Coupling Performance Enhancement of GaSb-Based Single-Transverse-Mode Lasers with Reduced Beam Divergence Obtained via near Field Modulation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rattunde, M.; Schmitz, J.; Kaufel, G.; Kelemen, M.; Weber, J.; Wagner, J. GaSb-based 2.0× μm quantum-well diode lasers with low beam divergence and high output power. Appl. Phys. Lett. 2006, 88, 3. [Google Scholar] [CrossRef]
- Chen, J.F.; Kipshidze, G.; Shterengas, L. Diode lasers with asymmetric waveguide and improved beam properties. Appl. Phys. Lett. 2010, 96, 3. [Google Scholar] [CrossRef]
- Geerlings, E.; Rattunde, M.; Schmitz, J.; Kaufel, G.; Zappe, H.; Wagner, J. Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm. IEEE Photonics Technol. Lett. 2006, 18, 1913–1915. [Google Scholar] [CrossRef]
- Wang, R.J.; Malik, A.; Simonyte, I.; Vizbaras, A.; Vizbaras, K.; Roelkens, G. Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers. Opt. Express 2016, 24, 28978–28987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppe, M.; Assmann, C.; Schmidtmann, S.; Milde, T.; Honsberg, M.; Schanze, T.; Sacher, J. GaSb-based digital distributed feedback filter laser diodes for gas sensing applications in the mid-infrared region. J. Opt. Soc. Am. B-Opt. Phys. 2021, 38, B1–B8. [Google Scholar] [CrossRef]
- Jean, B.; Bende, T. Mid-IR laser applications in medicine. In Solid-State Mid-Infrared Laser Sources; Sorokina, I.T., Vodopyanov, K.L., Eds.; Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 89, pp. 511–544. [Google Scholar]
- Liu, J.; Shi, H.X.; Liu, K.; Hou, Y.B.; Wang, P. 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA. Opt. Express 2014, 22, 13572–13578. [Google Scholar] [CrossRef] [PubMed]
- Garbuzov, D.Z.; Martinelli, R.U.; Lee, H.; York, P.K.; Menna, R.J.; Connolly, J.C.; Narayan, S.Y. Ultralow-loss broadened-waveguide high-power 2 μm AlGaAsS/InGaAsSb/GaSb separate-confinement quantum-well lasers. Appl. Phys. Lett. 1996, 69, 2006–2008. [Google Scholar] [CrossRef]
- Lin, C.; Grau, M.; Dier, O.; Amann, M.C. Low threshold room-temperature continuous-wave operation of 2.24–3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers. Appl. Phys. Lett. 2004, 84, 5088–5090. [Google Scholar] [CrossRef]
- Kelemen, M.T.; Weber, J.; Rattunde, M.; Kaufel, G.; Schmitz, J.; Moritz, R.; Mikulla, M.; Wagner, J. High-power 1.9-μm diode laser arrays with reduced far-field angle. IEEE Photonics Technol. Lett. 2006, 18, 628–630. [Google Scholar] [CrossRef]
- Wang, T.F.; Yang, C.G.; Zhang, Y.; Chen, Y.H.; Shang, J.M.; Zhang, Y.; Xu, Y.Q.; Niu, Z.C. High spectral purity GaSb-based blazed grating external cavity laser with tunable single-mode operation around 1940 nm. Opt. Express 2021, 29, 33864–33873. [Google Scholar] [CrossRef]
- Miah, M.J.; Kalosha, V.P.; Bimberg, D.; Pohl, J.; Weyers, M. Astigmatism-free high-brightness 1060 nm edge-emitting lasers with narrow circular beam profile. Opt. Express 2016, 24, 30514–30522. [Google Scholar] [CrossRef] [PubMed]
- Miah, M.J.; Kettler, T.; Posilovic, K.; Kalosha, V.P.; Skoczowsky, D.; Rosales, R.; Bimberg, D.; Pohl, J.; Weyers, M. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area. Appl. Phys. Lett. 2014, 105, 4. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Wang, Y.F.; Qu, H.W.; Liu, Y.; Zhou, X.Y.; Liu, A.J.; Zheng, W.H. 2-W High-Efficiency Ridge-Waveguide Lasers With Single Transverse Mode and Low Vertical Divergence. IEEE Photonics Technol. Lett. 2017, 29, 2005–2007. [Google Scholar] [CrossRef]
- Rattunde, A.; Geerlings, E.; Schmitz, J.; Kaufel, G.; Weber, J.; Mikulla, M.; Wagner, J. GaSb-based 1.9–2.4 μm quantum-well diode lasers with low beam divergence. In Proceedings of the Conference on Novel In-Plane Semiconductor Lasers IV, San Jose, CA, USA, 24–27 January 2005; pp. 138–145. [Google Scholar]
- Ryvkin, B.S.; Avrutin, E.A. Nonbroadened asymmetric waveguide diode lasers promise much narrower far fields than broadened symmetric waveguide ones. J. Appl. Phys. 2005, 98, 2. [Google Scholar] [CrossRef]
- Rattunde, M.; Schmitz, J.; Kiefer, R.; Wagner, J. Comprehensive analysis of the internal losses in 2.0 μm (AlGaIn)(AsSb) quantum-well diode lasers. Appl. Phys. Lett. 2004, 84, 4750–4752. [Google Scholar] [CrossRef]
- Chen, J.F.; Kipshidze, G.; Shterengas, L. High-Power 2 μm Diode Lasers With Asymmetric Waveguide. IEEE J. Quantum Electron. 2010, 46, 1464–1469. [Google Scholar] [CrossRef]
- Xie, S.W.; Zhang, Y.; Yang, C.A.; Huang, S.S.; Yuan, Y.; Zhang, Y.; Shang, J.M.; Shao, F.H.; Xu, Y.Q.; Ni, H.Q.; et al. High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars. Chin. Phys. B 2019, 28, 4. [Google Scholar] [CrossRef]
- Archambault, J.L.; Grubb, S.G. Fiber gratings in lasers and amplifiers. J. Light. Technol. 1997, 15, 1378–1390. [Google Scholar] [CrossRef]
- Guan, X.C.; Yang, C.S.; Gu, Q.; Wang, W.W.; Tan, T.Y.; Zhao, Q.L.; Lin, W.; Wei, X.M.; Yang, Z.M.; Xu, S.H. 55 W kilohertz-linewidth core- and in-band-pumped linearly polarized single-frequency fiber laser at 1950 nm. Opt. Lett. 2020, 45, 2343–2346. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, P.; Wang, X.L.; Xiao, H.; Si, L. 102 W monolithic single frequency Tm-doped fiber MOPA. Opt. Express 2013, 21, 32386–32392. [Google Scholar] [CrossRef]
- Yang, C.A.; Xie, S.W.; Zhang, Y.; Shang, J.M.; Huang, S.S.; Yuan, Y.; Shao, F.H.; Zhang, Y.; Xu, Y.Q.; Niu, Z.C. High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm. Appl. Phys. Lett. 2019, 114, 5. [Google Scholar] [CrossRef]
- Luo, H.; Yang, C.; Xie, S.; Chai, X.; Huang, S.; Zhang, Y.; Xu, Y.; Niu, Z. High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength. J. Semicond. 2018, 39, 104007. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Yang, C.; Chen, Y.; Yu, H.; Shi, J.; Su, X.; Zhang, Y.; Xu, Y.; Ni, H.; Niu, Z. Coupling Performance Enhancement of GaSb-Based Single-Transverse-Mode Lasers with Reduced Beam Divergence Obtained via near Field Modulation. Photonics 2022, 9, 942. https://doi.org/10.3390/photonics9120942
Wang T, Yang C, Chen Y, Yu H, Shi J, Su X, Zhang Y, Xu Y, Ni H, Niu Z. Coupling Performance Enhancement of GaSb-Based Single-Transverse-Mode Lasers with Reduced Beam Divergence Obtained via near Field Modulation. Photonics. 2022; 9(12):942. https://doi.org/10.3390/photonics9120942
Chicago/Turabian StyleWang, Tianfang, Chengao Yang, Yihang Chen, Hongguang Yu, Jianmei Shi, Xiangbin Su, Yu Zhang, Yingqiang Xu, Haiqiao Ni, and Zhichuan Niu. 2022. "Coupling Performance Enhancement of GaSb-Based Single-Transverse-Mode Lasers with Reduced Beam Divergence Obtained via near Field Modulation" Photonics 9, no. 12: 942. https://doi.org/10.3390/photonics9120942
APA StyleWang, T., Yang, C., Chen, Y., Yu, H., Shi, J., Su, X., Zhang, Y., Xu, Y., Ni, H., & Niu, Z. (2022). Coupling Performance Enhancement of GaSb-Based Single-Transverse-Mode Lasers with Reduced Beam Divergence Obtained via near Field Modulation. Photonics, 9(12), 942. https://doi.org/10.3390/photonics9120942