Regeneration of 200 Gbit/s PAM4 Signal Produced by Silicon Microring Modulator (SiMRM) Using Mach–Zehnder Interferometer (MZI)-Based Optical Neural Network (ONN)
Abstract
:1. Introduction
2. Theory of the MZI-Based ONN
3. Experimental Setup
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soref, R.; Dong, P.; Chen, J.; Melikyan, A.; Fan, T.; Fryett, T.; Li, C.; Chen, J.; Koeppen, C. Silicon photonics for 800G and beyond. In Proceedings of the Optical Fiber Communication Conference; Optica Publishing Group: San Diego, CA, USA, 2022; p. M4H-1. [Google Scholar]
- 800G Pluggable MSA Group. 2022. Available online: https://www.800gmsa.com/ (accessed on 7 April 2024).
- Available online: https://www.marvell.com/company/newsroom/marvell-extends-connectivity-leadership-with-industrys-first-pam4-optical-dsp.html (accessed on 7 April 2024).
- Zhou, X.; Urata, R.; Liu, H. Beyond 1 Tb/s intra-data center interconnect technology: IM-DD OR coherent? J. Light. Technol. 2020, 38, 475–484. [Google Scholar] [CrossRef]
- Ozolins, O.; Joharifar, M.; Salgals, T.; Louchet, H.; Schatz, R.; Gruen, M.; Dippon, T.; Kruger, B.; Pittala, F.; Che, D.; et al. Optical amplification-free high baudrate links for intra-data center communications. J. Light. Technol. 2023, 41, 1200–1206. [Google Scholar] [CrossRef]
- Malik, A.; Liu, S.; Timurdogan, E.; Harrington, M.; Netherton, A.; Saeidi, M.; Blumenthal, D.J.; Theogarajan, L.; Watts, M.; Bowers, J.E. Low power consumption silicon photonics datacenter interconnects enabled by a parallel architecture. In Proceedings of the Optical Fiber Communication Conference; Optica Publishing Group: San Francisco, CA, USA, 2021; p. W6A-3. [Google Scholar]
- Zhou, J.; Wang, J.; Zhu, L.; Zhang, Q. Silicon photonics for 100Gbaud. J. Light. Technol. 2021, 39, 857–867. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Sharkia, A.; Casper, B.; Mirabbasi, S.; Shekhar, S. Silicon-photonics microring links for datacenters—Challenges and opportunities. IEEE J. Sel. Top. Quant. Electron. 2016, 22, 194–203. [Google Scholar] [CrossRef]
- Peng, C.W.; Chow, C.W.; Kuo, P.C.; Chen, G.H.; Yeh, C.H.; Chen, J.; Lai, Y. DP-QPSK coherent detection using 2D grating coupled silicon based receiver. IEEE Photonics J. 2021, 13, 7900105. [Google Scholar] [CrossRef]
- Rahim, A.; Hermans, A.; Wohlfeil, B.; Petousi, D.; Kuyken, B.; Van Thourhout, D.; Baets, R.G. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv. Photonics 2021, 3, 024003. [Google Scholar] [CrossRef]
- Luo, L.W.; Ophir, N.; Chen, C.P.; Gabrielli, L.H.; Poitras, C.B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Comm. 2014, 5, 3069. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.; Ruan, X.; Yang, F.; Ming, H.; Li, Y. High baud rate transmission with silicon photonic modulators. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 8300709. [Google Scholar] [CrossRef]
- Dourado, D.M.; de Farias, G.B.; Gounella, R.H.; Rocha, M.D.L.; Carmo, J.P. Challenges in silicon photonics modulators for data center interconnect applications. Opt. Laser Technol. 2021, 144, 107376. [Google Scholar] [CrossRef]
- Hsu, Y.; Tzu, T.C.; Lin, T.C.; Chuang, C.Y.; Wu, X.; Chen, J.; Yeh, C.H.; Tsang, H.K.; Chow, C.W. 64-Gbit/s PAM-4 20-km transmission using silicon micro-ring modulator for optical access networks. In Proceedings of the Optical Fiber Communication Conference; Optica Publishing Group: Los Angeles, CA, USA, 2017; p. M3H.2. [Google Scholar]
- Chan, D.W.U.; Wu, X.; Lu, C.; Lau, A.P.T.; Tsang, H.K. Efficient 330-Gb/s PAM-8 modulation using silicon microring modulators. Opt. Lett. 2023, 48, 1036–1039. [Google Scholar] [CrossRef]
- Hung, T.Y.; Chan, D.W.U.; Peng, C.W.; Chow, C.W.; Tsang, H.K. 300-Gbit/s/λ 8-Level pulse-amplitude-modulation (PAM8) with a silicon microring modulator utilizing long short term memory regression and deep neural network classification. Opt. Laser Technol. 2024, 171, 110379. [Google Scholar] [CrossRef]
- Deligiannidis, S.; Mesaritakis, C.; Bogris, A. Performance and complexity evaluation of recurrent neural network models for fibre nonlinear equalization in digital coherent systems. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Hung, N.T.; Stainton, S.; Le, S.T.; Haigh, P.A.; Tien, H.P.; Vien, N.D.N.; Tuan, N.V. High-speed PAM4 transmission using directly modulated laser and artificial neural network nonlinear equalizer. Opt. Laser Technol. 2023, 157, 108642. [Google Scholar] [CrossRef]
- Wang, C.; Du, J.; Chen, G.; Wang, H.; Sun, L.; Xu, K.; Liu, B.; He, Z. QAM classification methods by SVM machine learning for improved optical interconnection. Opt. Comm. 2019, 444, 1–8. [Google Scholar] [CrossRef]
- Shastri, B.J.; Tait, A.N.; de Lima, T.F.; Pernice, W.H.P.; Bhaskaran, H.; Wright, C.D.; Prucnal, P.R. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 2021, 15, 102–114. [Google Scholar] [CrossRef]
- Tait, A.N.; de Lima, T.F.; Zhou, E.; Wu, A.X.; Nahmias, M.A.; Shastri, B.J.; Prucnal, P.R. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 2017, 7, 7430. [Google Scholar] [CrossRef]
- Liao, K.; Dai, T.; Yan, Q.; Hu, X.; Gong, Q. Integrated photonic neural networks: Opportunities and challenges. ACS Photonics 2023, 10, 2001–2010. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, Z. A review of optical neural networks. App. Sci. 2022, 12, 5338. [Google Scholar] [CrossRef]
- Zhou, T.; Lin, X.; Wu, J.; Chen, Y.; Xie, H.; Li, Y.; Wu, H.; Fang, L.; Dai, Q. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 2021, 15, 367–373. [Google Scholar] [CrossRef]
- Shokraneh, F.; Geoffroy-Gagnon, S.; Nezami, M.S.; Liboiron-Ladouceur, O. A single layer neural network implemented by a 4 × 4 MZI-based optical processor. IEEE Photonics J. 2019, 11, 4501612. [Google Scholar] [CrossRef]
- Mojaver, K.R.; Zhao, B.; Leung, E.; Safaee, S.M.R.; Liboiron-Ladouceur, O. Addressing the programming challenges of practical interferometric mesh based optical processors. Opt. Exp. 2023, 31, 23851–23866. [Google Scholar] [CrossRef]
- Ma, X.; Peserico, N.; Shastri, B.J.; Sorger, V.J. Design and testing of a Silicon Photonic Tensor Core with integrated lasers. In Proceedings of the 2023 IEEE Silicon Photonics Conference (SiPhotonics), Washington, DC, USA, 4–7 April 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Teo, T.Y.; Ma, X.; Pastor, E.; Wang, H.; George, J.K.; Yang, J.K.W.; Wall, S.; Miscuglio, M.; Simpson, R.E.; Sorger, V.J. Programmable chalcogenide-based all-optical deep neural networks. Nanophotonics 2022, 11, 4073–4088. [Google Scholar] [CrossRef]
- Chan, D.W.U.; Wu, X.; Zhang, Z.; Lu, C.; Lau, A.P.T.; Tsang, H.K. C-band 67 GHz silicon photonic microring modulator for dispersion-uncompensated 100 Gbaud PAM-4. Opt. Lett. 2022, 47, 2935–2938. [Google Scholar] [CrossRef]
- Wu, H.W.; Lu, H.H.; Tsai, W.S.; Huang, Y.C.; Xie, J.Y.; Huang, Q.P.; Tu, S.C. A 448-Gb/s PAM4 FSO communication with polarization-multiplexing injection-locked VCSELs through 600 m free-space link. IEEE Access 2020, 8, 28859–28866. [Google Scholar] [CrossRef]
- Tsai, W.S.; Li, C.Y.; Lu, H.H.; Lu, Y.F.; Tu, S.C.; Huang, Y.C. 256 Gb/s four-channel SDM-based PAM4 FSO-UWOC convergent system. IEEE Photon. J. 2019, 11, 7902008. [Google Scholar] [CrossRef]
- Reck, M.; Zeilinger, A.; Bernstein, H.J.; Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 1994, 73, 58. [Google Scholar] [CrossRef]
- Williamson, I.A.D.; Hughes, T.W.; Minkov, M.; Bartlett, B.; Pai, S.; Fan, S. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 7700412. [Google Scholar] [CrossRef]
- Bartlett, B.; Minkov, M.; Hughes, T.; Williamson, I.A.D. Neuroptica: Flexible Simulation Package for Optical Neural Networks, GitHub Repository. 2019. Available online: https://github.com/fancompute/neuroptica (accessed on 7 April 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, T.-Y.; Chan, D.W.U.; Peng, C.-W.; Chow, C.-W.; Tsang, H.K. Regeneration of 200 Gbit/s PAM4 Signal Produced by Silicon Microring Modulator (SiMRM) Using Mach–Zehnder Interferometer (MZI)-Based Optical Neural Network (ONN). Photonics 2024, 11, 349. https://doi.org/10.3390/photonics11040349
Hung T-Y, Chan DWU, Peng C-W, Chow C-W, Tsang HK. Regeneration of 200 Gbit/s PAM4 Signal Produced by Silicon Microring Modulator (SiMRM) Using Mach–Zehnder Interferometer (MZI)-Based Optical Neural Network (ONN). Photonics. 2024; 11(4):349. https://doi.org/10.3390/photonics11040349
Chicago/Turabian StyleHung, Tun-Yao, David W. U Chan, Ching-Wei Peng, Chi-Wai Chow, and Hon Ki Tsang. 2024. "Regeneration of 200 Gbit/s PAM4 Signal Produced by Silicon Microring Modulator (SiMRM) Using Mach–Zehnder Interferometer (MZI)-Based Optical Neural Network (ONN)" Photonics 11, no. 4: 349. https://doi.org/10.3390/photonics11040349
APA StyleHung, T. -Y., Chan, D. W. U., Peng, C. -W., Chow, C. -W., & Tsang, H. K. (2024). Regeneration of 200 Gbit/s PAM4 Signal Produced by Silicon Microring Modulator (SiMRM) Using Mach–Zehnder Interferometer (MZI)-Based Optical Neural Network (ONN). Photonics, 11(4), 349. https://doi.org/10.3390/photonics11040349