Molecular and Supramolecular Structure of a New Luminescent Hybrid Compound: (C5N2H14)2[BiBr6]Br·H2O
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leong, W.L.; Ooi, Z.E.; Sabba, D.; Yi, C.Y.; Zakeeruddin, S.M.; Graetzel, M.; Gordon, J.M.; Katz, E.A.; Mathews, N. Identifying Fundamental Limitations in Halide Perovskite Solar Cells. Adv. Mater. 2016, 28, 2439–2445. [Google Scholar] [CrossRef]
- Dimesso, L.; Stöhr, M.; Das, C.; Mayer, T.; Jaegermann, W. Investigation on the properties of hybrid CH3NH3SnxI3 (0.9 ≤ x ≤ 1.4) perovskite systems. J. Mater. Res. 2017, 32, 4132–4141. [Google Scholar] [CrossRef]
- Zhu, Z.; Chueh, C.-C.; Li, N.; Mao, C.; Jen, A.K.-Y. Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Adv. Mater. 2018, 30, 1703800. [Google Scholar] [CrossRef] [PubMed]
- Yelovik, N.A.; Mironov, A.V.; Bykov, M.A.; Kuznetsov, A.N.; Grigorieva, A.V.; Wei, Z.; Dikarev, E.V.; Shevelkov, A.V. Iodobismutates Containing One-Dimensional BiI4– Anions as Prospective Light-Harvesting Materials: Synthesis, Crystal and Electronic Structure, and Optical Properties. Inorg. Chem. 2016, 55, 4132–4140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, X.; Li, L.; Sun, Z.; Han, S.; Wu, Z.; Luo, J. Triiodide-induced band-edge reconstruction of a lead-free perovskite-derivative hybrid for strong light absorption. Chem. Mater. 2018, 30, 4081–4088. [Google Scholar] [CrossRef]
- Turkevych, I.; Kazaoui, S.; Shirakawa, N.; Fukuda, N. Potential of AgBiI4 rudorffites for indoor photovoltaic energy harvesters in autonomous environmental nanosensors. Jap. J. Appl. Phys. 2021, 60, SCCE06. [Google Scholar] [CrossRef]
- Kundu, K.; Acharyya, P.; Maji, K.; Sasmal, R.; Agasti, S.S.; Biswas, K. Synthesis and Localized Photoluminescence Blinking of Lead-Free 2D Nanostructures of Cs3Bi2I6Cl3 Perovskite. Angew. Chem. Int. Ed. 2020, 59, 13093–13100. [Google Scholar] [CrossRef]
- Dey, A.; Richter, A.F.; Debnath, T.; Huang, H.; Polavarapu, L.; Feldmann, J. Transfer of Direct to Indirect Bound Excitons by Electron Intervalley Scattering in Cs2AgBiBr6 Double Perovskite Nanocrystals. ACS Nano 2020, 14, 5855–5861. [Google Scholar] [CrossRef]
- Anyfantis, G.C.; Ioannou, A.; Barkaoui, H.; Abid, Y.; Psycharis, V.; Raptopoulou, C.P.; Mousdis, G.A. Hybrid halobismuthates as prospective light-harvesting materials: Synthesis, crystal, optical properties and electronic structure. Polyhedron 2020, 175, 114180. [Google Scholar] [CrossRef]
- Kotov, V.Y.; Ilyukhin, A.B.; Sadovnikov, A.A.; Birin, K.P.; Simonenko, N.P.; Nguyen, H.T.; Baranchikov, A.E.; Kozyukhin, S.A. Bis(4-cyano-1-pyridino)pentane halobismuthates. Light-harvesting material with an optical band gap of 1.59 eV. Mend. Commun. 2017, 27, 271–273. [Google Scholar] [CrossRef]
- McCall, K.M.; Stoumpos, C.C.; Kostina, S.S.; Kanatzidis, M.G.; Wessels, B.W. Strong Electron−Phonon Coupling and Self-Trapped Excitons in the Defect Halide Perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater. 2017, 29, 4129–4145. [Google Scholar] [CrossRef]
- Shestimerova, T.A.; Yelavik, N.A.; Mironov, A.V.; Kuznetsov, A.N.; Bykov, M.A.; Grigorieva, A.V.; Utochnikova, L.S.V.V. From Isolated Anions to Polymer Structures through Linking with I2: Synthesis, Structure, and Properties of Two Complex Bismuth (III) Iodine Iodides. Inorg. Chem. 2018, 57, 4077–4087. [Google Scholar] [CrossRef] [PubMed]
- Goforth, A.M.; Tershansy, M.A.; Smith, M.D.; Peterson, L., Jr.; Kelley, J.G.; DeBenedetti, W.J.; Zur Loye, H.C. Structural Diversity and Thermochromic Properties of Iodobismuthate Materials Containing d-Metal Coordination Cations: Observation of a High Symmetry [Bi3I11]2– Anion and of Isolated I– Anions. J. Am. Chem. Soc. 2011, 133, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Gagor, A.; Weclawik, M.; Bondzior, B.; Jakubas, R. Periodic and incommensurately modulated phases in a (2-methylimidazolium) tetraiodobismuthate (iii) thermochromic organic–inorganic hybrid. CrystEngComm 2015, 27, 3286–3297. [Google Scholar] [CrossRef]
- Hao, P.; Wang, W.; Shen, J.; Fu, Y. Non-transient thermo-/photochromism of iodobismuthate hybrids directed by solvated metal cations. Dalton Trans. 2020, 49, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- Jakubas, R.; Gągor, A.; Winiarski, M.J.; Ptak, M.; Piecha-Bisiorek, A.; Ciżman, A. Ferroelectricity in Ethylammonium Bismuth-Based Organic−Inorganic Hybrid: (C2H5NH3)2[BiBr5]. Inorg. Chem. 2020, 59, 3417–3427. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Sun, D.-S.; Gao, J.-X.; Hua, X.-N.; Chen, X.-G.; Mei, G.-Q.; Liao, W.-Q. A Semiconducting Organic–Inorganic Hybrid Perovskite-type Non-ferroelectric Piezoelectric with Excellent Piezoelectricity. Chem. Asian J. 2019, 14, 1028–1033. [Google Scholar] [CrossRef]
- Szklarz, P.; Gągor, A.; Jakubas, R.; Zieliński, P.; Piecha-Bisiorek, A.; Jakub Cichos, J.; Karbowiak, M.; Bator, G.; Ciżman, A. Lead-free hybrid ferroelectric material based on formamidine: [NH2CHNH2]3Bi2I9. J. Mater. Chem. C 2019, 7, 3003–3014. [Google Scholar] [CrossRef]
- Dehnhardt, N.; Axt, M.; Zimmermann, J.; Yang, M.; Mette, G.; Heine, J. Band-Gap Tunable, Chiral Hybrid Metal Halides Displaying Second Harmonic Generation. Chem. Mater. 2020, 32, 4801–4807. [Google Scholar] [CrossRef]
- Benin, B.M.; McCall, K.M.; Wörle, M.; Borgeaud, D.; Vonderach, T.; Sakhatskyi, K.; Yakunin, S.; Günther, D.; Kovalenko, M.V. Lone-Pair-Induced Structural Ordering in the Mixed-Valent 0D Metal-Halides Rb23BiIIIxSbIII7–xSbV2Cl54 (0 ≤ x ≤ 7). Chem. Mater. 2021, 33, 2408–2419. [Google Scholar] [CrossRef]
- Lichtenberger, N.; Massa, W.; Dehnen, S. Polybismuthide Anions as Ligands: The Homoleptic Complex [(Bi7)Cd(Bi7)]4− and the Ternary Cluster [(Bi6)Zn3(TlBi5)]4−. Angew. Chem. Int. Ed. 2019, 58, 3222–3226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranov, A.I.; Kloo, L.; Olenev, A.V.; Popovkin, B.A.; Romanenko, A.I.; Shevelkov, A.V. Unique Metallic Wires ∞1Ni8Bi8S in a Novel Quasi-1D Compound. Synthesis, Crystal and Electronic Structure, and Properties of Ni8Bi8SI. J. Am. Chem. Soc. 2001, 123, 12375–12379. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.; Ruck, M. Homo- and heteroatomic polycations of groups 15 and 16. Recent advances in synthesis and isolation using room temperature ionic liquids. Coord. Chem. Rev. 2013, 23–24, 2892–2903. [Google Scholar] [CrossRef]
- Hebecker, C. Über Alkalihexafluorobismutate (V). Z. Anorg. Allg. Chem. 1970, 376, 236–244. [Google Scholar] [CrossRef]
- Popov, A.I.; Val’kovskii, M.D.; Sukhoverkhov, V.F. The structures of alkaline-earth metal fluoroantimonates (V) and fluorobismuthates (V). Russ. J. Inorg. Chem. 1990, 35, 1608–1611. [Google Scholar]
- Adonin, S.A.; Sokolov, M.N.; Fedin, V.P. Polynuclear halide complexes of Bi (III): From structural diversity to the new properties. Coord. Chem. Rev. 2016, 312, 1–21. [Google Scholar] [CrossRef]
- Mercier, N.; Louvain, N.; Bi, W. Structural diversity and retro-crystal engineering analysis of iodometalate hybrids. CrystEngComm 2009, 11, 720–734. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.-H.; Wang, Y.; Doert, T.; Ruck, M. The Polymorphic Nature of M3BiBr6 Halides (M = Cs, Rb) and their Reversible Intercalation with Water to Isomorphous Hydrates at Room Temperature. Z. Anorg. Allg. Chem. 2021, 647, 478–484. [Google Scholar] [CrossRef]
- Yelovik, N.A.; Shestimerova, T.A.; Bykov, M.A.; Wei, Z.; Dikarev, E.V.; Shevelkov, A.V. Synthesis, structure, and properties of LnBiI6⋅13H2O (Ln = La, Nd). Russ. Chem. Bull. Int. Ed. 2017, 66, 1196–1201. [Google Scholar] [CrossRef]
- Zhang, Z.-P.; Feng, Q.-Y.; Wei, Y.-L.; Gao, Z.-Y.; Wang, Z.-W.; Wang, Y.-M. Three Iodobismuthates Hybrids Displaying Mono-nuclear, Dimer and 1-D Arrangements Templated by 1,4-diazabicyclo[2.2.2]octane Derivatives: Semiconductor and Photocurrent Response Properties. J. Clust. Sci. 2018, 29, 725–735. [Google Scholar] [CrossRef]
- Shestimerova, T.A.; Golubev, N.A.; Grigorieva, A.V.; Bykov, M.A.; Wei, Z.; Dikarev, E.V.; Shevelkov, A.V. Supramolecular organization of the organic-inorganic hybrid [{p-(CH3)2NH—C6H4—NH3}2Cl] [BiI6]: Assembly of a three-dimensional structure via covalent and non-covalent interactions. Russ. Chem. Bull. 2021, 70, 39–46. [Google Scholar] [CrossRef]
- Pandey, S.; Nair, A.; Andrews, A.P.; Venugopal, A. 2,6-Diisopropylanilinium Bromobismuthates. Eur. J. Inorg. Chem. 2017, 798–804. [Google Scholar] [CrossRef]
- Chaari, N.; Hamdi, B.; Chaabouni, S.; Zouari, F. Synthesis and Crystal Structure of [NH3(CH2)2NH3]2BrBiBr6·H2O. Anal. Sci. 2007, 23, x183–x184. [Google Scholar] [CrossRef] [Green Version]
- Kotov, V.Y.; Buikin, P.A.; Simonenko, N.P.; Ilyukhin, A.B. Hybrid bromobismuthates: Synthesis, thermal stability and crystal structure of multicharged 3-ammoniopyridinium derivatives. J. Mol. Struct. 2020, 1221, 128807. [Google Scholar] [CrossRef]
- Samet, A.; Boughzala, H.; Khemakhem, H.; Abid, Y. Synthesis, characterization and non-linear optical properties of Tetrakis (dimethylammonium) Bromide Hexabromobismuthate: {[(CH3)2NH2]+}4·Br−·[BiBr6]3−. J. Mol. Struct. 2010, 984, 23–29. [Google Scholar] [CrossRef]
- Adonin, S.A.; Gorokh, I.D.; Novikov, A.S.; Samsonenko, D.G.; Korolkov, I.V.; Sokolov, M.N.; Fedin, V.P. Bromobismuthates: Cation-induced structural diversity and Hirshfeld surface analysis of cation–anion contacts. Polyhedron 2018, 139, 282–288. [Google Scholar] [CrossRef]
- Shestimerova, T.A.; Mironov, A.V.; Bykov, M.A.; Grigorieva, A.V.; Wei, Z.; Dikarev, E.V.; Shevelkov, A.V. Assembling Polyiodides and Iodobismuthates Using a Template Effect of a Cyclic Diammonium Cation and Formation of a Low-Gap Hybrid Iodobismuthate with High Thermal Stability. Molecules 2020, 25, 2765. [Google Scholar] [CrossRef]
- Adonin, S.A.; Gorokh, I.D.; Samsonenko, D.G.; Korol’kov, I.V.; Sokolov, M.N.; Fedin, V.P. New structural type in the chemistry of bismuth (III) polynuclear halide complexes: Synthesis and crystal structure of (H3O)3(diquat)6{[BiBr5]}6[BiBr6]·2H2O. Russ. J. Inorg. Chem. 2016, 61, 958–963. [Google Scholar] [CrossRef]
- Essid, M.; Aloui, Z.; Ferretti, V.; Lefebvre, F.; Ben Nasr, C. Crystal structure, vibrational and optical properties of a new Bi (III) halide complex: [C6H16N2]5Bi2Br10(BiBr6)2·2H2O. Inorg. Chim. Acta 2017, 466, 235. [Google Scholar] [CrossRef]
- Li, M.; Li, R.K. Two new bismuth thiourea bromides: Crystal structure, growth, and characterization. Dalton Trans. 2014, 43, 2577–2580. [Google Scholar] [CrossRef]
- Kalinchenko, F.B.; Borzenkova, M.P.; Novoselova, A.V. Solid-phase Interaction of Bismuth(III) and Antimony(III) Fluorides with Alkali Metal Fluorides. Russ. J. Inorg. Chem. 1983, 28, 1336. [Google Scholar]
- Chernyshov, I.Y.; Ananyev, I.V.; Pidko, E.A. Revisiting van der Waals Radii: From Comprehensive Structural Analysis to Knowledge-Based Classification of Interatomic Contacts. ChemPhysChem 2020, 21, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S. A cartography of the van der Waals territories. Dalton Trans. 2013, 42, 8617–8636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buikin, P.A.; Ilyukhin, A.B.; Laurinavichyute, V.K.; Kotov, V.Y. Methylviologen Bromobismuthates. Russ. J. Inorg. Chem. 2021, 66, 133–138. [Google Scholar] [CrossRef]
- Shestimerova, T.A.; Shevelkov, A.V. Metal-inorganic frameworks with pnictogen linkers. Russ. Chem. Rev. 2018, 87, 28–48. [Google Scholar] [CrossRef]
- Sharma, M.; Yangui, A.; Whiteside, V.R.; Sellers, I.R.; Han, D.; Chen, S.; Du, M.-H.; Saparov, B. Rb4Ag2BiBr9: A Lead-Free Visible Light Absorbing Halide Semiconductor with Improved Stability. Inorg. Chem. 2019, 58, 4446–4455. [Google Scholar] [CrossRef] [PubMed]
- Skorokhod, A.; Mercier, N.; Allain, M.; Manceau, M.; Katan, C.; Kepenekian, M. From Zero- to One-Dimensional, Opportunities and Caveats of Hybrid Iodobismuthates for Optoelectronic Applications. Inorg. Chem. 2021, 60, 17123–17131. [Google Scholar] [CrossRef]
- Ozòrio, M.S.; Oliveira, W.X.C.; Silveira, J.F.R.V.; Nogueira, A.F.; Da Silva, J.L.F. Novel zero-dimensional lead-free bismuth based perovskites: From synthesis to structural and optoelectronic characterization. Mater. Adv. 2020, 1, 3439–3448. [Google Scholar] [CrossRef]
- Tershansy, M.A.; Goforth, A.M.; Gardinier, J.R.; Smith, M.D.; Peterson Jr., L.; zur Loye, H.-C. Solvothermal syntheses, high- and low-temperature crystal structures, and thermochromic behavior of [1,2-diethyl-3,4,5-trimethyl-pyrazolium]4[Bi4I16] and [1,10-phenanthrolinium][BiI4]·(H2O). Solid State Sci. 2007, 9, 410–420. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, C.; Tian, Y.; Siegrist, T.; Ma, B. Low-Dimensional Organometal Halide Perovskites. ACS Energy Lett. 2018, 3, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, M.; Ning, L.; Zhang, R.; Molokeev, M.; Zhao, J.; Yang, S.; Han, K.; Xia, Z. Broad-Band Emission in a Zero-Dimensional Hybrid Organic [PbBr6] Trimer with Intrinsic Vacancies. J. Phys. Chem. Lett. 2019, 10, 1337–1341. [Google Scholar] [CrossRef] [PubMed]
- Zhoua, G.; Sua, B.; Huanga, J.; Zhang, O.; Xiaa, Z. Broad-band emission in metal halide perovskites: Mechanism, materials, and applications. Mater. Sci. Eng. R Rep. 2020, 141, 100548. [Google Scholar] [CrossRef]
- Bruker Corporation. SMART (Control) and SAINT (Integration) Software, Version 5.0; Bruker AXS Inc.: Madison, WI, USA, 1997. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Kubelka, P.; Munk, F. Ein Beitrag zur Optik der Farbanstriche (Contribution to the optic of paint). Z. Tech. Phys. 1931, 12, 593–601. [Google Scholar]
- Fedeli, P.; Gazza, F.; Calestani, D.; Ferro, P.; Besagni, T.; Zappettini, A.; Calestani, G.; Marchi, E.; Ceroni, P.; Mosca, R. Influence of the synthetic procedures on the structural and optical properties of mixed-halide (Br, I) perovskite films. J. Phys. Chem. C 2015, 119, 21304–21313. [Google Scholar] [CrossRef]
Atoms | Distance, Å | Atoms | Angle, ° |
---|---|---|---|
Bi1–Br1 Bi1–Br2 Bi1–Br3 Bi1–Br4 Bi1–Br5 Bi1–Br6 | 2.8057(4) 2.9063(4) 3.0119(4) 2.7977(4) 2.7785(4) 2.8522(4) | Br1—Bi1—Br4 Br2—Bi1—Br6 Br3—Bi1—Br5 | 173.576(13) 177.504(13) 175.040(13) |
D–H···A | d (D–H), Å | d (H···A), Å | d(D···A), Å | Angle (D–H···A), ° |
---|---|---|---|---|
N1–H1A···Br1 | 0.91 | 2.69 | 3.495 (3) | 147 |
N1–H1B···Br7 | 0.91 | 2.41 | 3.200 (3) | 144 |
N2–H2A···Br7 | 0.91 | 2.44 | 3.267 (3) | 151 |
N2-H2B···Br4 | 0.91 | 2.67 | 3.463 (4) | 146 |
N3-H3C···O1W | 0.91 | 1.98 | 2.695 (5) | 134 |
N3-H3C···Br7 | 0.91 | 2.62 | 3.448 (4) | 151 |
N4-H4C···Br7 | 0.91 | 2.45 | 3.331 (4) | 162 |
N4-H4D···Br3 | 0.91 | 2.53 | 3.263 (4) | 137 |
OW1-H1WA···Br1 | 0.85 (4) | 2.88 (5) | 3.513 (4) | 133 (5) |
OW1-H1WB···Br3 | 0.87 (4) | 2.53 (4) | 3.351 (4) | 158 (6) |
Empirical Formula | C10H30BiBr7N4O |
---|---|
Temperature (K) | 110 (2) |
Crystal system | Orthorhombic |
Space group | Pbca |
Cell parameter, a, b, c [Å] | 15.0775 (2) 15.7569 (2), 20.7881 (4) |
Volume [Å3] | 4938.73 (13) |
Z | 8 |
Density (calculated) [g cm–3] | 2.665 |
Diffractometer | Bruker D8 Quest |
Radiation, λ [Å] | MoK\a, 0.71073 |
Data collection range (°) | 2.111–29.998 |
R1 [F0 > 4σF0] | 0.0278 |
wR2 [F0 > 4σF0] | 0.0513 |
Goodness-of-fit | 1.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bykov, A.V.; Shestimerova, T.A.; Bykov, M.A.; Lyssenko, K.A.; Korshunov, V.M.; Metlin, M.T.; Taydakov, I.V.; Shevelkov, A.V. Molecular and Supramolecular Structure of a New Luminescent Hybrid Compound: (C5N2H14)2[BiBr6]Br·H2O. Inorganics 2022, 10, 181. https://doi.org/10.3390/inorganics10110181
Bykov AV, Shestimerova TA, Bykov MA, Lyssenko KA, Korshunov VM, Metlin MT, Taydakov IV, Shevelkov AV. Molecular and Supramolecular Structure of a New Luminescent Hybrid Compound: (C5N2H14)2[BiBr6]Br·H2O. Inorganics. 2022; 10(11):181. https://doi.org/10.3390/inorganics10110181
Chicago/Turabian StyleBykov, Andrey V., Tatiana A. Shestimerova, Mikhail A. Bykov, Konstantin A. Lyssenko, Vladislav M. Korshunov, Mikhail T. Metlin, Ilya V. Taydakov, and Andrei V. Shevelkov. 2022. "Molecular and Supramolecular Structure of a New Luminescent Hybrid Compound: (C5N2H14)2[BiBr6]Br·H2O" Inorganics 10, no. 11: 181. https://doi.org/10.3390/inorganics10110181
APA StyleBykov, A. V., Shestimerova, T. A., Bykov, M. A., Lyssenko, K. A., Korshunov, V. M., Metlin, M. T., Taydakov, I. V., & Shevelkov, A. V. (2022). Molecular and Supramolecular Structure of a New Luminescent Hybrid Compound: (C5N2H14)2[BiBr6]Br·H2O. Inorganics, 10(11), 181. https://doi.org/10.3390/inorganics10110181