An Empirical Research of the Mechanism from Electric Vehicle Production to Charging Station R&D in China
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Production of EVs and Charging Station R&D
2.2. Environmental Tax and Charging Station R&D
3. Empirical Analysis
3.1. Descriptive Statistics
3.2. Baseline Results
3.3. Mediator Effect Results of Investment in Charging Stations
3.4. Analysis of the Moderator Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Environmental Tax Charging Criterion
Type | Province | Charging Criterion (Yuan/Equivalent) | Type | Province | Charging Criterion (Yuan/Equivalent) |
---|---|---|---|---|---|
Higher Tax Regions | Beijing | 12 | Lower Tax Regions | Ningxia | 1.2 |
Tianjin | 10 | Qinghai | 1.2 | ||
Jiangsu | 8.4 | Anhui | 1.2 | ||
Shanghai | 6.65 | Fujian | 1.2 | ||
Hebei | 6 | Tibet | 1.2 | ||
Shandong | 6 | Zhejiang | 1.2 | ||
Henan | 4.8 | Jiangxi | 1.2 | ||
Sichuan | 3.9 | Yunnan | 1.2 | ||
Chongqing | 3.5 | Inner Mongolia | 1.2 | ||
Hainan | 2.4 | Xinjiang | 1.2 | ||
Guizhou | 2.4 | Liaoning | 1.2 | ||
Hunan | 2.4 | Gansu | 1.2 | ||
Hubei | 2.4 | Shaanxi | 1.2 | ||
Shanxi | 1.8 | Jilin | 1.2 | ||
Guangdong | 1.8 | ||||
Guangxi | 1.8 | ||||
Heilongjiang | 1.8 |
References
- Elizabeth, A.M.; Jennifer, D.R.; Callie, W.B.; Brian, T.; Susan, S.C. Spatial modeling of a second-use strategy for electric vehicle batteries to improve disaster resilience and circular economy. Resour. Conserv. Recycl. 2020, 160, 104889. [Google Scholar]
- Simone, F.; Alessio, N. The environmental impact of electric vehicles: A novel life cycle-based evaluation framework and its applications to multi-country scenarios. J. Clean. Prod. 2021, 315, 128005. [Google Scholar]
- Liu, L.; Xie, F.; Huang, Z.; Wang, M. Multi-Objective Coordinated Optimal Allocation of DG and EVCSs Based on the V2G Mode. Processes 2021, 9, 18. [Google Scholar] [CrossRef]
- Zou, C.N.; Xiong, B.; Xue, H.Q.; Zheng, D.V. The role of new energy in carbon neutral. Pet. Explor. Dev. 2021, 48, 480–491. [Google Scholar] [CrossRef]
- Kong, D.Y.; Xia, Q.H.; Xue, Y.X.; Zhao, X. Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective. Appl. Energy 2020, 266, 114887. [Google Scholar] [CrossRef]
- Tang, Q.; Shu, X.; Zhu, G.; Wang, J.; Yang, H. Reliability Study of BEV Powertrain System and Its Components—A Case Study. Processes 2021, 9, 762. [Google Scholar] [CrossRef]
- Li, W.; Long, R.; Chen, H.; Dou, B.; Chen, F.; Zheng, X.; He, Z. Public Preference for Electric Vehicle Incentive Policies in China: A Conjoint Analysis. Int. J. Environ. Res. Public Health 2020, 17, 318. [Google Scholar] [CrossRef] [Green Version]
- Nilgun, F.U.; Fescioglu, U.; Melike, Y.A.; Coşku, K. Feedback controlled resource management model for express service in electric vehicle charging stations. J. Clean. Prod. 2021, 311, 127629. [Google Scholar]
- Liu, X.; Ma, J.; Zhao, X.; Zhang, Y.; Zhang, K.; He, Y. Integrated Component Optimization and Energy Management for Plug-In Hybrid Electric Buses. Processes 2019, 7, 477. [Google Scholar] [CrossRef] [Green Version]
- Reza, S.; Meysam, J.N.; Javad, S. Allocation of RESs and PEV Fast-Charging Station on Coupled Transportation and Distribution Networks. Sustain. Cities Soc. 2021, 65, 102527. [Google Scholar]
- Atawi, I.E.; Hendawi, E.; Zaid, S.A. Analysis and Design of a Standalone Electric Vehicle Charging Station Supplied by Photovoltaic Energy. Processes 2021, 9, 1246. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Zhao, H. The Impact of Consumer Subsidy on Green Technology Innovations for Vehicles and Environmental Impact. Int. J. Environ. Res. Public Health 2020, 17, 7518. [Google Scholar] [CrossRef]
- Valenti, G.; Murgia, S.; Costanzo, I.; Scarnera, M.; Battistella, F. Experimental Determination of the Performances during the Cold Start-Up of an Air Compressor Unit for Electric and Electrified Heavy-Duty Vehicles. Energies 2021, 14, 3664. [Google Scholar] [CrossRef]
- Richard, W.; Hsu, S.C.; Zheng, S.; Chen, J.H.; Li, X.I. Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy. Appl. Energy 2020, 274, 115287. [Google Scholar]
- Fang, Y.J.; Wei, W.; Mei, S.W.; Chen, L.J. Promoting electric vehicle charging infrastructure considering policy incentives and user preferences: An evolutionary game model in a small-world network. J. Clean. Prod. 2020, 258, 120753. [Google Scholar] [CrossRef]
- Ma, T.Y.; Xie, S.M. Optimal fast charging station locations for electric ridesharing with vehicle-charging station assignment. Transp. Res. Part D Transp. Environ. 2021, 90, 102682. [Google Scholar] [CrossRef]
- Zhou, Z.; Yu, H.L.; Shao, Q. Tax and subsidy policy for domestic air pollution with asymmetric local and global spillover effects. J. Clean Prod. 2021, 318, 128504. [Google Scholar] [CrossRef]
- Song, M.L.; Wang, S.H.; Zhang, H.Y. Could environmental regulation and R&D tax incentives affect green product innovation? J. Clean Prod. 2020, 258, 120849. [Google Scholar]
- Zhu, X.X.; Raymond, C.; Liu, K. Dilemma of introducing a green product: Impacts of cost learning and environmental regulation. Appl. Math. Model. 2021, 92, 829–847. [Google Scholar] [CrossRef]
- Shamal, C.K.; Shahadat, H. The role of environmental taxes on technological innovation. Energy 2021, 232, 121052. [Google Scholar]
- President of the People’s Republic of China. Environmental Tax Law of the People’s Republic of China. In Proceedings of the 25th Meeting of the Standing Committee of the Twelfth National People’s Congress, Beijing, China, 25 December 2016. [Google Scholar]
- Thomas, I.R.; Luca, S.; Laura, M. Can subsidies rather than pollution taxes break the trade-off between economic output and environmental protection? Energy Econ. 2021, 95, 105084. [Google Scholar]
- Yu, X.M.; Geng, Y.; Dong, H.J.; Tsuyoshi, F. Emergy-based sustainability assessment on natural resource utilization in 30 Chinese provinces. J. Clean. Prod. 2016, 133, 18–27. [Google Scholar] [CrossRef]
- Chen, S. Marginal emission reduction cost and China’s environmental tax reform. Soc. Sci. 2011, 3, 222. [Google Scholar]
- Ernani, F.; John, S.E.; James, K.H. Assessing the health impacts of electric vehicles through air pollution in the United States. Environ. Int. 2020, 144, 106015. [Google Scholar]
- Ankit, Y.; Anbesh, J.; Rajeev, A. Environmental impacts assessment during sand casting of Aluminium LM04 product: A case of Indian manufacturing industry. Procedia CIRP 2021, 98, 181–186. [Google Scholar]
- Lee, S.H.; Chul, H.P. Environmental regulations in private and mixed duopolies: Taxes on emissions versus green R&D subsidies. Econ. Syst. 2021, 45, 100852. [Google Scholar]
- Adnan, S.; Chen, Y.Y.; Salman, W.; Liya, Z. Does environmental taxes achieve the carbon neutrality target of G7 economies? Evaluating the importance of environmental R&D. J. Environ. Manag. 2021, 293, 112908. [Google Scholar]
- Lin, N.H.; Muhammad, U.; Zeeshan, K. Green growth and low carbon emission in G7 countries: How critical the network of environmental taxes, renewable energy and human capital is? Sci. Total Environ. 2021, 752, 141853. [Google Scholar]
- Kenneth, G.L.; Can, H.; Shen, H.J. Assessing the value of China’s patented inventions. Technol. Forecast. Soc. Chang. 2021, 170, 120868. [Google Scholar]
- Annibal, S.; Gláucya, D.; Daú, L.F.S. Social and ecological approaches in urban interfaces: A sharing economy management framework. Sci. Total Environ. 2020, 713, 134407. [Google Scholar]
- Muhammad, U.; Muhammad, S.A.; Sohail, A.M. Does financial growth? Fresh evidence from 15 highest emitting countries. Sustain. Cities Soc. 2021, 65, 102590. [Google Scholar]
- Teixeira, A.C.R.; Sodre, J.R. Simulation of the impacts on carbon dioxide emissions from replacement of a conventional Brazilian taxi fleet by electric vehicles. Energy 2016, 115, 1617–1622. [Google Scholar] [CrossRef]
- Elshurafa, A.M.; Peerbocus, N. Electric vehicle deployment and carbon emissions in Saudi Arabia: A power system perspective. Electr. J. 2020, 33, 106774. [Google Scholar] [CrossRef]
- Sustainable Development Goals: Goal 7: Affordable and Clean Energy. United Nations Sustainable Development Goals. Available online: https://unstats.un.org/sdgs/report/2016/goal-07/ (accessed on 1 April 2021).
- World Environmental Day: Ensure Rapid and Healthy Energy Conversion. W.H.O. 73rd World Health Assembly. Available online: https://www.who.int/news-room/feature-stories/detail/73rd-world-health-assembly-decisions (accessed on 7 August 2020).
- Yang, M.; Zhang, L.H.; Wang, L.W. Comprehensive benefits analysis of electric vehicle charging station integrated photovoltaic and energy storage. J. Clean. Prod. 2021, 302, 126967. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhang, L.B. Robust model of electric vehicle charging station location considering renewable energy and storage equipment. Energy 2021, 238, 121713. [Google Scholar] [CrossRef]
- Olusola, B.; Sandra, O.; Huang, Q.; Nasser, Y.M. Impact of economic development on CO2 emission in Africa; the role of BEVs and hydrogen production in renewable energy integration. Int. J. Hydrogen Energy 2021, 46, 2755–2773. [Google Scholar]
- Zhai, H.; Frey, H.C.; Rouphail, N.M. Development of a modal emissions model for a hybrid electric vehicle. Transp. Res. Part D Transp. Environ. 2011, 16, 444–450. [Google Scholar] [CrossRef]
- Sevgi, E.; İsmail, Ç.; İbrahim, Ç. Establishing a statewide electric vehicle charging station network in Maryland: A corridor-based station location problem. Socio-Econ. Plan. Sci. 2021, 101127. [Google Scholar] [CrossRef]
- Balasundar, C.; Sundarabalan, C.K.; Sharma, J.; Srinath, N.S.; Guerrero, J.M. Design of Power Quality Enhanced Sustainable Bidirectional Electric Vehicle Charging Station in Distribution Grid. Sustain. Cities Soc. 2021, 74, 103242. [Google Scholar] [CrossRef]
- National Development and Reform Commission. National Development and Reform Commission and Other Departments Answered Reporters’ Questions on ‘The Implementation Plan of Accelerating the Cultivation of New Consumption’. Beijing, China. Available online: https://www.ndrc.gov.cn/xxgk/jd/jd/202104/t20210401_1271576.html?code=&state=123 (accessed on 1 April 2021).
- Nicholas, M.; Tal, G. Transitioning to longer range battery electric vehicles: Implications for the market, travel and charging. SAE Int. 2017, 115, 1617–1622. [Google Scholar]
- Schäuble, J.; Kaschub, T.; Ensslen, A.; Jochem, P. Generating electric vehicle load profiles from empirical data of three EV fleets in Southwest Germany. J. Clean. Prod. 2017, 150, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Stark, J.; Weiß, C.; Trigui, R.; Franke, T.; Baumann, M.; Jochem, P. Electric vehicles with range extenders: Evaluating the contribution to the sustainable development of metropolitan regions. J. Urban Plan. Dev. 2018, 144, 04017023. [Google Scholar] [CrossRef]
- Neaimeh, M.; Salisbury, S.D.; Hill, G.A.; Blythe, P.T.; Sco, D.R.; Francfort, J.E. Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles. Energy Policy 2017, 108, 474–486. [Google Scholar] [CrossRef]
- Axsen, J.; Langman, B.; Goldberg, S. Confusion of innovations: Mainstream consumer perceptions and misperceptions of electric-drive vehicles and charging programs in Canada. Energy Res. Soc. Sci. 2017, 27, 163–173. [Google Scholar] [CrossRef]
- Bashir, M.F.; Benjiang, M.A.; Shahbaz, M.; Shahzad, U.; Vo, X.V. Unveiling the heterogeneous impacts of environmental taxes on energy consumption and energy intensity: Empirical evidence from OECD countries. Energy 2021, 226, 120366. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, L.H. Can the current environmental tax rate promote green technology innovation?–Evidence from China’s resource-based industries. J. Clean. Prod. 2021, 278, 123443. [Google Scholar] [CrossRef]
- Zhang, S.H.; Mendelsohn, R.; Wang, C. Evaluating environmental tax rates for power plants in BTH area based on marginal damage estimation: An Integrated Assessment. Energy Procedia 2019, 158, 3923–3929. [Google Scholar] [CrossRef]
- Li, P.N.; Lin, Z.G.; Du, H.B.; Feng, T.; Zuo, J. Do environmental taxes reduce air pollution? Evidence from fossil-fuel power plants in China. J. Environ. Manag. 2021, 295, 113112. [Google Scholar] [CrossRef]
- Peng, L.; Dong, D.X.; Wang, Z. The impact of air pollution on R&D input and output in China. Sci. Total Environ. 2021, 752, 141313. [Google Scholar]
- Magee, C.L.; Devezas, T.C. Specifying technology and rebound in the IPAT identity. Procedia Manuf. 2018, 21, 476–485. [Google Scholar] [CrossRef]
- Janis, B.; Kuishuang, F.; Klaus, H. Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010. Energy 2013, 59, 743–753. [Google Scholar]
- Fanny, M.; Pierre, V.F.; Virginie, D.B. Modeling the effects of place heritage and place experience on residents’ behavioral intentions toward a city: A mediation analysis. J. Bus. Res. 2021, 134, 428–442. [Google Scholar]
- Cashin, A.G.; Lee, H. An introduction to mediation analyses of randomized controlled trials. J. Clin. Epidemiol. 2021, 133, 161–164. [Google Scholar] [CrossRef]
- Zeng, P.; Shao, Z.H.; Zhou, X. Statistical methods for mediation analysis in the era of high-throughput genomics: Current successes and future challenges. Comput. Struct. Biotechnol. J. 2021, 19, 3209–3224. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F.; Beyond, B. Statistical Mediation Analysis in the New Millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Christine, E.P.; Robert, Z.; Christoffer, L.; Katherine, S.Y. How does cognitive behavioural therapy for insomnia work? A systematic review and meta-analysis of mediators of change. Clin. Psychol. Rev. 2021, 86, 102027. [Google Scholar]
- Steven, H.J.; Dawn, K.; Elizabeth, H.; Fiona, L. Mediation analysis of recovery-focused therapy for recent-onset bipolar disorder. J. Affect. Disord. Rep. 2021, 5, 10017. [Google Scholar]
Variable | Definition | Mean | SD | Min | Median | Max | |
---|---|---|---|---|---|---|---|
Dependent variable | R&D | Carbon emissions (billion ton) | 0.515 | 1.101 | 0.011 | 0.351 | 1.033 |
Independent variable | Industrialization | The proportion of the second industry in GDP (%) | 50.336 | 55.707 | 16.200 | 43.520 | 54.140 |
Control variable | GDP | Gross domestic product (trillion yuan) | 40,461 | 335.807 | 920.833 | 20,363 | 107,671 |
Trade openness | Ratio of international trade volume to GDP (%) | 39.751 | 101.152 | 1.26 | 37.074 | 91.573 | |
Information infrastructure | The number of internet broadband ports to the local population (%) | 36.631 | 59.750 | 19.751 | 31.201 | 55.602 | |
Environmental regulation | Environmental protection expenditure (trillion yuan) | 12.369 | 23.783 | 4.394 | 10.482 | 31.762 | |
Mediator variable | Investment | Investment in charging stations (trillion yuan) | 20.472 | 41.531 | 8.147 | 16.926 | 70.361 |
Moderator variable | Environmental tax | Environmental tax charge rates for SO2 in air pollution | 5.928 | 10.562 | 1.2 | 1.8 | 12 |
R&D | Production | GDP | Trade Openness | Information Infrastructure | Environmental Regulation | Investment | Environmental Tax | |
---|---|---|---|---|---|---|---|---|
R&D | 0.207 *** | 0.094 *** | 0.347 ** | 0.006 *** | 0.273 *** | 0.055 *** | 0.303 * | |
Production | 0.291 ** | 0.133 ** | 0.172 *** | 0.107 *** | 0.169 *** | 0.006 *** | 0.318 ** | |
GDP | 0.237 ** | 0.097 *** | 0.294 ** | 0.014 * | 0.213 *** | 0.164 ** | 0.099 *** | |
Financial development | 0.078 ** | 0.278 ** | 0.344 * | 0.210 ** | 0.008 ** | 0.337 ** | 0.129 *** | |
Information infrastructure | 0.091 ** | 0.177 ** | 0.059 ** | 0.195 * | 0.288 * | 0.008 *** | 0.003 ** | |
Environmental regulation | 0.331 *** | 0.039 * | 0.202 * | 0.157 *** | 0.260 ** | 0.209 * | 0.107 ** | |
Investment | 0.296 ** | 0.300 * | 0.211 *** | 0.009 ** | 0.002 *** | 0.346 ** | 0.195 *** | |
Environmental tax | 0.174 *** | 0.157 ** | 0.216 *** | 0.036 *** | 0.142 *** | 0.178 ** | 0.177 *** |
Variable | Constant |
---|---|
R&D | 0.891 *** |
0.001 | |
Production | 1.007 *** |
0.002 | |
Investment | 0.997 ** |
0.005 | |
Environmental tax | 1.763 *** |
0.003 | |
GDP | 1.243 *** |
0.002 | |
Trade openness | 2.033 ** |
0 | |
Information infrastructure | 1.863 *** |
0.003 | |
Environmental regulation | 1.574 ** |
0 |
Equation | Chi-Square | Prob. > Chi-Square | Causality |
---|---|---|---|
R&D to production | 8.001 | 0.004 | Yes |
Production to R&D | 0.103 | 0.892 | No |
R&D | 1 | 2 |
Production | 2.077 *** | 1.900 *** |
(3.131) | (2.635) | |
GDP | 0.233 * | |
(1.868) | ||
Trade openness | 1.239 *** | |
(4.051) | ||
Information infrastructure | 2.217 *** | |
(3.307) | ||
Environmental Regulation | 2.077 *** | |
(3.011) | ||
Constant | –51.679 *** | –49.071 ** |
(–4.791) | (–2.678) | |
Observations | 186 | 186 |
Adj. R2 | 0.401 | 0.463 |
Dependent Variable | Model (2) | Model (3) | ||
---|---|---|---|---|
Investment | R&D | |||
Independent Variable | Production | 1.734 *** (3.429) | Production | 0.924 *** (6.156) |
Investment | 2.451 *** (2.995) | |||
Control Variable | GDP | 1.535 *** | GDP | 1.747 *** |
(3.975) | (4.144) | |||
Trade openness | 1.892 ** | Trade openness | 1.924 *** | |
(2.361) | (3.521) | |||
Information infrastructure | 1.246 *** | Information infrastructure | 1.626 *** | |
(3.135) | (4.145) | |||
Environmental regulation | 2.274 *** | Environmental regulation | 3.051 *** | |
(2.551) | (2.797) | |||
Constant | 23.157 *** | Constant | 19.245 *** | |
(3.901) | (6.125) | |||
Observations Adj. R2 | 186 0.301 | Observations Adj. R2 | 186 0.299 |
Dependent Variable | R&D | ||
---|---|---|---|
Lower Tax Group | Higher Tax Group | ||
Independent Variable | Production | 1.033 | 4.632 *** |
(1.025) | (3.167) | ||
Control variable | GDP | 2.981 | 3.782 ** |
(1.932) | (1.875) | ||
Trade openness | 5.157 *** | 10.892 *** | |
(7.665) | (6.368) | ||
Information infrastructure | 0.159 | 1.378 *** | |
(0.913) | (3.016) | ||
Environmental regulation | 1.077 | 2.084 *** | |
(0.691) | (3.332) | ||
Constant | 57.167 | 80.267 *** | |
(0.234) | (3.306) | ||
Observations Adj. R2 | 84 0.501 | 102 0.569 | |
Difference | 0.933 | ||
Chi-square | 4.63 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Zhang, Y. An Empirical Research of the Mechanism from Electric Vehicle Production to Charging Station R&D in China. Processes 2021, 9, 1407. https://doi.org/10.3390/pr9081407
Hu H, Zhang Y. An Empirical Research of the Mechanism from Electric Vehicle Production to Charging Station R&D in China. Processes. 2021; 9(8):1407. https://doi.org/10.3390/pr9081407
Chicago/Turabian StyleHu, Haoxuan, and Yuchen Zhang. 2021. "An Empirical Research of the Mechanism from Electric Vehicle Production to Charging Station R&D in China" Processes 9, no. 8: 1407. https://doi.org/10.3390/pr9081407
APA StyleHu, H., & Zhang, Y. (2021). An Empirical Research of the Mechanism from Electric Vehicle Production to Charging Station R&D in China. Processes, 9(8), 1407. https://doi.org/10.3390/pr9081407