General Approach for Inline Electrode Wear Monitoring at Resistance Spot Welding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Combinations
2.2. Experiment Setup
2.3. Test Procedure
2.3.1. Welding Preferences
- , , , ;
- for MC02 prepulse time and pause time ;
- cooling-water flow rate and temperature range ;
- welding currents (main pulse) and for MC02 prepulse welding current .
- welding current ;
- welding voltage ;
- electrode force ;
- upper-electrode displacement ;
- lower-electrode displacement ;
- cooling-water flow rate (general monitoring);
- cooling-water temperature (general monitoring).
2.3.2. Tip Dressing
2.4. Assessing Electrode Wear
- : determined using 3D topographical measurements.
- : measured by laser triangulation during process.
2.4.1. Determining by 3D Topographical Measurements
2.4.2. Determining during Welding Process
- WB:
- beginning of welding, no nugget, no heat in components, negligible electrode indentation e;
- WE:
- end of welding, molten nugget, components at max heat, max thermal expansion;
- PE:
- end of process, solidified nugget, max electrode indentation .
3. Results
3.1. Welding Results
3.2. Results of 3D Topographical Measurements
3.3. Assessing by 3D Topographical Measurements
3.4. Assessing during Welding Process
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RSW | Resistance spot welding |
HAZ | Heat affected zone |
AHSS | Advanced high strength steels |
AlSi | Aluminium-silicon coating |
MC | Material combinations |
DT | Destructive testing |
NDT | Nondestructive testing |
TS | test set |
DS | Data set |
WB | Weld begin |
WE | Weld end |
PE | Process end |
Nomenclature
Initial electrode contact area () | Number of predefined spot welds | ||
Electrode indentation contact area after () | Contact pressure at weld begin () | ||
Electrode contact area after due to wear ( ) | Q | Heat () | |
Contact area at process end () | Total resistance () | ||
Contact area at weld begin () | Individual resistance () | ||
Contact area at process begin () | Radius of initial electrode contact area () | ||
Area change () | Electrode radius () | ||
Plateau area () | Radius of electrode contact area after () | ||
Diameter of initial electrode contact area () | Difference in electrode displacement () | ||
Electrode contact diameter after () | Displacement lower electrode () | ||
Plateau diameter () | Displacement upper electrode () |
Nugget diameter () | Distance of electrodes in opened position () | ||
Weld diameter () | t | Time (s), sheet thickness (mm) ) | |
E | Young’s modulus () | Upper sheet (mm) () | |
e | Electrode indentation () | Lower sheet (mm) () | |
Electrode indentation after () | Hold time () | ||
Limit of electrode indentation () | Pause time () | ||
f | Frequency () | Squeeze time () | |
Electrode force () | Weld time () | ||
Initial electrode height () | Prepulse time () | ||
Plateau height () | Cooling water temperature () | ||
Length change () | Minimal temperature () | ||
Length change after () | Maximal temperature () | ||
by laser triangulation during process () | Process start time () | ||
by 3D topographical measurements () | Change in process start time () | ||
Welding current () | Welding voltage () | ||
Prepulse welding current () | Flow rate () | ||
J | Current density () | x | Dimension in x () |
K | Constant by Lu et al. [21] () | y | Dimension in y () |
k | Stiffness factor () | z | Height, dimension in z () |
Individual electrode displacement () | Angle () | ||
Number of spot welds |
References
- TWI Ltd. What Is Spot Welding? TWI Ltd.: Cambridge, UK, 2020. [Google Scholar]
- Chen, J.; Feng, Z. IR-based spot weld NDT in automotive applications. In Proceedings of the SPIE Sensing Technology + Applications, Baltimore, WA, USA, 20–25 April 2015. [Google Scholar] [CrossRef]
- Raab, H.H. Handbuch Industrieroboter: Bauweise · Programmierung Anwendung · Wirtschaftlichkeit, 2., Neubearbeitete und Erweiterte Auflage ed.; Vieweg + Teubner Verlag: Wiesbaden, Germany, 1986. [Google Scholar] [CrossRef]
- Altnau, D. (Anzahl Schweißpunkte pro Karosserie Dresden, Leipzig). Personal communication, 26 March 2020. [Google Scholar]
- Deniz, C.; Cakir, M. In-line stereo-camera assisted robotic spot welding quality control system. Ind. Robot. Int. J. 2018, 45, 54–63. [Google Scholar] [CrossRef]
- Deutscher Verband für Schweißen und Verwandte Verfahren e.V. Merkblatt DVS 2902-4:2001-10: Widerstandspunktschweißen von Stählen bis 3 mm Einzeldicke Grundlagen, Vorbereitung und Durchführung; DVS Media: Düsseldorf, Germany, 2001. [Google Scholar]
- Cho, H.S.; Cho, Y.J. A study of the thermal behavior in resistance spot welds. Weld. J. 1989, 68, 236–244. [Google Scholar]
- Raoelison, R.N.; Fuentes, A.; Pouvreau, C.; Rogeon, P.; Carré, P.; Dechalotte, F. Modeling and numerical simulation of the resistance spot welding of zinc coated steel sheets using rounded tip electrode: Analysis of required conditions. Appl. Math. Model. 2014, 38, 2505–2521. [Google Scholar] [CrossRef]
- Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre; SLV München. Standmengenerhöhung beim Widerstandsschweißen durch Elektrodenfräsen: Schlussbericht IGF-Nr. 13.134 N/DVS-Nr. 4.031; IMWF Universität Stuttgart: Stuttgart, Germany; SLV München: München, Germany, 2004. [Google Scholar]
- Koal, J.; Baumgarten, M.; Heilmann, S.; Zschetzsche, J.; Füssel, U. Performing an Indirect Coupled Numerical Simulation for Capacitor Discharge Welding of Aluminium Components. Processes 2020, 8, 1330. [Google Scholar] [CrossRef]
- Füssel, U.; Jüttner, S.; Mathiszik, C.; Sherepenko, O.; Köberlin, D.; Zschetzsche, J. Lebensdauererhöhung von Widerstandspunktschweißelektroden durch Einsatz verschleißabhängiger Fräsintervalle und Dispersionsgehärteter Kupferwerkstoffe: Schlussbericht IGF-Nr. 18.456 BR/DVS-Nr. 04.062; Technische Universität Dresden, Professur Fügetechnik und Montage and Otto-von-Guericke-Universität Magdeburg, Institut für Werkstoff- und Fügetechnik: Dresden, Germany, 2018. [Google Scholar]
- Chang, H.S.; Cho, Y.J.; Choi, S.G.; Cho, H.S. A Proportional-Integral Controller for Resistance Spot Welding Using Nugget Expansion. J. Dyn. Syst. Meas. Control 1989, 111, 332–336. [Google Scholar] [CrossRef]
- Marek, U. Beitrag zur Klärung der Legierungsschichtbildungs- und Verschleißvorgänge an Widerstandspunktschweißelektroden beim Schweißen Feuerverzinkter Stahlbleche: Zugl.: Aachen, Techn. Hochsch., Diss., 1995. In Aachener Berichte Fügetechnik, als ms. gedr ed.; Shaker: Aachen, Germany, 1996; Volume 96. [Google Scholar]
- Holliday, R.; Parker, J.D.; Williams, N.T. Relative contribution of electrode tip growth mechanisms in spot welding zinc coated steels. Weld. World/Le Soudage Dans Monde 1996, 4, 186–193. [Google Scholar]
- Matsuda, H.; Matsuda, Y.; Kabasawa, M. Study of electrode wear mechanism in consecutive spot welding: Spot weldability of Zn-Ni electrogalvanised steel sheet and organic-silicate composite steel sheet (1st Report). Weld. Int. 1997, 11, 860–867. [Google Scholar] [CrossRef]
- Williams, N.T.; Parker, J.D. Review of resistance spot welding of steel sheets Part 2 Factors influencing electrode life. Int. Mater. Rev. 2004, 49, 77–108. [Google Scholar] [CrossRef]
- Deutscher Verband für Schweißen und verwandte Verfahren e.V. Merkblatt DVS 2920:2000-02: Widerstandspunkt-, Buckel- und Rollennahtschweißen von Stahlblechen bis 3 mm mit metallischen Überzügen; DVS Media: Düsseldorf, Germany, February 2000. [Google Scholar]
- Galler, M.; Vallant, R. The influence of Zinc coatings on the electrode wear during resistance spot welding of sheet steel. In Verarbeitungs- und Gebrauchseigenschaften von Werkstoffen—Heute und Morgen; Mayr, P., Ed.; Verl. der TU Graz: Graz, Austria, 2008; pp. 117–119. [Google Scholar]
- Klages, E.C. Beurteilung der Beanspruchung von Elektrodenkappen Beim Widerstandspunktschweißen von höher—und höchstfestem Stahl. Ph.D. Thesis, Logos Verlag Berlin GmbH, Hannover, Germany, 2014. [Google Scholar]
- Großmann, C. Nutzung vorhandener Standmengenpotentiale, Verschleißverringerung durch Angepasste Elektrodenwerkstoffe und Elektrodenverschleißdiagnose beim Widerstandspunktschweißen. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2019. [Google Scholar]
- Lu, F.; Dong, P. Model for estimating electrode face diameter during resistance spot welding. Sci. Technol. Weld. Join. 1999, 4, 285–289. [Google Scholar] [CrossRef]
- Dong, P.; Victor Li, M.; Kimchi, M. Finite element analysis of electrode wear mechanisms: Face extrusion and pitting effects. Sci. Technol. Weld. Join. 1998, 3, 59–64. [Google Scholar] [CrossRef]
- Kondo, M.; Konishi, T.; Nomura, K.; Kokawa, H. Degradation mechanism of electrode tip during alternate resistance spot welding of zinc coated and uncoated steel sheets. Sci. Technol. Weld. Join. 2010, 15, 76–80. [Google Scholar] [CrossRef]
- Li, W. Modeling and On-Line Estimation of Electrode Wear in Resistance Spot Welding. J. Manuf. Sci. Eng. 2005, 127, 709–717. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, P.X.; Xu, X.J. A Model for Predicting the Wear Degree of Electrode Tip. Appl. Mech. Mater. 2014, 574, 292–297. [Google Scholar] [CrossRef]
- DIN Deutsches Institut für Normung, e.V. DIN EN ISO 8166:2003-09: Verfahren für das Bewerten der Standmenge von Punktschweißelektroden bei Konstanter Maschinen-Einstellung; DIN Deutsches Institut für Normung e.V.: Berlin, Germany, 2003. [Google Scholar]
- Stahlinstitut VDEh. Prüf- und Dokumentationsrichtlinie für die Fügeeignung von Feinblechen aus Stahl—Teil 2: Widerstandspunktschweißen; Stahlinstitut VDEh: Düsseldorf, Germany, 2011. [Google Scholar]
- Deutscher Verband für Schweißen und verwandte Verfahren e.V. Merkblatt DVS 2916-5:2017-09: Prüfen von Widerstandspressschweißverbindungen: Zerstörungsfreie Prüfung; DVS Media: Düsseldorf, Germany, 2017. [Google Scholar]
- Voestalpine Stahl GmbH. Micro-Alloyed Steels: High-Strength Steels with Yield Strengths up to 550 MPa: Data Sheet Micro-Alloyed Steels; Voestalpine Stahl GmbH: Linz, Austria, 2020. [Google Scholar]
- Salzgitter Flachstahl GmbH. 22MnB5 Borlegierte Vergütungsstähle; Salzgitter Flachstahl GmbH: Salzgitter, Germany, 2014. [Google Scholar]
- Deutsches Institut für Normung. DIN EN ISO 10447:2015-05: Widerstandsschweißen—Prüfung von Schweißverbindungen—Schäl- und Meißelprüfung von Widerstandspunkt- und Buckelschweißverbindunge; Deutsches Institut für Normung: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Chen, G.L.; Zhang, Y.S. Characteristics of electrode wear in resistance spot welding dual-phase steels. Mater. Des. 2008, 29, 279–283. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Chen, G.L.; Zhang, Y.S. On-line evaluation of electrode wear by servo gun in resistance spot welding. Int. J. Adv. Manuf. Technol. 2008, 36, 681–688. [Google Scholar] [CrossRef]
- Wang, S.C.; Wei, P.S. Modeling Dynamic Electrical Resistance during Resistance Spot Welding. J. Heat Transf. 2001, 123, 576–585. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung. DIN EN ISO 14373:2015-06: Widerstandsschweißen—Verfahren zum Punktschweißen von Niedriglegierten Stählen mit oder ohne Metallischem Überzug; Deutsches Institut für Normung: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Rogeon, P.; Carre, P.; Costa, J.; Sibilia, G.; Saindrenan, G. Characterization of electrical contact conditions in spot welding assemblies. J. Mater. Process. Technol. 2008, 195, 117–124. [Google Scholar] [CrossRef]
Description | MC01 | MC02 |
---|---|---|
Upper sheet, | HX340LAD + Z100 | 22MnB5 + AS150 |
Anode () | () | ( ) |
Lower sheet, | HX340LAD + Z100 | 22MnB5 + AS150 |
Cathode () | ( ) | ( ) |
Coating | zinc, 100 | AlSi 150 |
Description | MC01 | MC02 |
---|---|---|
Spot welds per TS () | TS01, TS02: 1200 | TS01: 1092, TS02: 822 |
Electrode material | CuCr1Zr | |
Electrode geometry | DIN EN ISO 5821 F1-16-20-40-6 | |
Geometry of test sheets in mm () | 30 × 500 (8) | 30 × 400 (12) |
Geometry of wear sheets in mm () | 500 × 360 (192) | 400 × 180 (78) |
Spot distance, edge distance in mm | 30, 15 | 30, 15 |
in | ||
, , , , in | 400, 0, 0, 600, 400 | 400, 100, 30, 300, 400 |
, in | 0, | , |
in , in | , 20–25 | , 20–25 |
Effect Description | Result | Risk of Expulsion |
---|---|---|
Increased number of welds | Alloy layer thickness ↑ | ↑ |
Increase in alloy layer | Material resistance , ↑ | ↑ |
Increase in contact area | Current density J ↓ | ↓ |
Pressure ↓ | ↑ | |
Decrease in pressure | Contact resistance ↑ | ↑ |
Increased material resistance , | Nugget diameter ↑ | ↑ |
Increased contact resistance | Nugget diameter ↑ | ↑ |
Increased contact resistance , | Nugget diameter ↓ | ↑ |
Decreased current density J | Nugget diameter ↓ | ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathiszik, C.; Köberlin, D.; Heilmann, S.; Zschetzsche, J.; Füssel, U. General Approach for Inline Electrode Wear Monitoring at Resistance Spot Welding. Processes 2021, 9, 685. https://doi.org/10.3390/pr9040685
Mathiszik C, Köberlin D, Heilmann S, Zschetzsche J, Füssel U. General Approach for Inline Electrode Wear Monitoring at Resistance Spot Welding. Processes. 2021; 9(4):685. https://doi.org/10.3390/pr9040685
Chicago/Turabian StyleMathiszik, Christian, David Köberlin, Stefan Heilmann, Jörg Zschetzsche, and Uwe Füssel. 2021. "General Approach for Inline Electrode Wear Monitoring at Resistance Spot Welding" Processes 9, no. 4: 685. https://doi.org/10.3390/pr9040685
APA StyleMathiszik, C., Köberlin, D., Heilmann, S., Zschetzsche, J., & Füssel, U. (2021). General Approach for Inline Electrode Wear Monitoring at Resistance Spot Welding. Processes, 9(4), 685. https://doi.org/10.3390/pr9040685