Optimal Design and Simulation Analysis of Spike Tooth Threshing Component Based on DEM
Abstract
:1. Introduction
2. Models and Methods
2.1. Experimental Method
2.2. Corn Ear Numerical Model
2.3. Corn Thresher Numerical Model
2.4. DEM Mechanical Model
2.4.1. Contact Mechanical Model
2.4.2. Bonding Mechanical Model
2.5. Simulation Setup
2.5.1. Threshing Performance Indicator
2.5.2. Simulation Parameters and Dynamic
3. Results and Discussion
3.1. The Effect on Threshing Rate
3.2. The Effect on Damage Rate
3.3. The Effect on Kernel Threshing Amount
3.4. The Effect on Kernel Compressive Force
4. Discussion
4.1. Discussion of Threshing Rate
4.2. Discussion of Damage Rate
4.3. Discussion of Kernel Threshing Amount
4.4. Discussion on Kernel Compressive Force
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.L.; Chi, R.J.; Du, Y.F.; Qin, J.H.; Xiong, Z.X.; Zhang, W.T.; Li, X.J. Experimental study on the key factors of low-loss threshing of high-moisture maize. Int. J. Agric. Biol. Eng. 2020, 13, 23–31. [Google Scholar] [CrossRef]
- Wang, X.Q.; Ren, X.C.; Mei, N.; Xie, Y.N.; Yang, X.Y.; Wang, X.J.; Zhao, R.G. Genome-wide association analysis for the genetic basis of seven traits associated with corn grain moisture and ear threshing rate. Int. J. Agric. Biol. 2019, 21, 810–818. [Google Scholar]
- Gu, R.L.; Huang, R.; Jia, G.Y.; Yuan, Z.P.; Ren, L.S.; Li, L.; Wang, J.H. Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture contents. J. Integr. Agric. 2019, 18, 1571–1578. [Google Scholar] [CrossRef]
- Xia, G.Y.; Xu, Y.; Su, Y.; Gao, X.J.; Li, Y.B.; Qian, M.M.; Yu, Y.B. Feature selection, artificial neural network prediction and experimental testing for predicting damage rate of maize kernels based on mechanical properties. J. Food Process. Eng. 2021, 44, e13621. [Google Scholar] [CrossRef]
- Yang, L.Q.; Wang, W.Z.; Zhang, H.M.; Wang, M.M.; Hou, M.T. Maize Ear Threshing—An Experimental Investigation. AMA-Agric. Mech. Asia Afr. Lat. Am. 2020, 51, 34–41. [Google Scholar]
- Fu, J.; Chen, Z.; Han, L.J.; Ren, L.Q. Review of grain threshing theory and technology. Int. J. Agric. Biol. Eng. 2018, 11, 12–20. [Google Scholar] [CrossRef]
- Li, L.L.; M, B.; Jue, X.; Shang, G.; Wang, K.R.; Xie, R.Z.; Peng, H.; Li, S.K. Difference in corn kernel moisture content between pre-and post-harvest. J. Integr. Agric. 2021, 20, 1775–1782. [Google Scholar] [CrossRef]
- Fu, J.; Yuan, H.K.; Zhang, D.P.; Chen, Z.; Ren, L.Q. Multi-objective optimization of process parameters of longitudinal axial threshing cylinder for frozen corn using RSM and NSGA-II. Appl. Sci. 2020, 10, 1646. [Google Scholar] [CrossRef] [Green Version]
- Steponavicius, D.; Kemzuraite, A.; Kiniulis, V.; Andriusis, A.; Juknevicius, D. Influence of cylinder design on its speed during corn ear threshing. In Proceedings of the 8th International Scientific Conference Rural Development, Akademija, Lithuania, 23–24 November 2017; pp. 453–459. [Google Scholar]
- Li, X.P.; Wu, K. Design and experiment of bionic discrete devices based on corn threshing system. In Proceedings of the 3rd International Conference on Applied Engineering, Dubai, United Arab Emirats, 27–28 May 2016; pp. 127–132. [Google Scholar]
- Kiniulis, V.; Steponavicius, D.; Kemzuraite, A.; Andriusis, A.; Juknevicius, D. Dynamic Indicators of a corn ear threshing process influenced by the threshing-separation unit load. Mechanika 2018, 24, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.J.; Fu, H.; Yu, J.Q. DEM-based simulation of the corn threshing process. Adv. Powder Technol. 2015, 26, 1400–1409. [Google Scholar] [CrossRef]
- Mousaviraad, M.; Tekeste, M.Z. Effect of grain moisture content on physical, mechanical, and bulk dynamic behaviour of maize. Biosyst. Eng. 2020, 195, 186–197. [Google Scholar] [CrossRef]
- Hundal, J.; Takhar, P.S. Dynamic viscoelastic properties and glass transition behavior of corn kernels. Int. J. Food Prop. 2009, 12, 295–307. [Google Scholar] [CrossRef]
- Akubuo, C.O. Performance evaluation of a local maize sheller. Biosyst. Eng. 2002, 83, 77–83. [Google Scholar] [CrossRef]
- Yang, L.; Cui, T.; Qu, Z.; Li, K.; Yin, X.; Han, D.; Ya, B.; Zhao, D.; Zhang, D. Development and application of mechanized maize harvesters. Int. J. Agric. Biol. Eng. 2016, 9, 15–28. [Google Scholar]
- Steponavicius, D.; Puzauskas, E.; Spokas, L.; Jotautiene, E.; Kemzuraite, A.; Petkevicius, S. Concave design for high-moisture corn ear threshing. Mechanika 2018, 24, 80–91. [Google Scholar] [CrossRef]
- Li, L.L.; Ming, B.; Xie, R.Z.; Wang, K.R.; Hou, P.; Gao, S.; Chu, Z.; Zhang, W.; Huang, Z.; Li, X.; et al. The stability and variability of maize kernel moisture content at physiological maturity. Crop Sci. 2021, 61, 704–714. [Google Scholar] [CrossRef]
- Brown, D.M.; Bootsma, A. Moisture in maize kernels at physiological maturity. Can. J. Plant Sci. 2002, 82, 549–550. [Google Scholar] [CrossRef] [Green Version]
- Qu, Z.; Zhang, D.X.; Yang, L.; Zhang, T.L.; Wang, Z.D.; Tao, C. Experiment on feed rate and cylinder speed of longitudinal axial flow threshing and separating device for maize. Trans. CSAM 2018, 49, 58–65. [Google Scholar]
- Kovacs, A.; Kerenyi, G. Modeling of corn ears by discrete element method (DEM). In Proceedings of the 31st European Conference on Modelling and Simulation ECMS, Budapest, Hungary, 23–26 May 2017; pp. 355–361. [Google Scholar]
- Li, X.Y.; Du, Y.F.; Guo, J.L.; Mao, E.R. Design, simulation, and test of a new threshing cylinder for high moisture content corn. Appl. Sci. 2020, 10, 4925. [Google Scholar] [CrossRef]
- Qian, Z.J.; Jin, C.Q.; Zhang, D.G. Multiple frictional impact dynamics of threshing process between flexible tooth and grain kernel. Comput. Electron. Agric. 2017, 141, 276–285. [Google Scholar] [CrossRef]
- Xu, L.Z.; Li, Y.M.; Ma, Z.; Zhao, Z.; Wang, C.H. Theoretical analysis and finite element simulation of a rice kernel obliquely impacted by a threshing tooth. Biosyst. Eng. 2013, 114, 146–156. [Google Scholar]
- Puzauskas, E.; Steponavicius, D.; Spokas, L.; Jotautiene, E.; Petkevicius, S.; Kemzuraite, A. Substantiation of concave crossbars shape for corn ears threshing. Mechanika 2016, 6, 553–561. [Google Scholar] [CrossRef]
- Yu, Y.J.; Zhou, H.L.; Fu, H.; Wu, X.C.; Yu, J.Q. Modeling method of corn ears based on particles agglomerate. Trans. Chin. Soc. Agric. Eng. 2012, 28, 167–174. [Google Scholar]
- Chen, Z.P.; Wassgren, C.; Veikle, E.; Ambrose, K. Determination of material and interaction properties of maize and wheat kernels for DEM simulation. Biosyst. Eng. 2020, 195, 208–226. [Google Scholar] [CrossRef]
- Boac, J.M.; Ambrose, R.P.K.; Casada, M.E.; Maghirang, R.G.; Maier, D.E. Applications of discrete element method in modeling of grain postharvest operations. Food Eng. Rev. 2014, 6, 128–149. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.J.; Yu, J.Q.; Zhang, M.J. Study of damping force between corn kernels and cobs based on DEM. In Proceedings of the 2nd International Workshop on Materials Science and Mechanical Engineering, Qingdao, China, 26–28 October 2018; p. 012082. [Google Scholar]
- Yu, Y.J.; Zhang, M.J.; Yu, J.Y.; Fu, H.; Yu, J.Q. Study of connection mechanics model and mechanical properties of corn kernel carpopodium based on DEM. In Proceedings of the 7th International Conference on Discrete Element Methods, Dalian, China, 1–4 August 2016; Springer: Berlin, Germany, 2017; pp. 1241–1251. [Google Scholar]
Rate of Drum Rotation, rpm | Width of Threshing Element, mm | |
---|---|---|
1 | 122.70 | 15 |
2 | 187.50 | 20 |
3 | 252.10 | 25 |
4 | 317.15 | 30 |
Simulation Parameter | Cob to Kernel | Cob to Cob | Kernel to Kernel | Cob to Boundary | Kernel to Boundary |
---|---|---|---|---|---|
Normal stiffness, N/m | 21,000 | 12,000 | 45,000 | 24,000 | 90,000 |
Tangential stiffness, N/m | 14,000 | 8000 | 30,000 | 16,000 | 60,000 |
Normal damping factor, N/(m/s) | 1.48 | 1.28 | 1.17 | 2.98 | 2.81 |
Tangential damping factor, N/(m/s) | 1.21 | 1.05 | 0.96 | 2.61 | 2.48 |
Coefficient of sliding friction | 0.45 | 0.8 | 0.29 | 0.4 | 0.27 |
Coefficient of static friction | 0.55 | 0.9 | 0.39 | 0.5 | 0.36 |
Kernel density, kg/m3 | 1119 | ||||
Cob density, kg/m3 | 275 | ||||
Gravity acceleration, m/s2 | 9.8 |
Simulation Parameter | Tangential Shear | Longitudinal Shear | Radial Compression | Radial Tension |
---|---|---|---|---|
Loading stiffness, N/m | 2699 | 3738 | 8672 | 16.635 |
Unloading stiffness, N/m | 9037 | 11.143 | 27.766 | 63.047 |
Threshing force, N | 6.2 | 7.1 | 12.5 | 13.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Li, L.; Zhao, J.; Wang, X.; Fu, J. Optimal Design and Simulation Analysis of Spike Tooth Threshing Component Based on DEM. Processes 2021, 9, 1163. https://doi.org/10.3390/pr9071163
Yu Y, Li L, Zhao J, Wang X, Fu J. Optimal Design and Simulation Analysis of Spike Tooth Threshing Component Based on DEM. Processes. 2021; 9(7):1163. https://doi.org/10.3390/pr9071163
Chicago/Turabian StyleYu, Yajun, Liangshan Li, Jiale Zhao, Xiangeng Wang, and Jun Fu. 2021. "Optimal Design and Simulation Analysis of Spike Tooth Threshing Component Based on DEM" Processes 9, no. 7: 1163. https://doi.org/10.3390/pr9071163
APA StyleYu, Y., Li, L., Zhao, J., Wang, X., & Fu, J. (2021). Optimal Design and Simulation Analysis of Spike Tooth Threshing Component Based on DEM. Processes, 9(7), 1163. https://doi.org/10.3390/pr9071163