Impact of MiRNA-181a2 on the Clinical Course of IDH1 Wild Type Glioblastoma
Abstract
:1. Introduction
2. Results
2.1. MiRNA-181a2 in the Whole Collective Compared Non Glioma Brain Tissue
2.2. MiRNA-181a2 in Subgroup Analysis IDH1wt Tumors
2.3. MiRNA-181a2 in Subgroup Analysis IDH1mut Tumors
2.4. MiRNA-181a2 Binding Site on mRNA of IDH1
2.5. Effect of miRNA-181a2 Expression on IDH1 Expression
2.6. Correlation with Further Clinical and Molecular Data in the Total Collective
2.7. Multivariate Analysis in the IDH1wt Cohort
3. Discussion
4. Methods
4.1. Patients
4.2. MiRNA Analysis
4.3. IDH1 Protein Expression Analysis
4.4. Methylation Analysis and IDH1-R123H Staining
4.5. TCGA Data
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethical Approval
References
- Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006–2010. Neuro Oncol. 2013, 15 (Suppl. 2), ii1-56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.A. Chemotherapy in Adult High-Grade Glioma: A Systematic Review and Meta-Analysis of Individual Patient Data from 12 Randomised Trials. Lancet Lond. Engl. 2002, 359, 1011–1018. [Google Scholar]
- Grossman, S.A.; Ye, X.; Piantadosi, S.; Desideri, S.; Nabors, L.B.; Rosenfeld, M.; Fisher, J.; NABTT CNS Consortium. Survival of Patients with Newly Diagnosed Glioblastoma Treated with Radiation and Temozolomide in Research Studies in the United States. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2010, 16, 2443–2449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegi, M.E.; Liu, L.; Herman, J.G.; Stupp, R.; Wick, W.; Weller, M.; Mehta, M.P.; Gilbert, M.R. Correlation of O6-Methylguanine Methyltransferase (MGMT) Promoter Methylation with Clinical Outcomes in Glioblastoma and Clinical Strategies to Modulate MGMT Activity. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 4189–4199. [Google Scholar] [CrossRef] [Green Version]
- Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.-H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.-M.; Gallia, G.L.; et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science 2008, 321, 1807–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; et al. Cancer-Associated IDH1 Mutations Produce 2-Hydroxyglutarate. Nature 2009, 462, 739–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S.-H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M.-T.; et al. Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of α-Ketoglutarate-Dependent Dioxygenases. Cancer Cell 2011, 19, 17–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Sippl, C.; Teping, F.; Ketter, R.; Braun, L.; Tremmel, L.; Schulz-Schaeffer, W.; Oertel, J.; Urbschat, S. The Influence of Distinct Regulatory MiRNAs of the P15/P16/RB1/E2F Pathway on the Clinical Progression of Glioblastoma Multiforme. World Neurosurg. 2019, 132, e900–e908. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ma, Y.; Xin, Y.; Han, R.; Li, R.; Hao, X. Role of the MicroRNA 181 Family in Glioma Development. Mol. Med. Rep. 2017, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Ciafrè, S.A.; Galardi, S.; Mangiola, A.; Ferracin, M.; Liu, C.-G.; Sabatino, G.; Negrini, M.; Maira, G.; Croce, C.M.; Farace, M.G. Extensive Modulation of a Set of MicroRNAs in Primary Glioblastoma. Biochem. Biophys. Res. Commun. 2005, 334, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Sun, J.-Y.; Zhu, Y.-H.; Liu, N.-T.; Wu, Y.-F.; Yu, F. MicroRNA-181 Inhibits Glioma Cell Proliferation by Targeting Cyclin B1. Mol. Med. Rep. 2014, 10, 2160–2164. [Google Scholar] [CrossRef]
- Sippl, C.; Ketter, R.; Bohr, L.; Kim, Y.J.; List, M.; Oertel, J.; Urbschat, S. MiRNA-181d Expression Significantly Affects Treatment Responses to Carmustine Wafer Implantation. Neurosurgery 2018, 85, 147–155. [Google Scholar] [CrossRef]
- Xu, C.-H.; Xiao, L.-M.; Zeng, E.-M.; Chen, L.-K.; Zheng, S.-Y.; Li, D.-H.; Liu, Y. MicroRNA-181 Inhibits the Proliferation, Drug Sensitivity and Invasion of Human Glioma Cells by Targeting Selenoprotein K (SELK). Am. J. Transl. Res. 2019, 11, 6632–6640. [Google Scholar] [PubMed]
- Cheray, M.; Etcheverry, A.; Jacques, C.; Pacaud, R.; Bougras-Cartron, G.; Aubry, M.; Denoual, F.; Peterlongo, P.; Nadaradjane, A.; Briand, J.; et al. Cytosine Methylation of Mature MicroRNAs Inhibits Their Functions and Is Associated with Poor Prognosis in Glioblastoma Multiforme. Mol. Cancer 2020, 19, 36. [Google Scholar] [CrossRef]
- Chu, B.; Wu, T.; Miao, L.; Mei, Y.; Wu, M. MiR-181a Regulates Lipid Metabolism via IDH1. Sci. Rep. 2015, 5, 8801. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Zhu, W.; Shi, D.; Lv, L.; Zhang, C.; Liu, P.; Hu, W. MicroRNA-181a Sensitizes Human Malignant Glioma U87MG Cells to Radiation by Targeting Bcl-2. Oncol. Rep. 2010, 23, 997–1003. [Google Scholar] [CrossRef]
- Shi, L.; Cheng, Z.; Zhang, J.; Li, R.; Zhao, P.; Fu, Z.; You, Y. Hsa-Mir-181a and Hsa-Mir-181b Function as Tumor Suppressors in Human Glioma Cells. Brain Res. 2008, 1236, 185–193. [Google Scholar] [CrossRef]
- Weller, M.; Felsberg, J.; Hartmann, C.; Berger, H.; Steinbach, J.P.; Schramm, J.; Westphal, M.; Schackert, G.; Simon, M.; Tonn, J.C.; et al. Molecular Predictors of Progression-Free and Overall Survival in Patients with Newly Diagnosed Glioblastoma: A Prospective Translational Study of the German Glioma Network. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 5743–5750. [Google Scholar] [CrossRef] [Green Version]
- Keys, D.A.; McAlister-Henn, L. Subunit Structure, Expression, and Function of NAD(H)-Specific Isocitrate Dehydrogenase in Saccharomyces Cerevisiae. J. Bacteriol. 1990, 172, 4280–4287. [Google Scholar] [CrossRef] [Green Version]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, L.; Wu, G.; Culley, D.E.; Scholten, J.C.M.; Zhang, W. Integrative Analysis of Transcriptomic and Proteomic Data: Challenges, Solutions and Applications. Crit. Rev. Biotechnol. 2007, 27, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, K.; Hoshino, K. Statistical Analysis of Factors Affecting Survival after Glioblastoma Multiforme. Acta Neurochir. 1977, 37, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Curran, W.J.; Scott, C.B.; Horton, J.; Nelson, J.S.; Weinstein, A.S.; Fischbach, A.J.; Chang, C.H.; Rotman, M.; Asbell, S.O.; Krisch, R.E. Recursive Partitioning Analysis of Prognostic Factors in Three Radiation Therapy Oncology Group Malignant Glioma Trials. J. Natl. Cancer Inst. 1993, 85, 704–710. [Google Scholar] [CrossRef]
- Abd-El-Barr, M.M.; Chiocca, E.A. How Much Is Enough? The Question of Extent of Resection in Glioblastoma Multiforme. World Neurosurg. 2014, 82, e109–e110. [Google Scholar] [CrossRef]
- Grabowski, M.M.; Recinos, P.F.; Nowacki, A.S.; Schroeder, J.L.; Angelov, L.; Barnett, G.H.; Vogelbaum, M.A. Residual Tumor Volume versus Extent of Resection: Predictors of Survival after Surgery for Glioblastoma. J. Neurosurg. 2014, 121, 1115–1123. [Google Scholar] [CrossRef]
- Nelson, P.T.; Wang, W.-X.; Janse, S.A.; Thompson, K.L. MicroRNA Expression Patterns in Human Anterior Cingulate and Motor Cortex: A Study of Dementia with Lewy Bodies Cases and Controls. Brain Res. 2018, 1678, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Duda, J.; Fauler, M.; Gründemann, J.; Liss, B. Cell-Specific RNA Quantification in Human SN DA Neurons from Heterogeneous Post-Mortem Midbrain Samples by UV-Laser Microdissection and RT-QPCR. Methods Mol. Biol. Clifton N. J. 2018, 1723, 335–360. [Google Scholar] [CrossRef]
- Roncon, P.; Zucchini, S.; Ferracin, M.; Marucci, G.; Giulioni, M.; Michelucci, R.; Rubboli, G.; Simonato, M. Is Autopsy Tissue a Valid Control for Epilepsy Surgery Tissue in MicroRNA Studies? Epilepsia Open 2017, 2, 90–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masè, M.; Grasso, M.; Avogaro, L.; D’Amato, E.; Tessarolo, F.; Graffigna, A.; Denti, M.A.; Ravelli, F. Selection of Reference Genes Is Critical for MiRNA Expression Analysis in Human Cardiac Tissue. A Focus on Atrial Fibrillation. Sci. Rep. 2017, 7, 41127. [Google Scholar] [CrossRef] [PubMed]
- Sippl, C.; Urbschat, S.; Kim, Y.J.; Senger, S.; Oertel, J.; Ketter, R. Promoter Methylation of RB1, P15, P16, and MGMT and Their Impact on the Clinical Course of Pilocytic Astrocytomas. Oncol. Lett. 2018, 15, 1600–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Regression Coefficient | Standard Error | HR | Sig. | HR 95% Lower | Range CI Upper |
---|---|---|---|---|---|---|
FC miRNA-181a2 | −256.4 | 108.1 | −2.37 | 0.021 * | −472.7 | −40.1 |
Extend of resection | −0.95 | 0.97 | −0.97 | 0.034 * | −0.91 | 1.01 |
Age at diagnosis | −0.48 | 0.173 | −2.79 | 0.007 * | −0.83 | −0.14 |
MGMT | −0.38 | 0.267 | 0.404 | 0.043 * | 0.68 | 1.15 |
Karnofsky | −0.33 | 0.009 | 0.97 | 0.001 * | 0.95 | 0.96 |
All Patients, (n = 74) | |
---|---|
Mean age ± SD, [range] in years | 59.1 ± 11.4, [35.7–83.2] |
Karnofsky performance score, median | 80 |
Gender, No, (%) | |
Male | 47, (63.5) |
Female | 27, (36.5) |
MGMT status, No, (%) | |
methylated | 35, (47.3) |
unmethylated | 39, (52.7) |
IDH1 status, No, (%) | |
R132H mutation | 11, (14.9) |
Wild type | 63, (85.1) |
Extent of resection, No, (%) | |
Gross total resection | 25, (33.8) |
Subtotal resection | 44, (59.5) |
Not available | 5, (6.8) |
Overall survival ± SD, [range] in month | 17.7 ± 19.9, [0.6–76.2] |
Progression-free survival ± SD, [range] in month | 9.5 ± 11.2, [0.2–58] |
Death by end of trial, No, (%) | 72, (97.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sippl, C.; Schoeneberger, L.; Teping, F.; Schulz-Schaeffer, W.; Urbschat, S.; Ketter, R.; Oertel, J. Impact of MiRNA-181a2 on the Clinical Course of IDH1 Wild Type Glioblastoma. Processes 2021, 9, 728. https://doi.org/10.3390/pr9050728
Sippl C, Schoeneberger L, Teping F, Schulz-Schaeffer W, Urbschat S, Ketter R, Oertel J. Impact of MiRNA-181a2 on the Clinical Course of IDH1 Wild Type Glioblastoma. Processes. 2021; 9(5):728. https://doi.org/10.3390/pr9050728
Chicago/Turabian StyleSippl, Christoph, Louisa Schoeneberger, Fritz Teping, Walter Schulz-Schaeffer, Steffi Urbschat, Ralf Ketter, and Joachim Oertel. 2021. "Impact of MiRNA-181a2 on the Clinical Course of IDH1 Wild Type Glioblastoma" Processes 9, no. 5: 728. https://doi.org/10.3390/pr9050728
APA StyleSippl, C., Schoeneberger, L., Teping, F., Schulz-Schaeffer, W., Urbschat, S., Ketter, R., & Oertel, J. (2021). Impact of MiRNA-181a2 on the Clinical Course of IDH1 Wild Type Glioblastoma. Processes, 9(5), 728. https://doi.org/10.3390/pr9050728