± 0.02 | 0.18 ± 0.01 | 0.19 ± 0.01 |
0.21± 0.02 | 0.43 ± 0.03 | 0.55 ± 0.03 | 0.57 ± 0.03 | 0.37 ± 0.03 | 0.39 ± 0.02 | |
3,4-Dihydroxy- phenylacetic acid | 0.06 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.15± 0.02 | 0.15 ± 0.01 |
0.13 ± 0.01 | 0.17 ± 0.01 | 0.19 ± 0.01 | 0.20 ± 0.02 | 0.31 ± 0.02 | 0.31 ± 0.02 | |
Rutoside | 0.05 ± 0.01 | 0.11± 0.01 | 0.09 ± 0.01 | 0.10 ± 0.01 | 0.12 ± 0.01 | 0.11 ± 0.01 |
0.10 ± 0.02 | 0.21 ± 0.01 | 0.19 ± 0.01 | 0.25 ± 0.01 | 0.23 ± 0.02 | 0.23 ± 0.02 | |
Quercitrin | 0.06 ± 0.01 | 0.13 ± 0.01 | 0.15 ± 0.01 | 0.14 ± 0.01 | 0.13 ± 0.01 | 0.17 ± 0.01 |
0.11 ± 0.01 | 0.27 ± 0.02 | 0.32 ± 0.02 | 0.29 ± 0.02 | 0.31 ± 0.02 | 0.32 ± 0.03 | |
Streptomycin | 0.08 ± 0.01 | 0.08 ± 0.01 | 0.14 ± 0.01 | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.17 ± 0.01 |
0.16 ± 0.02 | 0.16 ± 0.01 | 0.30 ± 0.02 | 0.24 ± 0.01 | 0.21 ± 0.02 | 0.31 ± 0.01 |
A. flavus MIC MFC | A. ochraceus MIC MFC | A. niger MIC MFC | C. albicans MIC MFC | P. funiculosum MIC MFC | P. ochrochloron MIC MFC | |
---|---|---|---|---|---|---|
F. gracilis | 0.28 ± 0.02 | 0.27± 0.01 | 0.21 ± 0.01 | 0.37 ± 0.02 | 0.31± 0.01 | 0.37± 0.02 |
0.62 ± 0.03 | 0.52 ± 0.03 | 0.43 ± 0.03 | 0.80 ± 0.05 | 0.63 ± 0.03 | 0.68 ± 0.03 | |
F. pottsii | 0.21 ± 0.02 | 0.18 ± 0.01 | 0.12 ± 0.01 | 0.27 ± 0.05 | 0.24 ± 0.01 | 0.19 ± 0.02 |
0.46 ± 0.01 | 0.39 ± 0.02 | 0.31 ± 0.03 | 0.61 ± 0.10 | 0.51 ± 0.03 | 0.41 ± 0.03 | |
F. herrerae | 0.27 ± 0.02 | 0.27 ± 0.01 | 0.20 ± 0.01 | 0.73 ± 0.10 | 0.29 ± 0.01 | 0.35 ± 0.01 |
0.637 ± 0.01 | 0.48 ± 0.03 | 0.41 ± 0.02 | 1.31 ± 0.13 | 0.69 ± 0.02 | 0.61 ± 0.03 | |
F. horridus | 0.28 ± 0.02 | 0.26 ± 0.03 | 0.19 ± 0.01 | 0.39 ± 0.01 | 0.30 ± 0.02 | 0.38 ± 0.01 |
0.65 ± 0.04 | 0.45 ± 0.03 | 0.35 ± 0.03 | 0.82 ± 0.03 | 0.65 ± 0.03 | 0.77 ± 0.01 | |
F. glaucescens | 0.19 ± 0.01 | 0.16 ± 0.01 | 0.11 ± 0.01 | 0.25 ± 0.01 | 0.20 ± 0.01 | 0.17 ± 0.03 |
0.40 ± 0.03 | 0.33 ± 0.01 | 0.27 ± 0.01 | 0.54 ± 0.03 | 0.41 ± 0.03 | 0.32 ± 0.01 | |
F. emoryi | 0.23 ± 0.01 | 0.21 ± 0.01 | 0.18 ± 0.01 | 0.23 ± 0.01 | 0.25± 0.02 | 0.20 ± 0.02 |
0.50 ± 0.03 | 0.43 ± 0.01 | 0.35 ± 0.03 | 0.54 ± 0.03 | 0.53 ± 0.03 | 0.44 ± 0.01 | |
3,4-Dihydroxy -phenylacetic acid | 0.20 ± 0.01 | 0.15 ± 0.01 | 0.14 ± 0.01 | 0.23 ± 0.01 | 0.17 ± 0.01 | 0.19 ± 0.03 |
0.42 ± 0.01 | 0.31 ± 0.01 | 0.29 ± 0.01 | 0.53 ± 0.03 | 0.39 ± 0.02 | 0.40 ± 0.01 | |
Rutoside | 0.18 ± 0.01 | 0.17 ± 0.01 | 0.13 ± 0.01 | 0.28 ± 0.01 | 0.18 ± 0.01 | 0.15 ± 0.03 |
0.35 ± 0.02 | 0.38 ± 0.01 | 0.27 ± 0.03 | 0.62 ± 0.03 | 0.33 ± 0.01 | 0.34 ± 0.01 | |
Quercitrin | 0.17 ± 0.01 | 0.18 ± 0.01 | 0.12 ± 0.01 | 0.27 ± 0.01 | 0.27 ± 0.01 | 0.20 ± 0.03 |
0.32 ± 0.01 | 0.41 ± 0.03 | 0.25 ± 0.03 | 0.56 ± 0.03 | 0.51 ± 0.01 | 0.44 ± 0.01 | |
KTZ | 0.21 ± 0.01 | 0.21 ± 0.01 | 0.10± 0.01 | 0.22 ± 0.01 | 2.00 ± 0.11 | 0.21 ± 0.01 |
0.40 ± 0.01 | 0.42 ± 0.03 | 0.22 ± 0.01 | 0.44 ± 0.02 | 3.69 ± 0.08 | 0.40 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O. Elansary, H.; Szopa, A.; Klimek-Szczykutowicz, M.; Ekiert, H.; Barakat, A.A.; A. Al-Mana, F. Antiproliferative, Antimicrobial, and Antifungal Activities of Polyphenol Extracts from Ferocactus Species. Processes 2020, 8, 138. https://doi.org/10.3390/pr8020138
O. Elansary H, Szopa A, Klimek-Szczykutowicz M, Ekiert H, Barakat AA, A. Al-Mana F. Antiproliferative, Antimicrobial, and Antifungal Activities of Polyphenol Extracts from Ferocactus Species. Processes. 2020; 8(2):138. https://doi.org/10.3390/pr8020138
Chicago/Turabian StyleO. Elansary, Hosam, Agnieszka Szopa, Marta Klimek-Szczykutowicz, Halina Ekiert, Ahmed A. Barakat, and Fahed A. Al-Mana. 2020. "Antiproliferative, Antimicrobial, and Antifungal Activities of Polyphenol Extracts from Ferocactus Species" Processes 8, no. 2: 138. https://doi.org/10.3390/pr8020138
APA StyleO. Elansary, H., Szopa, A., Klimek-Szczykutowicz, M., Ekiert, H., Barakat, A. A., & A. Al-Mana, F. (2020). Antiproliferative, Antimicrobial, and Antifungal Activities of Polyphenol Extracts from Ferocactus Species. Processes, 8(2), 138. https://doi.org/10.3390/pr8020138