Wastewater Treatment Using Constructed Wetland: Current Trends and Future Potential
Abstract
:1. Introduction
2. Wetland Treatment Systems
2.1. Surface Flow (SF)
2.2. Subsurface Flow (SSF)
2.2.1. Horizontal Subsurface Flow Constructed Wetland (HSSF)
2.2.2. Vertical Subsurface-Flow Constructed Wetlands (VSSF)
2.3. Constructed Wetlands Design, Construction, Operation and Maintenance
2.3.1. Design
- (a)
- General design criteria
- (b)
- Vertical flow (VF): the inflow in VF is required to be passed through a filtration system to prevent clogging of the subsurface flow system [13]. Materials with high sorption sites, such as charcoal and clay, may be used in the filtration system, which can support the growth of pathogens [30]. Therefore, the selection of suitable materials, such as gravel and slag, that reduces the growth of microorganisms can contribute positively to the quality of the effluent and can control the infection. On the other hand, temperature has a significant effect on the biological treatment of wastewater. Therefore, the temperature is a very important parameter in the design of CWs. Low temperature can result in slowing down the degradation process, and as a result, the retention time should be increased in the design. For example, for an influent of 112 kg/ha, a detention time of 11 days is required for a temperature around 5 °C, and a detention time of 5 days is required in the summer at higher temperatures [30]. The detention time is controlled by changing the number of cells in operation and/or by changing the water depth.
- (c)
- Horizontal flow (HF): the flow in HF can be modelled using Darcy’s Law as follows
2.3.2. Construction
2.3.3. Operation
2.3.4. Maintenance
3. Types of Contaminants Treated in CW
3.1. Domestic and Municipal Wastewater Contaminants
3.2. Toxic Metals/Metaloids Contaminated Water
3.3. Industrial Wastewater
3.4. Oilfield Produced Wastewater
3.5. Oil Refinery Wastewater
3.6. Pharmaceuticals and Personal Care Products (PPCPs)
3.7. Agricultural Wastewater
3.8. Compost and Landfill Leachates
3.9. Mine Drainage
3.10. Storm Water Runoff
3.11. Microplastic on CWs
4. Microorganisms Used in the Wetland
5. Phytoremediation and Bacteria Interaction
5.1. Conventional Contaminant Removal Mechanisms
5.2. Kinetics of Biotreatment in CW
6. Economical Evaluation and Challenges in the Field
7. Conclusions, Innovations, and New Directions
- (I)
- Potential use of wetlands to sustain food source
- (II)
- Wetlands as mitigation and adaptation to the climate change
- (III)
- Wetland Wildlife Considerations
- (IV)
- Biomass and Renewable Energy Source
- (V)
- The removal of POPs and microplastics on CW
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, M.; Melo, V.F.; Serrat, B.M.; Bonfleur, E.; Araújo, E.M.; Cherobim, V.F. Hybrid technologies for remediation of highly Pb contaminated soil: Sewage sludge application and phytoremediation. Int. J. Phytoremediat. 2021, 23, 328–335. [Google Scholar] [CrossRef]
- Omondi, D.O.; Navalia, A.C. Constructed Wetlands in Wastewater Treatment and Challenges of Emerging Resistant Genes Filtration and Reloading; IntechOpen: London, UK, 2020. [Google Scholar]
- Ji, Z.; Tang, W.; Pei, Y. Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal. Chemosphere 2021, 286, 131564. [Google Scholar] [CrossRef]
- Donde, O.O. Wastewater Management Techniques: A Review of Advancement on the Appropriate Wastewater Treatment Principles for Sustainability. Environ. Manag. Sustain. Dev. 2017, 6, 40–58. [Google Scholar] [CrossRef] [Green Version]
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J. 2021, 12, 355–365. [Google Scholar] [CrossRef]
- Can an Integrated Constructed Wetland in Norfolk Reduce Nutrient Concentrations and Promote In Situ Bird Species Richness? Available online: https://link.springer.com/article/10.1007/s13157-019-01247-7 (accessed on 21 September 2021).
- Almuktar, S.A.A.A.N.; Abed, S.N.; Scholz, M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environ. Sci. Pollut. Res. 2018, 25, 23595–23623. [Google Scholar] [CrossRef] [Green Version]
- Brovelli, A.; Carranza-Diaz, O.; Rossi, L.; Barry, D.A. Design methodology accounting for the effects of porous medium heterogeneity on hydraulic residence time and biodegradation in horizontal subsurface flow constructed wetlands. Ecol. Eng. 2011, 37, 758–770. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.-S.; Su, H.-C.; Ying, G.-G.; Liu, F.; Liu, S.-S.; He, L.-Y.; Chen, Z.-F.; Yang, Y.-Q.; Chen, F.-R. Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated constructed wetland. Environ. Sci. Pollut. Res. 2015, 22, 1794–1803. [Google Scholar] [CrossRef]
- Christofilopoulos, S.; Kaliakatsos, A.; Triantafyllou, K.; Gounaki, I.; Venieri, D.; Kalogerakis, N. Evaluation of a constructed wetland for wastewater treatment: Addressing emerging organic contaminants and antibiotic resistant bacteria. New Biotechnol. 2019, 52, 94–103. [Google Scholar] [CrossRef]
- Vymazal, J.; Zhao, Y.; Mander, Ü. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2021, 169, 106318. [Google Scholar] [CrossRef]
- Dan, T.H.; Quang, L.N.; Chiem, N.H.; Brix, H. Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: Horizontal subsurface flow versus vertical downflow. Ecol. Eng. 2011, 37, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Padalkar, A.V. Rakesh Kumar Common Effluent Treatment Plant (CETP): Reliability Analysis and Performance Evaluation. Water Sci. Eng. 2018, 11, 205–213. [Google Scholar] [CrossRef]
- Truu, J.; Truu, M.; Espenberg, M.; Nõlvak, H.; Juhanson, J. Phytoremediation and Plant-Assisted Bioremediation in Soil and Treatment Wetlands: A Review. Open Biotechnol. J. 2015, 9, 85–92. [Google Scholar] [CrossRef]
- Barik, D. Energy from Toxic Organic Waste for Heat and Power Generation, 1st ed.; Woodhead Publishing: Sawston, UK, 2018; Available online: https://www.elsevier.com/books/energy-from-toxic-organic-waste-for-heat-and-power-generation/barik/978-0-08-102528-4 (accessed on 29 August 2021).
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 2016, 32, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruch, I.; Fritsche, J.; Bänninger, D.; Alewell, U.; Sendelov, M.; Hürlimann, H.; Hasselbach, R.; Alewell, C. Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresour. Technol. 2011, 102, 937–941. [Google Scholar] [CrossRef]
- Pajares, E.M.; Valero, L.G.; Sánchez, I.M.R. Cost of Urban Wastewater Treatment and Ecotaxes: Evidence from Municipalities in Southern Europe. Water 2019, 11, 423. [Google Scholar] [CrossRef] [Green Version]
- Rezania, S.; Park, J.; Rupani, P.F.; Darajeh, N.; Xu, X.; Shahrokhishahraki, R. Phytoremediation potential and control of Phragmites australis as a green phytomass: An overview. Environ. Sci. Pollut. Res. 2019, 26, 7428–7441. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Calvo, J.-J.; Harmsen, J.; Parsons, J.R.; Semple, K.T.; Aitken, M.D.; Ajao, C.; Eadsforth, C.; Galay-Burgos, M.; Naidu, R.; Oliver, R.; et al. From Bioavailability Science to Regulation of Organic Chemicals. Environ. Sci. Technol. 2015, 49, 10255–10264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biosurfactants-Types, Sources and Applications. Available online: https://scialert.net/abstract/?doi=jm.2015.181.192 (accessed on 29 August 2021).
- Nguyen, P.M.; Afzal, M.; Ullah, I.; Shahid, N.; Baqar, M.; Arslan, M. Removal of pharmaceuticals and personal care products using constructed wetlands: Effective plant-bacteria synergism may enhance degradation efficiency. Environ. Sci. Pollut. Res. 2019, 26, 21109–21126. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment: Five Decades of Experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef]
- Boog, J.; Nivala, J.; Aubron, T.; Wallace, S.; Sullivan, C.; Van Afferden, M.; Müller, R.A. Treatment Wetland Aeration without Electricity? Lessons Learned from the First Experiment Using a Wind-Driven Air Pump. Water 2016, 8, 502. [Google Scholar] [CrossRef] [Green Version]
- Gunter, L.; Gabriela, D.; Jaime, N.; Anacleto, R.S. Wetland Technology: Practical Information on the Design and Application of Treatment Wetlands; Langergraber, G., Dotro, G., Nivala, J., Rizzo, A., Stein, O.R., Eds.; IWA Publishing: London, UK, 2020. [Google Scholar]
- Adewuyi, G.O.; Olowu, R. Assessment of Oil and Grease, Total Petroleum Hydrocarbons and Some Heavy Metals in Surface and Groundwater within the Vicinity of NNPC Oil Depot in Apata, Ibadan Metropolis, Nigeria. Int. J. Res. Rev. Appl. Sci. 2012, 13, 166–174. [Google Scholar]
- Agarry, S.E.; Oghenejoboh, K.M.; Latinwo, G.K.; Owabor, C.N. Biotreatment of petroleum refinery wastewater in vertical surface-flow constructed wetland vegetated with Eichhornia crassipes: Lab-scale experimental and kinetic modelling. Environ. Technol. 2018, 41, 1793–1813. [Google Scholar] [CrossRef]
- Perdana, M.C.; Sutanto, H.B.; Prihatmo, G. Vertical Subsurface Flow (VSSF) constructed wetland for domestic wastewater treatment. IOP Conf. Ser. Earth Environ. Sci. 2018, 148, 012025. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Hui, Z.; Chao, X.; Nie, E.; Li, H.J.; He, J.; Zheng, Z. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecol. Eng. 2011, 37, 1546–1554. [Google Scholar] [CrossRef]
- Nivala, J.; Headley, T.; Wallace, S.; Bernhard, K.; Brix, H.; van Afferden, M.; Müller, R.A. Comparative analysis of constructed wetlands: The design and construction of the ecotechnology research facility in Langenreichenbach, Germany. Ecol. Eng. 2013, 61, 527–543. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Montgomery, B.L.; Popovici, J.; Iturbeormaetxe, I.; Johnson, P.H.; Muzzi, F.; Greenfield, M.; Durkan, M.; Leong, Y.S.; Dong, Y.; et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011, 476, 454–457. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Matamoros, V.; Sidrach-Cardona, R.; Martín-Villacorta, J.; Bécares, E.; Bayona, J.M. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res. 2010, 44, 3669–3678. [Google Scholar] [CrossRef] [PubMed]
- Critical Design Parameters for Constructed Wetlands Natural Wastewater Treatment Systems. Available online: https://www.natsci.upit.ro/issues/2017/volume-6-issue-12/critical-design-parameters-for-constructed-wetlands-natural-wastewater-treatment-systems/ (accessed on 2 October 2021).
- Constructed Wetlands Treatment of Municipal Wastewaters. Document Display NEPIS US EPA. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/200053ND.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C00000001%5C200053ND.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 22 September 2021).
- Ávila, C.; Nivala, J.; Olsson, L.; Kassa, K.; Headley, T.; Mueller, R.A.; Bayona, J.M.; García, J. Emerging organic contaminants in vertical subsurface flow constructed wetlands: Influence of media size, loading frequency and use of active aeration. Sci. Total Environ. 2014, 494–495, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Baptestini, G.C.F.; Matos, A.T.; Martinez, M.A.; Borges, A.C. Hydraulic Conductivity Variability in Horizontal Subsurface Flow Constructed Wetlands. Eng. Agríc. 2017, 37, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Gikas, G.D.; Tsihrintzis, V.A. A small-size vertical flow constructed wetland for on-site treatment of household wastewater. Ecol. Eng. 2012, 44, 337–343. [Google Scholar] [CrossRef]
- Gikas, G.D.; Tsihrintzis, V.A. On-site treatment of domestic wastewater using a small-scale horizontal subsurface flow constructed wetland. Water Sci. Technol. 2010, 62, 603–614. [Google Scholar] [CrossRef]
- Al-Baldawi, I.; Abdullah, S.R.S.; Anuar, N.; Suja, F.; Idris, M. Performance assessment of pilot horizontal sub-surface flow constructed wetlands for removal of diesel from wastewater by Scirpus grossus. Water Sci. Technol. 2013, 68, 2271–2278. [Google Scholar] [CrossRef] [Green Version]
- Bakhshoodeh, R.; Alavi, N.; Majlesi, M.; Paydary, P. Compost leachate treatment by a pilot-scale subsurface horizontal flow constructed wetland. Ecol. Eng. 2017, 105, 7–14. [Google Scholar] [CrossRef]
- Ávila, C.; Pedescoll, A.; Matamoros, V.; Bayona, J.M.; García, J. Capacity of a horizontal subsurface flow constructed wetland system for the removal of emerging pollutants: An injection experiment. Chemosphere 2010, 81, 1137–1142. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Beharrell, M. Chapter 19—Operation and Maintenance for Constructed Wetlands. In Wetlands Ecosystems in Asia; Wong, M.H., Ed.; Developments in Ecosystems; Elsevier: Amsterdam, The Netherlands, 2004; Volume 1, pp. 347–359. [Google Scholar]
- Gunes, K.; Tuncsiper, B.; Masi, F.; Ayaz, S.; Leszczynska, D.; Hecan, N.F.; Ahmad, H. Construction and maintenance cost analyzing of constructed wetland systems. Water Pract. Technol. 2011, 6, wpt2011043. [Google Scholar] [CrossRef]
- Bouali, M.; Zrafi, I.; Mouna, F.; Bakhrouf, A. Pilot study of constructed wetlands for tertiary wastewater treatment using duckweed and immobilized microalgae. Afr. J. Microbiol. Res. 2012, 6, 6066–6074. [Google Scholar] [CrossRef]
- Huang, J.-C.; Suárez, M.C.; Yang, S.I.; Lin, Z.-Q.; Terry, N. Development of a Constructed Wetland Water Treatment System for Selenium Removal: Incorporation of an Algal Treatment Component. Environ. Sci. Technol. 2013, 47, 10518–10525. [Google Scholar] [CrossRef] [PubMed]
- Lim, P.E.; Tay, M.G.; Mak, K.Y.; Mohamed, N. The effect of heavy metals on nitrogen and oxygen demand removal in constructed wetlands. Sci. Total Environ. 2003, 301, 13–21. [Google Scholar] [CrossRef]
- Zhi, W.; Yuan, L.; Ji, G.; He, C. Enhanced Long-Term Nitrogen Removal and Its Quantitative Molecular Mechanism in Tidal Flow Constructed Wetlands. Environ. Sci. Technol. 2015, 49, 4575–4583. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, I.; Sliekers, O.; Schmid, M.; Cirpus, I.; Strous, M.; Bock, E.; Kuenen, J.G.; Jetten, M.S.M. Aerobic and anaerobic ammonia oxidizing bacteria – competitors or natural partners? FEMS Microbiol. Ecol. 2002, 39, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, T.; Sun, G. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands. Water Res. 2011, 45, 3137–3152. [Google Scholar] [CrossRef]
- Ong, S.-A.; Uchiyama, K.; Inadama, D.; Ishida, Y.; Yamagiwa, K. Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresour. Technol. 2010, 101, 7239–7244. [Google Scholar] [CrossRef]
- Lavrova, S.; Koumanova, B. Influence of recirculation in a lab-scale vertical flow constructed wetland on the treatment efficiency of landfill leachate. Bioresour. Technol. 2010, 101, 1756–1761. [Google Scholar] [CrossRef]
- Tee, H.-C.; Lim, P.-E.; Seng, C.-E.; Nawi, M.-A.M. Newly developed baffled subsurface-flow constructed wetland for the enhancement of nitrogen removal. Bioresour. Technol. 2012, 104, 235–242. [Google Scholar] [CrossRef]
- Kumar, S.; Dutta, V. Efficiency of Constructed Wetland Microcosms (CWMs) for the Treatment of Domestic Wastewater Using Aquatic Macrophytes. In Environmental Biotechnology: For Sustainable Future; Sobti, R.C., Arora, N.K., Kothari, R., Eds.; Springer: Singapore, 2019; pp. 287–307. [Google Scholar]
- Rezania, S.; Kamyab, H.; Rupani, P.F.; Park, J.; Nawrot, N.; Wojciechowska, E.; Yadav, K.K.; Ghahroud, M.L.; Mohammadi, A.A.; Thirugnana, S.T.; et al. Recent advances on the removal of phosphorus in aquatic plant-based systems. Environ. Technol. Innov. 2021, 24, 101933. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; He, Y.; Li, H. Aquatic toxicity of heavy metal-containing wastewater effluent treated using vertical flow constructed wetlands. Sci. Total Environ. 2020, 727, 138616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yu, Z.; Zeng, G.; Jiang, M.; Yang, Z.; Cui, F.; Zhu, M.; Shen, L.; Hu, L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef]
- Lesage, E.; Mundia, C.; Rousseau, D.P.L.; Van De Moortel, A.M.K.; Du Laing, G.; Meers, E.; Tack, F.M.G.; De Pauw, N.; Verloo, M.G. Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol. Eng. 2007, 30, 320–325. [Google Scholar] [CrossRef]
- Removal of Metals in Constructed Wetlands: Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. Available online: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291090-025X%282008%2912%3A2%2896%29 (accessed on 21 September 2021).
- Hadad, H.R.; Maine, M.A.; Bonetto, C.A. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 2006, 63, 1744–1753. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Rao, A.; Huang, S.-J.; Chang, C.-Y.; Drechsler, M.; Knaus, J.; Chan, J.C.C.; Raiteri, P.; Gale, J.D.; Gebauer, D. Uncovering the Role of Bicarbonate in Calcium Carbonate Formation at Near-Neutral pH. Angew. Chem. Int. Ed. 2021, 60, 16707–16713. [Google Scholar] [CrossRef] [PubMed]
- Stoltz, E.; Greger, M. Influences of wetland plants on weathered acidic mine tailings. Environ. Pollut. 2006, 144, 689–694. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Rangel, A.O.S.S.; Castro, P.M.L. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res. 2007, 41, 1790–1798. [Google Scholar] [CrossRef]
- Stefanakis, A.; Akratos, C.S.; Tsihrintzis, V.A. Vertical Flow Constructed Wetlands—Eco-Engineering Systems for Wastewater and Sludge Treatment; Elsevier: Amsterdam, The Netherlands, 2014; p. 392. [Google Scholar]
- Stefanakis, A.I.; Prigent, S.; Breuer, R. Integrated Produced Water Management in a Desert Oilfield Using Wetland Technology and Innovative Reuse Practices. In Constructed Wetlands for Industrial Wastewater Treatment; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 23–42. [Google Scholar]
- Biological Treatment of Petrochemical Wastewater. Available online: https://www.intechopen.com/chapters/62888 (accessed on 22 September 2021).
- Stefanakis, A.; Akratos, C.S.; Tsihrintzis, V.A. Chapter 3—VFCW Types. In Vertical Flow Constructed Wetlands; Stefanakis, A., Akratos, C.S., Tsihrintzis, V.A., Eds.; Elsevier: Boston, MA, USA, 2014; pp. 27–38. [Google Scholar]
- Jain, M.; Majumder, A.; Ghosal, P.S.; Gupta, A.K. A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. J. Environ. Manag. 2020, 272, 111057. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, H.I. Treatment of Petroleum Refinery Wastewater with Constructed Wetlands; CRC Press: London, UK, 2018; ISBN 978-0-429-45092-1. [Google Scholar]
- Saien, J.; Shahrezaei, F. Organic Pollutants Removal from Petroleum Refinery Wastewater with Nanotitania Photocatalyst and UV Light Emission. Int. J. Photoenergy 2012, 2012, e703074. [Google Scholar] [CrossRef]
- Khan, S.; Afzal, M.; Iqbal, S.; Khan, Q.M. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 2013, 90, 1317–1332. [Google Scholar] [CrossRef] [PubMed]
- Qasaimeh, A.; AlSharie, H.; Masoud, T. A Review on Constructed Wetlands Components and Heavy Metal Removal from Wastewater. J. Environ. Prot. 2015, 6, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Shahin, S.A.; Mossad, M.; Fouad, M. Evaluation of copper removal efficiency using water treatment sludge. Water Sci. Eng. 2019, 12, 37–44. [Google Scholar] [CrossRef]
- Haberl, H.; Wackernagel, M.; Krausmann, F.; Erb, K.-H.; Monfreda, C. Ecological footprints and human appropriation of net primary production: A comparison. Land Use Policy 2004, 21, 279–288. [Google Scholar] [CrossRef]
- Aslam, M.M.; Malik, M.; Baig, M.A.; Qazi, I.A.; Iqbal, J. Treatment performances of compost-based and gravel-based vertical flow wetlands operated identically for refinery wastewater treatment in Pakistan. Ecol. Eng. 2007, 30, 34–42. [Google Scholar] [CrossRef]
- Tony, M.A.; Purcell, P.J.; Zhao, Y. Oil refinery wastewater treatment using physicochemical, Fenton and Photo-Fenton oxidation processes. J. Environ. Sci. Health Part A 2012, 47, 435–440. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Basto, M.C.P.; Almeida, C.M.R.; Brix, H. A review of plant-pharmaceutical interactions: From uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ. Sci. Pollut. Res. 2014, 21, 11729–11763. [Google Scholar] [CrossRef]
- Verlicchi, P.; Zambello, E. How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci. Total Environ. 2014, 470–471, 1281–1306. [Google Scholar] [CrossRef]
- Ferreira, A.R.; Ribeiro, A.; Couto, N. Remediation of Pharmaceutical and Personal Care Products (PPCPs) in Constructed Wetlands: Applicability and New Perspectives. In Phytoremediation: Management of Environmental Contaminants; Ansari, A.A., Gill, S.S., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 5, pp. 277–292. [Google Scholar]
- Zhang, D.Q.; Hua, T.; Gersberg, R.M.; Zhu, J.; Ng, W.J.; Tan, S.K. Carbamazepine and naproxen: Fate in wetland mesocosms planted with Scirpus validus. Chemosphere 2013, 91, 14–21. [Google Scholar] [CrossRef]
- Papaevangelou, V.A.; Gikas, G.D.; Tsihrintzis, V.A.; Antonopoulou, M.; Konstantinou, I.K. Removal of Endocrine Disrupting Chemicals in HSF and VF pilot-scale constructed wetlands. Chem. Eng. J. 2016, 294, 146–156. [Google Scholar] [CrossRef]
- Wojciechowska, E. Removal of persistent organic pollutants from landfill leachates treated in three constructed wetland systems. Water Sci. Technol. 2013, 68, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Polińska, W.; Kotowska, U.; Kiejza, D.; Karpińska, J. Insights into the Use of Phytoremediation Processes for the Removal of Organic Micropollutants from Water and Wastewater; A Review. Water 2021, 13, 2065. [Google Scholar] [CrossRef]
- Nan, X.; Lavrnić, S.; Toscano, A. Potential of constructed wetland treatment systems for agricultural wastewater reuse under the EU framework. J. Environ. Manag. 2020, 275, 111219. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Dong, J.; Tan, S.K. Application of constructed wetlands for treating agricultural runoff and agro-industrial wastewater: A review. Hydrobiologia 2018, 805, 1–31. [Google Scholar] [CrossRef]
- Cronk, J.K. Constructed wetlands to treat wastewater from dairy and swine operations: A review. Agric. Ecosyst. Environ. 1996, 58, 97–114. [Google Scholar] [CrossRef]
- Ignatowicz, K. Removal of Pesticides from Wastewater by the Use of Constructed Wetlands. J. Ecol. Eng. 2020, 21, 219–223. [Google Scholar] [CrossRef]
- Papaevangelou, V.A.; Gikas, G.D.; Vryzas, Z.; Tsihrintzis, V.A. Treatment of agricultural equipment rinsing water containing a fungicide in pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 2017, 101, 193–200. [Google Scholar] [CrossRef]
- Gikas, G.D.; Pérez-Villanueva, M.E.; Tsioras, M.; Alexoudis, C.; Pérez-Rojas, G.; Masís-Mora, M.; Lizano-Fallas, V.; Rodríguez-Rodríguez, C.E.; Vryzas, Z.; Tsihrintzis, V.A. Low-cost approaches for the removal of terbuthylazine from agricultural wastewater: Constructed wetlands and biopurification system. Chem. Eng. J. 2018, 335, 647–656. [Google Scholar] [CrossRef]
- Parlakidis, P.; Mavropoulos, T.; Vryzas, Z.; Gikas, G.D. Fluopyram removal from agricultural equipment rinsing water using HSF pilot-scale constructed wetlands. Environ. Sci. Pollut. Res. 2021, 1–13. [Google Scholar] [CrossRef]
- Pat-Espadas, A.M.; Portales, R.L.; Amabilis-Sosa, L.E.; Gómez, G.; Vidal, G. Review of Constructed Wetlands for Acid Mine Drainage Treatment. Water 2018, 10, 1685. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Sharma, P.; Bandyopadhyay, S. Evidence of microplastics in wetlands: Extraction and quantification in Freshwater and coastal ecosystems. J. Water Process. Eng. 2021, 40, 101966. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duis, K.; Coors, A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 2016, 28, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helcoski, R.; Yonkos, L.T.; Sanchez, A.; Baldwin, A.H. Wetland soil microplastics are negatively related to vegetation cover and stem density. Environ. Pollut. 2020, 256, 113391. [Google Scholar] [CrossRef]
- Chen, Y.; Li, T.; Hu, H.; Ao, H.; Xiong, X.; Shi, H.; Wu, C. Transport and fate of microplastics in constructed wetlands: A microcosm study. J. Hazard. Mater. 2021, 415, 125615. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hernández-Crespo, C.; Santoni, M.; Van Hulle, S.; Rousseau, D.P.L. Horizontal subsurface flow constructed wetlands as tertiary treatment: Can they be an efficient barrier for microplastics pollution? Sci. Total Environ. 2020, 721, 137785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Zhao, Y.; Pang, G.; Jia, X.; Song, Y.; Guo, A.; Wang, A.; Zhang, S.; Ji, M. Microplastic abundance, characteristics and removal in large-scale multi-stage constructed wetlands for effluent polishing in northern China. Chem. Eng. J. 2021, 430, 132752. [Google Scholar] [CrossRef]
- Zou, Y.; Ye, C.; Pan, Y. Abundance and characteristics of microplastics in municipal wastewater treatment plant effluent: A case study of Guangzhou, China. Environ. Sci. Pollut. Res. 2021, 28, 11572–11585. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Pan, Z.; Wang, W.; Ren, J.; Yu, X.; Lin, L.; Lin, H.; Chen, H.; Jin, X. Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Res. 2019, 155, 255–265. [Google Scholar] [CrossRef]
- Mateos-Cárdenas, A.; van Pelt, F.N.A.M.; O’Halloran, J.; Jansen, M.A.K. Adsorption, uptake and toxicity of micro- and nanoplastics: Effects on terrestrial plants and aquatic macrophytes. Environ. Pollut. 2021, 284, 117183. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, H.; Zhang, K.; Yang, R.; Li, R.; Li, Y. Characterization, source, and retention of microplastic in sandy beaches and mangrove wetlands of the Qinzhou Bay, China. Mar. Pollut. Bull. 2018, 136, 401–406. [Google Scholar] [CrossRef]
- Nor, N.H.M.; Obbard, J.P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 2014, 79, 278–283. [Google Scholar] [CrossRef]
- Li, R.; Yu, L.; Chai, M.; Wu, H.; Zhu, X. The distribution, characteristics and ecological risks of microplastics in the mangroves of Southern China. Sci. Total Environ. 2020, 708, 135025. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wen, X.; Huang, D.; Zeng, G.; Deng, R.; Liu, R.; Zhou, Z.; Tao, J.; Xiao, R.; Pan, H. Microplastics retention by reeds in freshwater environment. Sci. Total Environ. 2021, 790, 148200. [Google Scholar] [CrossRef] [PubMed]
- Lozano, Y.M.; Rillig, M.C. Effects of Microplastic Fibers and Drought on Plant Communities. Environ. Sci. Technol. 2020, 54, 6166–6173. [Google Scholar] [CrossRef]
- Pflugmacher, S.; Sulek, A.; Mader, H.; Heo, J.; Noh, J.H.; Penttinen, O.-P.; Kim, Y.; Kim, S.; Esterhuizen, M. The Influence of New and Artificial Aged Microplastic and Leachates on the Germination of Lepidium sativum L. Plants 2020, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, B.T.; Al Daghistani, H.I.; Jaouani, A.; Abdel-Latif, S.; Kennes, C. Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes. Int. J. Microbiol. 2017, 2017, e6943952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanakis, A.I. Constructed Wetlands for Sustainable Wastewater Treatment in Hot and Arid Climates: Opportunities, Challenges and Case Studies in the Middle East. Water 2020, 12, 1665. [Google Scholar] [CrossRef]
- Rani, M.U.; Appaiah, A. Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Ann. Microbiol. 2011, 61, 781–787. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, F.; Yao, S.; Liu, Y.; Chen, J. Application ofPseudomonas flavaWD-3 for sewage treatment in constructed wetland in winter. Environ. Technol. 2014, 36, 1205–1211. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Zhang, S.; Liu, F.; Peng, J.; Peng, Y.; Wu, J. Nitrogen removal characteristics of a novel heterotrophic nitrification and aerobic denitrification bacteria, Alcaligenes faecalis strain WT14. J. Environ. Manag. 2021, 282, 111961. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Zuo, J.; Zhao, D.; Zou, X.; Zhu, Z.; Jeelani, N.; Leng, X.; An, S. A Hardy Plant Facilitates Nitrogen Removal via Microbial Communities in Subsurface Flow Constructed Wetlands in Winter. Sci. Rep. 2016, 6, 33600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Pang, Q.; Peng, F.; Zhang, A.; Zhou, Y.; Lian, J.; Zhang, Y.; Yang, F.; Zhu, Y.; Ding, C.; et al. Response Characteristics of Nitrifying Bacteria and Archaea Community Involved in Nitrogen Removal and Bioelectricity Generation in Integrated Tidal Flow Constructed Wetland-Microbial Fuel Cell. Front. Microbiol. 2020, 11, 1385. [Google Scholar] [CrossRef]
- Locatelli, A.; Spor, A.; Jolivet, C.; Piveteau, P.; Hartmann, A. Biotic and Abiotic Soil Properties Influence Survival of Listeria monocytogenes in Soil. PLoS ONE 2013, 8, e75969. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, L.A.; Quintana, E.T. Unexpected Properties of Micromonosporae from Marine Origin. Adv. Microbiol. 2015, 05, 452–456. [Google Scholar] [CrossRef] [Green Version]
- McKenney, P.T.; Driks, A.; Eichenberger, P. The Bacillus subtilis endospore: Assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 2013, 11, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, X.; Zhang, X.; Liang, X.; Zhang, W. Growth Response and Phytoremediation Ability of Reed for Diesel Contaminant. Procedia Environ. Sci. 2011, 8, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.Y.; Zheng, J.S.; Sharp, R.G. Phytoremediation in Engineered Wetlands: Mechanisms and Applications. Procedia Environ. Sci. 2010, 2, 1315–1325. [Google Scholar] [CrossRef] [Green Version]
- Moshiri, G.A. Constructed Wetlands for Water Quality Improvement; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Shelef, O.; Gross, A.; Rachmilevitch, S. Role of Plants in a Constructed Wetland: Current and New Perspectives. Water 2013, 5, 405–419. [Google Scholar] [CrossRef]
- Zhang, C.-B.; Liu, W.-L.; Wang, J.; Ge, Y.; Ge, Y.; Chang, S.X.; Chang, J. Effects of monocot and dicot types and species richness in mesocosm constructed wetlands on removal of pollutants from wastewater. Bioresour. Technol. 2011, 102, 10260–10265. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Březinová, T. Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review. Chem. Eng. J. 2016, 290, 232–242. [Google Scholar] [CrossRef]
- Gajewska, M.; Skrzypiec, K. Kinetics of nitrogen removal processes in constructed wetlands. E3S Web Conf. 2018, 26, 1. [Google Scholar] [CrossRef] [Green Version]
- Allen, E.W. Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives. J. Environ. Eng. Sci. 2008, 7, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Avellán, T.; Gremillion, P. Constructed wetlands for resource recovery in developing countries. Renew. Sustain. Energy Rev. 2019, 99, 42–57. [Google Scholar] [CrossRef]
- Zhi, W.; Ji, G. Constructed wetlands, 1991–2011: A review of research development, current trends, and future directions. Sci. Total Environ. 2012, 441, 19–27. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Xu, L.; Wang, W.; Doherty, L.; Tang, C.; Ren, B.; Zhao, J. Constructed wetland integrated microbial fuel cell system: Looking back, moving forward. Water Sci. Technol. 2017, 76, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Yadav, A.K.; Mishra, B.K. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland. Bioresour. Technol. 2015, 195, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Doherty, L.; Zhao, X.; Zhao, Y.; Wang, W. The effects of electrode spacing and flow direction on the performance of microbial fuel cell-constructed wetland. Ecol. Eng. 2015, 79, 8–14. [Google Scholar] [CrossRef]
Type of Constructed Wetland | Design | Operation | Maintenance |
---|---|---|---|
Surface Flow (SF) | Simple, requires a large land area, uses gravity flow | Low operation cost, simple operation procedure, high evapotranspiration, low temperature, affects the microbial activity | Greatly affected by temperature flocculation, odor and mosquito problems, low maintenance cost |
Surface Subsurface flow (SSF) | Complex, needs less area than SF, needs sedimentation tank, needs pumping | Provides more sorption sites than SF, relatively higher operation cost, flow should be uniform with low solid concentration, transpiration only | Greater cold tolerance, less odor and pests. Clogging problems, higher maintenance cost |
Vertical Subsurface flow (VSF) | Complex, needs less area than SSF, needs sedimentation pond, needs pumping | Provides more sorption sites than SF, relatively higher operation cost, flow should be uniform with low solid concentration, transpiration only | Greater cold tolerance, less odor and pests. Clogging problems, higher maintenance cost |
Metals | Types of Waste | Media Used in CW | Plants | Type of WC | Removal Efficiency (%) | Sources |
---|---|---|---|---|---|---|
Cu | Domestic wastewater | Native sediments | Macrophyte Myriophyllum spicatum | Not mentioned | >84 | [60] |
Zn | Industrial Wastewater | Sediments | Macrophyte | Free water surface wetland | 55 | [62] |
Ni | Industrial Wastewater | Sediments | Macrophyte | Free water surface wetland | 69 | [62] |
Fe | Industrial Wastewater | Compost-based and gravel-based | Macrophyte | Free water surface wetland | 83 | [62] |
Pb | Domestic wastewater | Gravel-filled subsurface-flow | Typha latifolia | Surface flow | >75 | [49] |
Cd | Domestic wastewater | Gravel-filled subsurface-flow | Typha latifolia | Surface flow | >80 | [49] |
B | Mine tailings waste | Ashes-sewage sludge mixture with gravel sand | Macrophyte | Not mentioned | >70 | [64] |
Cr | Tannery Wastewater | Sediments | T. Latifolia and P. australis | Not mentioned | 82 | [65] |
Al | Domestic wastewater | Gravel-filled horizontal subsurface-flow | Macrophyte Myriophyllum spicatum | Not mentioned | >84 | [60] |
Co | Domestic wastewater | Gravel-filled subsurface-flow | Typha latifolia | Surface flow | >70 | [49] |
As | Mine tailings waste | Ashes-sewage sludge mixture with gravel sand | Macrophyte | Not mentioned | >70 | [64] |
Se | Oil refinery wastewater | Sand, peat moss | Algal species | Not mentioned | 96% | [48] |
Parameters | Methods | Plants | Removal Efficiency (%) | Sources |
---|---|---|---|---|
Electrical conductivity | VSF-CW | C. alternifolius and C. dactylon, Eichhornia crassipes | >75 | [29] |
Turbidity | VSF-CW | Eichhornia crassipes, Cyperus alternifolius and Cynodon dactylon (L.) Pers. | 50–90 | [29] |
BOD | VSF-CW | Eichhornia crassipes | 94.6 | [28,49] |
COD | VSF-CW | Eichhornia crassipes; P. australis, Typha angustifolia and T. latifolia | 80 | [28,49] |
Oil and grease | VSF-CW | Eichhornia crassipes | 58–94 | [29] |
Total petroleum hydrocarbon (TPH), | HF-CW, VF-CW | Scirpus grossus (bulrush), Salix spp., Scirpus spp., Juncus spp. and P. australis | >75 | [29,73] |
Heavy metals (e.g., cadmium, lead, copper, nickel, zinc, iron and chromium) | VSF-CW | Eichhornia crassipes, Typha latifolia | 48–92 | [29,74] |
Nitrate-nitrogen, sulphate and chloride | VSF-CW | Cyperus alternifolius, Eichhornia crassipes, Typha Orientalis | >58 | [29,75] |
Bacteria | Porous Media | Process | Reference | |
---|---|---|---|---|
1 | Pseudomonas falva WD-3 | Brown soil (0–4 mm diameter), Sludge (5–10 mm diameter) and Gravel (40–50 mm diameter) | Denitrification | [113] |
2 | Alcaligenes faecalis strain WT14 | Sediments | Heterotrophic nitrification and aerobic denitrification | [114] |
3 | Albidiferax | Rough sand (1–2 mm diameter), garvel (10–20 mm diameter) and Gravel (30–50 mm diameter) | Nitrification | [115] |
4 | Candidatus Nitrosotenuis | Quartz sand (5–10 mm diameter), cativated carbon (2–5 mm diameter) and Cobble (15–30 mm diameter) | Nitrification | [116] |
5 | Nitrosomonas | Quartz sand (5–10 mm diameter), cativated carbon (2–5 mm diameter) and Cobble (15–30 mm diameter) | Nitrification | [116] |
6 | Nitrosopumilus | Quartz sand (5–10 mm diameter), cativated carbon (2–5 mm diameter) and Cobble (15–30 mm diameter) | Nitrification | [116] |
Equation | Parameters | Description |
---|---|---|
J: Is the contaminant removal per unit area g·m−2·d−1 C: Contaminant concentration (g·m−3) k: Rate coefficient m·d−1 | _ | |
q: is the hydraulic loading rate (m/d) kA: the decomposition constant in m·d−1 | First-order equation | |
Kv: Account for time Cout: effluent concentration Cin: influent concentration | First-order equation (uses the hydraulic residence time (HRT,t) | |
C: effluent concentration Ci: influent concentration C*: background concentration | Combination of non-ideal flow and background concentration (Pollutant weathering, first-order kinetics and non-zero background concentration) | |
τ: hydraulic retention time Chalf: half saturation constant of limiting substrate Kmax: maximum pollutant removal rates | Combination of Continuous Stirred Tank Reactor (CSTR) and Monod kinetics | |
K3: maximum areal pollutant removal rate K3, g·m−2·d−1 Chalf1, Chalf2: half saturation constant of limiting substrates Cout1, Cout2: the outlet concentrations of limiting substrates | _ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, I.; Chowdhury, S.R.; Prihartato, P.K.; Razzak, S.A. Wastewater Treatment Using Constructed Wetland: Current Trends and Future Potential. Processes 2021, 9, 1917. https://doi.org/10.3390/pr9111917
Hassan I, Chowdhury SR, Prihartato PK, Razzak SA. Wastewater Treatment Using Constructed Wetland: Current Trends and Future Potential. Processes. 2021; 9(11):1917. https://doi.org/10.3390/pr9111917
Chicago/Turabian StyleHassan, Ikrema, Saidur R. Chowdhury, Perdana K. Prihartato, and Shaikh A Razzak. 2021. "Wastewater Treatment Using Constructed Wetland: Current Trends and Future Potential" Processes 9, no. 11: 1917. https://doi.org/10.3390/pr9111917
APA StyleHassan, I., Chowdhury, S. R., Prihartato, P. K., & Razzak, S. A. (2021). Wastewater Treatment Using Constructed Wetland: Current Trends and Future Potential. Processes, 9(11), 1917. https://doi.org/10.3390/pr9111917