Effects of Temperature and Extraction Time on Avocado Flesh (Persea americana) Total Phenolic Yields Using Subcritical Water Extraction
Abstract
:1. Introduction
2. Methodology
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Padilla, L.P.; Franke, L.; Xu, X.Q.; Juliano, P. Improved extraction of avocado oil by application of sono-physical processes. Ultrason. Sonochem. 2018, 40, 720–726. [Google Scholar] [CrossRef]
- Corzzini, S.C.; Barros, H.D.F.Q.; Grimaldi, R.; Cabral, F. Extraction of edible avocado oil using supercritical CO2 and a CO2/ethanol mixture as solvents. J. Food Eng. 2017, 194, 40–45. [Google Scholar] [CrossRef]
- Lopez, B.; Plaza, M.; Mendiola, J.; Ibanez, E.; Herrero, M. Subcritical Water Extraction and Neoformation of Antioxidants. Water Extr. Bioact. Compd. 2017, 109–130. [Google Scholar] [CrossRef]
- Machmudah, S.; Duta, S.; Kanda, H. Subcritical water extraction enhancement by adding deep eutectic solvent for extracting xanthone from mangosteen pericarps. J. Supercrit. Fluids 2017, 133, 615–624. [Google Scholar] [CrossRef]
- Krumreich, F.D.; Borges, C.; Mendonça, C.; Jansen-Alves, C.; Zambiazi, R. Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chem. 2018, 257, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Koyu, H.; Kazan, A.; Kurtulus, T.; Yesil-celiktas, O. Optimizing subcritical water extraction of Morus nigra L. fruits for maximization of tyrosinase inhibitory activity. J. Supercrit. Fluids 2017, 127, 15–22. [Google Scholar] [CrossRef]
- Wilding, B.; Curtis, K.; Welker-Hood, K. Hazardous Chemicals in Health Care. 2019. Available online: https://www.psr.org/wp-content/uploads/2018/05/hazardous-chemicals-in-health-care.pdf (accessed on 10 January 2020).
- Vardanega, R.; Carvalho, P.; Santos, D.; Meireles, M.A.A. Obtaining prebiotic carbohydrates and beta-ecdysone from Brazilian ginseng by subcritical water extraction. Innov. Food Sci. Emerg. Technol. 2017, 42, 73–82. [Google Scholar] [CrossRef]
- Elhenshir, A.; Subkha, A. GHGT-11 Supercritical carbon dioxide as green product for effective environmental remediation. Energy Procedia 2013, 37, 6964–6978. [Google Scholar] [CrossRef] [Green Version]
- Ko, M.; Lee, J.; Nam, H.; Chung, M. Subcritical water extraction of phytochemicals from Phlomis umbrosa Turcz. Innov. Food Sci. Emerg. Technol. 2017, 42, 1–7. [Google Scholar] [CrossRef]
- Nastic, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Barroso, M.F.; Soares, C.; Moreira, M.M.; Morais, S.; Mašković, P.; Srček, V.G.; Slivac, I.; et al. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Ind. Crops Prod. 2018, 111, 579–589. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.P.; Saldaña, M.D.A. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011, 44, 2452–2458. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Mostert, M.E.; Botha, B.M.; Du Plessis, L.M.; Duodu, K.G. Effect of fruit ripeness and method of fruit drying on the extractability of avocado oil with hexane and supercritical carbon dioxide. J. Sci. Food Agric. 2007, 87, 2880–2885. [Google Scholar] [CrossRef]
- Botha, B.M.; McCrindle, R.I. Supercritical fluid extraction of avocado oil. In South African Avocado Growers’ Association Yearbook; Department of Chemistry and Physics: Pretoria, South Africa, 2003; Volume 26, pp. 11–13. [Google Scholar]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2018, 105, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Murga, R.; Sanz, M.T.; Beltrán, S.; Cabezas, J.L. Solubility of three hydroxycinnamic acids in supercritical carbon dioxide. J. Supercrit. Fluids 2003, 27, 239–245. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Y.; Ma, Y.; Zhu, P.; He, J.; Lei, J. Optimization of Subcritical Water Extraction of Resveratrol from Grape Seeds by Response Surface Methodology. Appl. Sci. 2017, 7, 321. [Google Scholar] [CrossRef] [Green Version]
- Erşan, S.; Üstündağ, Ö.G.; Carle, R.; Schweiggert, R.M. Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Food Chem. 2018, 253, 46–54. [Google Scholar] [CrossRef]
- Tan, C.X.; Chong, G.H.; Hamzah, H.; Ghazali, H.M. Comparison of subcritical CO2 and ultrasound-assisted aqueous methods with the conventional solvent method in the extraction of avocado oil. J. Supercrit. Fluids 2018, 135, 45–51. [Google Scholar] [CrossRef]
- Santos, R.; Ventura, P.; Bordado, J.; Mateus, M. Valorizing potato peel waste: An overview of the latest publications. Rev. Environ. Sci. Biotechnol. 2016, 15, 585–592. [Google Scholar] [CrossRef]
- Karacabey, E.; Mazza, G.; Bayindirli, L.; Artik, N. Extraction of Bioactive Compounds from Milled Grape Canes (Vitis vinifera) Using a Pressurized Low-Polarity Water Extractor. Food Bioprocess Technol. 2009, 5, 359–371. [Google Scholar] [CrossRef]
- Alvarez, V.H.; Cahyadi, J.; Xu, D.; Salda, M.D.A. Optimization of phytochemicals production from potato peel using subcritical water: Experimental and dynamic modeling. J. Supercrit. Fluids 2014, 90, 8–17. [Google Scholar] [CrossRef]
- Khajenoori, M.; Haghighi Asl, A.; Hormazi, F.; Noori, H. Subcritical water extraction of essential oils from Zataria multiflora Boiss. J. Food Process Eng. 2009, 32, 804–816. [Google Scholar] [CrossRef]
- Asl, A.H.; Khajenoori, M. Subcritical Water Extraction; InTech: London, UK, 2013. [Google Scholar]
- Razak, M.A.; Yong, P.K.; Shah, Z.; Abdullah, L.; Yee, S.; Yaw, T. The Effects of Varying Solvent Polarity on Extraction Yield on Orthosiphon stamineus Leaves. J. Appl. Sci. 2012, 12, 1207–1210. [Google Scholar] [CrossRef] [Green Version]
- Agbor, G.A.; Vinson, J.A.; Donnelly, P.E. Folin-Ciocalteau Reagent for Polyphenolic Assay. Int. J. Food Sci. Nutr. Diet. 2014, 3, 147–156. [Google Scholar] [CrossRef]
- Wang, Y.; Luan, G.; Zhou, W.; Meng, J.; Wang, H.; Hu, N. Subcritical water extraction, UPLC-Triple-TOF/MS analysis and antioxidant activity of anthocyanins from Lycium ruthenicum Murr. Food Chem. 2018, 249, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.C.A.; Lee, J.; Ko, M.; Chung, M. Subcritical water extraction of bioactive components from red ginseng. J. Supercrit. Fluids 2018, 133, 177–183. [Google Scholar]
- Segovia, F.J.; Corral-Pérez, J.J.; Almajano, M.P. Avocado seed: Modeling extraction of bioactive compounds. Ind. Crops Prod. 2016, 85, 213–220. [Google Scholar] [CrossRef]
- Alghoul, Z.M.; Ogden, P.B.; Dorsey, J.G. Characterization of the polarity of subcritical water. J. Chromatogr. A 2017, 1486, 42–49. [Google Scholar] [CrossRef]
- Tomsik, A.; Pavlić, B.; Vladić, J.; Cindrić, M.; Jovanov, P.; Sakač, M.; Mandić, A.; Vidović, S. Subcritical water extraction of wild garlic (Allium ursinum L.) and process optimization by response surface methodology. J. Supercrit. Fluids 2017, 128, 79–88. [Google Scholar] [CrossRef]
Extraction Method | Extraction Time |
---|---|
Mechanical pressing | 3 h |
Chemical solvents | 20–24 h |
Supercritical CO2 extraction | 3–6 h |
Subcritical water extraction | 0.5–2 h |
Study | Extraction Method | Operating Parameters | Results |
---|---|---|---|
Mostert et al. [14] | Supercritical CO2 | 350 atm and 37 °C | 62.9% of avocado oil recovery |
Botha et al. [15] | Supercritical CO2 | 540 atm and 81 °C | 94% of avocado oil recovery |
Corzinni et al. [2] | Supercritical CO2 with ethanol | 400 atm and 80 °C | 98% of avocado oil recovery |
Murga et al. [17] | Supercritical CO2 with polar solvent | Increased pressure from 10 to 250 bar | Phenolics compounds yields from grape seeds increased by 10 times |
Tian et al. [18] | Subcritical water | 10.2 bar and 152.3 °C | 6.9 mg/kg of resveratrol extract from grape seeds |
Figueroa et al. [16] | Water and ethanol | 15 mg/L of antioxidants | |
Ersan et al. [19] | Subcritical water | 69 bar and 170 °C | Extracted 22.9 g/kg of Gallic acid from Pistacia vera L. |
Tan et al. [20] | Subcritical CO2 | 68 bar and 27 °C | Subcritical CO2 showed 16.97% bioactive compounds yields and UAAE showed 15.13% bioactive compounds yields. |
Karacabey et al. [22] | Pressurized water with ethanol | Increased ethanol to water ratio by 25% | Total phenolics yields increase by 44% from milled grape canes |
Singh et al. [15] | Subcritical water | 150–190 °C | 20 mg/g of total phenolics from potato peel |
Alvarez et al. [23] | Subcritical water | 40 bar and 190 °C | 20 mg/g of total phenolics from potato peel |
Test | Temperature (°C) | Pressure (bar) | Density (kg/m3) | Flowrate (mL/min) |
---|---|---|---|---|
1 | 105 | 18 | 954.74 | 80 |
2 | 120 | 18 | 943.08 | 80 |
3 | 140 | 18 | 925.90 | 80 |
Fruit Condition | Extraction Temperature (°C) | Initial Wet Substrate Mass (g) | Initial Dried Substrate Mass (g) |
---|---|---|---|
Week one | 105 | 236.1 | 40.1 |
120 | 479.4 | 81.5 | |
140 | 264.9 | 45.0 | |
Week four | 105 | 209.3 | 35.6 |
120 | 240.7 | 40.9 | |
140 | 214.6 | 36.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazyan, W.I.; O’Connor, E.; Martin, E.; Vogt, A.; Charter, E.; Ahmadi, A. Effects of Temperature and Extraction Time on Avocado Flesh (Persea americana) Total Phenolic Yields Using Subcritical Water Extraction. Processes 2021, 9, 159. https://doi.org/10.3390/pr9010159
Mazyan WI, O’Connor E, Martin E, Vogt A, Charter E, Ahmadi A. Effects of Temperature and Extraction Time on Avocado Flesh (Persea americana) Total Phenolic Yields Using Subcritical Water Extraction. Processes. 2021; 9(1):159. https://doi.org/10.3390/pr9010159
Chicago/Turabian StyleMazyan, Walid I., Ellen O’Connor, Elia Martin, Anja Vogt, Edward Charter, and Ali Ahmadi. 2021. "Effects of Temperature and Extraction Time on Avocado Flesh (Persea americana) Total Phenolic Yields Using Subcritical Water Extraction" Processes 9, no. 1: 159. https://doi.org/10.3390/pr9010159
APA StyleMazyan, W. I., O’Connor, E., Martin, E., Vogt, A., Charter, E., & Ahmadi, A. (2021). Effects of Temperature and Extraction Time on Avocado Flesh (Persea americana) Total Phenolic Yields Using Subcritical Water Extraction. Processes, 9(1), 159. https://doi.org/10.3390/pr9010159