Demineralization of Food Waste Biochar for Effective Alleviation of Alkali and Alkali Earth Metal Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Preparation
2.2. Biochar Demineralization
2.3. Characterization of Biochar
3. Results and Discussion
3.1. Proximate Analysis and Determination of Calorific Value
3.2. Alkali and Alkaline Earth Metal Contents of Food Waste Biochar
3.3. Structural Characterization of Food Waste Biochar
3.4. Ash Composition of Food Waste Biochar
3.5. Practical Implication of Demineralization Approaches on Food Waste Biochar
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Velis, C.; Wagland, S.; Longhurst, P.; Robson, B.; Sinfield, K.; Wise, S.; Pollard, S. Solid Recovered Fuel: Influence of Waste Stream Composition and Processing on Chlorine Content and Fuel Quality. Environ. Sci. Technol. 2012, 46, 1923–1931. [Google Scholar] [CrossRef]
- Iacovidou, E.; Hahladakis, J.; Deans, I.; Velis, C.; Purnell, P. Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: Impact on multi-dimensional resource recovery value. Waste Manag. 2018, 73, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Tillman, D.A. Biomass cofiring: The technology, the experience, the combustion consequences. Biomass Bioenergy 2000, 19, 365–384. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-F.; Syu, F.-S.; Chiueh, P.-T.; Lo, S.-L. Life cycle assessment of biochar cofiring with coal. Bioresour. Technol. 2013, 131, 166–171. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Tilman, D.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C. Beneficial biofuels—the food, energy, and environment trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-E.; Shin, D.-C.; Jeong, Y.; Kim, I.; Yoo, Y.-S. Effects of pyrolysis temperature and retention time on fuel characteristics of food waste feedstuff and compost for co-firing in coal power plants. Energies 2019, 12, 4538. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-E.; Jo, J.; Kim, I.; Yoo, Y.-S. Value-added performance and thermal decomposition characteristics of dumped food waste compost by pyrolysis. Energies 2018, 11, 1061. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.F.; Iribarren, D.; Dufour, J. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 2015, 49, 5195–5202. [Google Scholar] [CrossRef]
- Reichelt, J.; Pfrang-Stotz, G.; Bergfeldt, B.; Seifert, H.; Knapp, P. Formation of deposits on the surfaces of superheaters and economisers of MSW incinerator plants. Waste Manag. 2013, 33, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Annamalai, K.; Sweeten, J.M. Effects of ash fouling on heat transfer during combustion of cattle biomass in a small-scale boiler burner facility under unsteady transition conditions. Int. J. Energy Res. 2011, 35, 1236–1249. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, H.; Wang, X.; Du, W.; Mikulčić, H.; Duić, N. Study on extracting available salt from straw/woody biomass ashes and predicting its slagging/fouling tendency. J. Clean. Prod. 2017, 155, 164–171. [Google Scholar] [CrossRef]
- Diaz, L.; Rojas-Pérez, A.; Fuentes-Caraballo, M.; Robles, I.; Jena, U.; Das, K.C. Demineralization of Sargassum spp. Macroalgae Biomass: Selective Hydrothermal Liquefaction Process for Bio-Oil Production. Front. Energy Res. 2015, 3, 6. [Google Scholar]
- Jiang, L.; Hu, S.; Sun, L.; Su, S.; Xu, K.; He, L.; Xiang, J. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour. Technol. 2013, 146, 254–260. [Google Scholar] [CrossRef]
- Ly, H.V.; Kim, S.-S.; Kim, J.; Choi, J.H.; Woo, H.C. Effect of acid washing on pyrolysis of Cladophora socialis alga in microtubing reactor. Energy Convers. Manag. 2015, 106, 260–267. [Google Scholar] [CrossRef]
- Davidsson, K.; Korsgren, J.G.; Pettersson, J.; Jäglid, U. The Effects of Fuel Washing Techniques on Alkali Release from Biomass. Fuel 2002, 81, 137–142. [Google Scholar] [CrossRef]
- Wang, L.; Hustad, J.E.; Skreiberg, Ø.; Skjevrak, G.; Grønli, M. A critical review on additives to reduce ash related operation problems in biomass combustion applications. Energy Procedia 2012, 20, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Kai, X.; Sun, Y.; He, Y.; Li, R. The effect of coal sulfur on the behavior of alkali metals during co-firing biomass and coal. Fuel 2011, 90, 2454–2460. [Google Scholar] [CrossRef]
- BSI BS EN 15359:201. Solid Recovered Fuels. In Specifications and Classes; BSI: London, UK, 2011.
- Mourant, D.; Wang, Z.; He, M.; Wang, X.S.; Garcia-Perez, M.; Ling, K.; Li, C.-Z. Mallee wood fast pyrolysis: Effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel 2011, 90, 2915–2922. [Google Scholar] [CrossRef]
- Ding, L.; Gao, Y.; Li, X.; Wang, W.; Xue, Y.; Zhu, X.; Xu, K.; Hu, H.; Luo, G.; Naruse, I.; et al. A novel CO2-water leaching method for AAEM removal from Zhundong coal. Fuel 2019, 237, 786–792. [Google Scholar] [CrossRef]
- Deng, L.; Ye, J.; Jin, X.; Che, D. Transformation and release of potassium during fixed-bed pyrolysis of biomass. J. Energy Inst. 2018, 91, 630–637. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Bai, X.; Yi, W.; Fu, P. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis. Bioresour. Technol. 2018, 268, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Okuno, T.; Sonoyama, N.; Hayashi, J.; Li, C.-Z.; Sathe, C.; Chiba, T. Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass. Energy Fuels 2005, 19, 2164–2171. [Google Scholar] [CrossRef]
- Johansen, J.M.; Jakobsen, J.G.; Frandsen, F.J.; Glarborg, P. Release of K, Cl, and S during Pyrolysis and Combustion of High-Chlorine Biomass. Energy Fuels 2011, 25, 4961–4971. [Google Scholar] [CrossRef] [Green Version]
- Clemente, J.S.; Beauchemin, S.; Thibault, Y.; MacKinnon, T.; Smith, D. Differentiating inorganics in biochars produced at commercial scale using principal component analysis. ACS Omega 2018, 3, 6931–6944. [Google Scholar] [CrossRef]
- Alvarez, R.; Clemente, C.; Gómez-Limón, D. The influence of nitric acid oxidation of low rank coal and its impact on coal structure☆. Fuel 2003, 82, 2007–2015. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Zeng, G.; Leng, L.; Peng, X.; Liao, K.; Peng, L.; Xiao, Z. Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: Kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent. Environ. Sci. Pollut. Res. 2014, 21, 11552–11564. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Liu, S.; Tan, X.; Zeng, G.; Zeng, W.; Ding, Y.; Cao, W.; Zheng, B. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes). Environ. Sci. Pollut. Res. 2016, 23, 23606–23618. [Google Scholar] [CrossRef]
- Lonappan, L.; Liu, Y.; Rouissi, T.; Pourcel, F.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Covalent immobilization of laccase on citric acid functionalized micro-biochars derived from different feedstock and removal of diclofenac. Chem. Eng. J. 2018, 351, 985–994. [Google Scholar] [CrossRef]
- Lonappan, L.; Liu, Y.; Rouissi, T.; Brar, S.K.; Surampalli, R.Y. Development of biochar-based green functional materials using organic acids for environmental applications. J. Clean. Prod. 2020, 244, 118841. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Heracleous, E.; Patiaka, D.T.; Kalogiannis, K.G.; Michailof, C.M.; Lappas, A.A. Optimization of bio-oil yields by demineralization of low quality biomass. Biomass Bioenergy 2015, 83, 105–115. [Google Scholar] [CrossRef]
- Edmunds, C.W.; Hamilton, C.; Kim, K.; Chmely, S.C.; Labbé, N. Using a chelating agent to generate low ash bioenergy feedstock. Biomass Bioenergy 2017, 96, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-L.; Zheng, N.-Y.; Hsu, C.-H. Torrefaction of fruit peel waste to produce environmentally friendly biofuel. J. Clean. Prod. 2020, 124676. [Google Scholar] [CrossRef]
- Pahla, G.; Ntuli, F.; Muzenda, E. Torrefaction of landfill food waste for possible application in biomass co-firing. Waste Manag. 2018, 71, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Lee, Y.-E.; Kim, I.-T. Characterization of sewage sludge and food waste-based biochar for co-firing in a coal-fired power plant: A case study in Korea. Sustainability 2020, 12, 9411. [Google Scholar] [CrossRef]
- Elkhalifa, S.; Al-Ansari, T.; Mackey, H.; Mckay, G. Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl. 2019, 144, 310–320. [Google Scholar] [CrossRef]
- Lee, M.; Lin, Y.-L.; Chiueh, P.-T.; Den, W. Environmental and energy assessment of biomass residues to biochar as fuel: A brief review with recommendations for future bioenergy systems. J. Clean. Prod. 2020, 251, 119714. [Google Scholar] [CrossRef]
Water (wt.%) | Volatile (wt.%) | Ash (wt.%) | Fixed Carbon (wt.%) | NCV (kcal/kg) | |
---|---|---|---|---|---|
RAW | 8.99 | 72.92 | 8.22 | 9.87 | 4460 |
450-B | 1.45 | 38.51 | 24.00 | 36.04 | 5160 |
450-A | 0.94 | 42.35 | 23.39 | 33.31 | 5350 |
1.26 | 42.11 | 22.04 | 34.58 | 5130 | |
450-CA | 1.36 | 42.96 | 18.30 | 37.38 | 5520 |
1.30 | 42.45 | 16.14 | 40.11 | 5340 | |
450-NA | 1.55 | 42.27 | 16.00 | 40.18 | 5630 |
1.18 | 44.77 | 26.37 | 27.68 | 5750 | |
450-CO2 | 1.41 | 41.51 | 17.70 | 39.38 | 5490 |
1.03 | 43.71 | 24.30 | 30.96 | 5110 | |
500-B | 1.12 | 30.42 | 26.82 | 41.63 | 5150 |
500-A | 1.53 | 34.88 | 23.53 | 40.05 | 5020 |
2.63 | 31.70 | 17.77 | 47.90 | 4380 | |
500-CA | 1.75 | 32.67 | 14.15 | 51.43 | 5970 |
1.37 | 32.36 | 12.37 | 53.90 | 6160 | |
500-NA | 1.11 | 34.98 | 23.32 | 40.58 | 5390 |
0.89 | 35.60 | 25.25 | 38.27 | 5290 | |
500-CO2 | 1.16 | 33.46 | 17.72 | 47.66 | 5180 |
1.68 | 33.93 | 20.90 | 43.48 | 5410 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y.; Lee, Y.-E.; Shin, D.-C.; Ahn, K.-H.; Jung, J.; Kim, I.-T. Demineralization of Food Waste Biochar for Effective Alleviation of Alkali and Alkali Earth Metal Species. Processes 2021, 9, 47. https://doi.org/10.3390/pr9010047
Jeong Y, Lee Y-E, Shin D-C, Ahn K-H, Jung J, Kim I-T. Demineralization of Food Waste Biochar for Effective Alleviation of Alkali and Alkali Earth Metal Species. Processes. 2021; 9(1):47. https://doi.org/10.3390/pr9010047
Chicago/Turabian StyleJeong, Yoonah, Ye-Eun Lee, Dong-Chul Shin, Kwang-Ho Ahn, Jinhong Jung, and I-Tae Kim. 2021. "Demineralization of Food Waste Biochar for Effective Alleviation of Alkali and Alkali Earth Metal Species" Processes 9, no. 1: 47. https://doi.org/10.3390/pr9010047