Inorganic Finishing for Textile Fabrics: Recent Advances in Wear-Resistant, UV Protection and Antimicrobial Treatments
Abstract
:1. Introduction
- 1.
- The formation of well-adhering transparent oxide layers on textiles due to particle-diameter dimensions (smaller than 50 nm) of the modified silica or other metal oxide-based nanosols;
- 2.
- High stability of these inorganic oxide layers against heat, light, microbial and chemical attacks;
- 3.
- The capability of these oxide coatings to improve the mechanical properties of the textiles (e.g., wear and abrasion resistance), thus further offering possible methods of varying the surface properties and high mechanical strength;
- 4.
- Layer porosity and the degree of immobilization of the embedded compounds (e.g., organic, or biological compounds, inorganic particles, and polymers) for whom oxide coatings can serve as carriers, can be easily controlled;
- 5.
- Common textile finishing processes (i.e., pad, exhaustion, dip-coating or spraying) can be used for coating application at room temperature and normal pressure.
2. Inorganic-Based Materials for Improving Wear Resistance of Textile Fabrics
3. Inorganic-Based Materials for UV Protection Textile Finishing
4. Inorganic-Based Materials for Antimicrobial Textile Finishing
4.1. Titanium-Based Antimicrobial Textile Finishing
4.2. Silver-Based Antimicrobial Textile Finishing
4.3. Zinc-Based Antibacterial Textile Finishing
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schindler, W.D.; Hauser, P.J. Chemical Finishing of Textiles; Woodhead Publishing Ltd.: Cambridge, UK; CRC Press LLC: Cambridge, UK, 2004. [Google Scholar]
- Bozzi, A.; Yuranova, T.; Kiwi, J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J. Photochem. Photobiol. A Chem. 2005, 172, 27–34. [Google Scholar] [CrossRef]
- Gray, J.E.; Norton, P.R.; Alnouno, R.; Marold, C.L.; Valvano, M.A.; Griffiths, K. Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials 2003, 24, 2759–2765. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Niu, M.; Wei, L.; Hou, W.; Liu, X. The structural analysis of biomacromolecule wool fiber with Ag-loading SiO2 nano-antibacterial agent by UV radiation. J. Photochem. Photobiol. A Chem. 2007, 188, 98–105. [Google Scholar] [CrossRef]
- Hegemann, D.; Hossain, M.M.; Balazs, D.J. Nanostructured plasma coatings to obtain multifunctional textile surfaces. Prog. Org. Coatings 2007, 58, 237–240. [Google Scholar] [CrossRef]
- He, J.; Kunitake, T.; Nakao, A. Facile In Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers. Chem. Mater. 2003, 15, 4401–4406. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, R.; Banerjee, U. Biotechnological applications of cyclodextrins. Biotechnol. Adv. 2002, 20, 341–359. [Google Scholar] [CrossRef]
- Park, S.-H.; Oh, S.-G.; Mun, J.-Y.; Han, S.-S. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf. B Biointerfaces 2006, 48, 112–118. [Google Scholar] [CrossRef]
- Sfameni, S.; Rando, G.; Marchetta, A.; Scolaro, C.; Cappello, S.; Urzì, C.; Visco, A.; Plutino, M.R. Development of Eco-Friendly Hydrophobic and Fouling-Release Coatings for Blue-Growth Environmental Applications: Synthesis, Mechanical Characterization and Biological Activity. Gels 2022, 8, 528. [Google Scholar] [CrossRef]
- Sfameni, S.; Rando, G.; Galletta, M.; Ielo, I.; Brucale, M.; De Leo, F.; Cardiano, P.; Cappello, S.; Visco, A.; Trovato, V.; et al. Design and Development of Fluorinated and Biocide-Free Sol–Gel Based Hybrid Functional Coatings for Anti-Biofouling/Foul-Release Activity. Gels 2022, 8, 538. [Google Scholar]
- Trovato, V.; Colleoni, C.; Castellano, A.; Plutino, M.R. The key role of 3-glycidoxypropyltrimethoxysilane sol–gel precursor in the development of wearable sensors for health monitoring. J. Sol-Gel Sci. Technol. 2018, 87, 27–40. [Google Scholar] [CrossRef]
- Sakka, S. Sol-Gel Science and Technology: Topics and Fundamental Research and Applications; Sakka, S., Ed.; Kluwer Academic Publishers: Norwell, MA, USA, 2003; ISBN 978-1402072918. [Google Scholar]
- Mahltig, B.; Textor, T. Nanosols and Textiles; World Scientific: Singapore, 2008; ISBN 978-981-283-350-1. [Google Scholar]
- Alongi, J.; Ciobanu, M.; Malucelli, G. Sol–gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: Optimisation of the process and evaluation of the durability. Cellulose 2011, 18, 167–177. [Google Scholar] [CrossRef]
- Brancatelli, G.; Colleoni, C.; Massafra, M.R.; Rosace, G. Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polym. Degrad. Stab. 2011, 96, 483–490. [Google Scholar] [CrossRef]
- Malucelli, G. Sol–Gel Flame Retardant and/or Antimicrobial Finishings for Cellulosic Textiles. In Handbook of Renewable Materials for Coloration and Finishing; Yusuf, M., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2018; pp. 501–520. [Google Scholar]
- Xing, Y.; Yang, X.; Dai, J. Antimicrobial finishing of cotton textile based on water glass by sol–gel method. J. Sol-Gel Sci. Technol. 2007, 43, 187–192. [Google Scholar] [CrossRef]
- Mahltig, B.; Fiedler, D.; Böttcher, H. Antimicrobial Sol?Gel Coatings. J. Sol-Gel Sci. Technol. 2004, 32, 219–222. [Google Scholar] [CrossRef]
- Mavrić, Z.; Tomšič, B.; Simončič, B. Recent advances in the ultraviolet protection finishing of textiles. Tekstilec 2018, 61, 201–220. [Google Scholar] [CrossRef]
- Huang, K.S.; Nien, Y.H.; Hsiao, K.C.; Chang, Y.S. Application of DMEU/SiO2 gel solution in the antiwrinkle finishing of cotton fabrics. J. Appl. Polym. Sci. 2006, 102, 4136–4143. [Google Scholar] [CrossRef]
- Aķ it, A.C.; Onar, N. Leaching and fastness behavior of cotton fabrics dyed with different type of dyes using sol-gel process. J. Appl. Polym. Sci. 2008, 109, 97–105. [Google Scholar] [CrossRef]
- Mahltig, B.; Textor, T. Combination of silica sol and dyes on textiles. J. Sol-Gel Sci. Technol. 2006, 39, 111–118. [Google Scholar] [CrossRef]
- Li, F.-Y.; Xing, Y.-J.; Ding, X. Immobilization of papain on cotton fabric by sol–gel method. Enzyme Microb. Technol. 2007, 40, 1692–1697. [Google Scholar] [CrossRef]
- Xue, C.-H.; Jia, S.-T.; Chen, H.-Z.; Wang, M. Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization. Sci. Technol. Adv. Mater. 2008, 9, 035001. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Zhou, Q.; Chen, G.; Sun, G.; Xing, T. Recent developments in preparation, properties, and applications of superhydrophobic textiles. Text. Res. J. 2022, 92, 3857–3874. [Google Scholar] [CrossRef]
- Trovato, V.; Mezzi, A.; Brucale, M.; Rosace, G.; Rosaria Plutino, M. Alizarin-functionalized organic-inorganic silane coatings for the development of wearable textile sensors. J. Colloid Interface Sci. 2022, 617, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Trovato, V.; Teblum, E.; Kostikov, Y.; Pedrana, A.; Re, V.; Nessim, G.D.; Rosace, G. Sol-gel approach to incorporate millimeter-long carbon nanotubes into fabrics for the development of electrical-conductive textiles. Mater. Chem. Phys. 2020, 240, 122218. [Google Scholar] [CrossRef]
- Trovato, V.; Teblum, E.; Kostikov, Y.; Pedrana, A.; Re, V.; Nessim, G.D.; Rosace, G. Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution. J. Colloid Interface Sci. 2021, 586, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Libertino, S.; Plutino, M.R.; Rosace, G. Design and development of wearable sensing nanomaterials for smart textiles. AIP Conf. Proc. 2018, 1990, 020016. [Google Scholar]
- Colleoni, C.; Massafra, M.R.; Rosace, G. Photocatalytic properties and optical characterization of cotton fabric coated via sol–gel with non-crystalline TiO2 modified with poly(ethylene glycol). Surf. Coatings Technol. 2012, 207, 79–88. [Google Scholar] [CrossRef]
- Bhosale, R.R.; Shende, R.V.; Puszynski, J.A. Thermochemical water-splitting for H2 generation using sol-gel derived Mn-ferrite in a packed bed reactor. Int. J. Hydrog. Energy 2012, 37, 2924–2934. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, C. Organic–inorganic hybrid silica film coated for improving resistance to capsicum oil on natural substances through sol–gel route. J. Sol-Gel Sci. Technol. 2012, 64, 743–749. [Google Scholar] [CrossRef]
- Vasiljević, J.; Tomšič, B.; Jerman, I.; Simončič, B. Organofunkcionalni trialkoksisilanski prekurzorji sol-gel za kemijsko modifikacijo tekstilnih vlaken. Tekstilec 2017, 60, 198–213. [Google Scholar] [CrossRef]
- Sfameni, S.; Del Tedesco, A.; Rando, G.; Truant, F.; Visco, A.; Plutino, M.R. Waterborne Eco-Sustainable Sol–Gel Coatings Based on Phytic Acid Intercalated Graphene Oxide for Corrosion Protection of Metallic Surfaces. Int. J. Mol. Sci. 2022, 23, 12021. [Google Scholar]
- Abu Bakar, N.H.; Yusup, H.M.; Ismail, W.N.W.; Zulkifli, N.F. Sol-Gel Finishing for Protective Fabrics. Biointerface Res. Appl. Chem. 2022, 13, 283. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Venkataraman, M.; Kremenakova, D.; Militky, J.; Zhou, Y. Progress in Sol-Gel Technology for the Coatings of Fabrics. Materials 2020, 13, 1838. [Google Scholar] [CrossRef] [Green Version]
- Krzak, J.; Szczurek, A.; Babiarczuk, B.; Gąsiorek, J.; Borak, B. Sol–gel surface functionalization regardless of form and type of substrate. In Handbook of Nanomaterials for Manufacturing Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 111–147. [Google Scholar]
- Plutino, M.R.; Colleoni, C.; Donelli, I.; Freddi, G.; Guido, E.; Maschi, O.; Mezzi, A.; Rosace, G. Sol-gel 3-glycidoxypropyltriethoxysilane finishing on different fabrics: The role of precursor concentration and catalyst on the textile performances and cytotoxic activity. J. Colloid Interface Sci. 2017, 506, 504–517. [Google Scholar] [CrossRef]
- Mohammed, M.K.A. Sol-gel synthesis of Au-doped TiO2 supported SWCNT nanohybrid with visible-light-driven photocatalytic for high degradation performance toward methylene blue dye. Optik 2020, 223, 165607. [Google Scholar] [CrossRef]
- Ramesan, M.T.; Varghese, M.P.J.; Periyat, P. Silver-Doped Zinc Oxide as a Nanofiller for Development of Poly(vinyl alcohol)/Poly(vinyl pyrrolidone) Blend Nanocomposites. Adv. Polym. Technol. 2018, 37, 137–143. [Google Scholar] [CrossRef]
- Sivasamy, R.; Venugopal, P.; Mosquera, E. Synthesis of Gd2O3/CdO composite by sol-gel method: Structural, morphological, optical, electrochemical and magnetic studies. Vacuum 2020, 175, 109255. [Google Scholar] [CrossRef]
- Rando, G.; Sfameni, S.; Plutino, M.R. Development of Functional Hybrid Polymers and Gel Materials for Sustainable Membrane-Based Water Treatment Technology: How to Combine Greener and Cleaner Approaches. Gels 2023, 9, 9. [Google Scholar] [CrossRef]
- Anand, S.; Pauline, S.; Prabagar, C.J. Zr doped Barium hexaferrite nanoplatelets and RGO fillers embedded Polyvinylidenefluoride composite films for electromagnetic interference shielding applications. Polym. Test. 2020, 86, 106504. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Sopchenski Santos, L.; Vitry, V.; Paint, Y.; Olivier, M.-G. Improvement of the corrosion performance of AA2024 alloy by a duplex PEO/clay modified sol-gel nanocomposite coating. Surf. Coatings Technol. 2022, 434, 128168. [Google Scholar] [CrossRef]
- Serra, A.; Ramis, X.; Fernández-Francos, X. Epoxy Sol-Gel Hybrid Thermosets. Coatings 2016, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Schubert, U.; Huesing, N.; Lorenz, A. Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides. Chem. Mater. 1995, 7, 2010–2027. [Google Scholar] [CrossRef]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 15, e3592. [Google Scholar] [CrossRef]
- Boury, B.; Corriu, R.J.P. Auto-organisation of hybrid organic–inorganic materials prepared by sol–gel chemistry. Chem. Commun. 2002, 8, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H. New type of non-crystalline solids between inorganic and organic materials. J. Non. Cryst. Solids 1985, 73, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, C.; Rozes, L.; Ribot, F.; Laberty-Robert, C.; Grosso, D.; Sassoye, C.; Boissiere, C.; Nicole, L. “Chimie douce”: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chim. 2010, 13, 3–39. [Google Scholar] [CrossRef] [Green Version]
- Ismail, W.N.W. Sol–gel technology for innovative fabric finishing—A Review. J. Sol-Gel Sci. Technol. 2016, 78, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Ielo, I.; Giacobello, F.; Sfameni, S.; Rando, G.; Galletta, M.; Trovato, V.; Rosace, G.; Plutino, M.R. Nanostructured Surface Finishing and Coatings: Functional Properties and Applications. Materials 2021, 14, 2733. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. Sol–Gel Science: The Physics and Chemistry of Sol–Gel-Processing; A.P. Inc.: Boston, MA, USA, 1990. [Google Scholar]
- Reisfeld, R.; Jorgenson, C.K. (Eds.) Chemistry, Spectroscopy and Applications of Sol–Gel Glasses, Monograph Series Structure and Bonding; Springer: Berlin, Germany, 1992. [Google Scholar]
- Thim, G.P.; Oliveira, M.A.; Oliveira, E.D.; Melo, F.C. Sol–gel silica film preparation from aqueous solutions for corrosion protection. J. Non. Cryst. Solids 2000, 273, 124–128. [Google Scholar] [CrossRef]
- Sanchez, C.; Soler-Illia, G.J.D.A.; Ribot, F.; Grosso, D. Design of functional nano-structured materials through the use of controlled hybrid organic–inorganic interfaces. Comptes Rendus Chim. 2003, 6, 1131–1151. [Google Scholar] [CrossRef]
- Rando, G.; Sfameni, S.; Galletta, M.; Drommi, D.; Cappello, S.; Plutino, M.R. Functional Nanohybrids and Nanocomposites Development for the Removal of Environmental Pollutants and Bioremediation. Molecules 2022, 27, 4856. [Google Scholar] [CrossRef]
- Schottner, G. Hybrid Sol−Gel-Derived Polymers: Applications of Multifunctional Materials. Chem. Mater. 2001, 13, 3422–3435. [Google Scholar] [CrossRef]
- Francis, L.F. Sol-Gel Methods for Oxide Coatings. Mater. Manuf. Process. 1997, 12, 963–1015. [Google Scholar] [CrossRef]
- Monde, T.; Fukube, H.; Nemoto, F.; Yoko, T.; Konakahara, T. Preparation and surface properties of silica-gel coating films containing branched-polyfluoroalkylsilane. J. Non. Cryst. Solids 1999, 246, 54–64. [Google Scholar] [CrossRef]
- Haas, K.-H.; Amberg-Schwab, S.; Rose, K.; Schottner, G. Functionalized coatings based on inorganic–organic polymers (ORMOCER®s) and their combination with vapor deposited inorganic thin films. Surf. Coatings Technol. 1999, 111, 72–79. [Google Scholar] [CrossRef]
- Jung, J.-I.; Bae, J.Y.; Bae, B.-S. Characterization and mesostructure control of mesoporous fluorinated organosilicate films. J. Mater. Chem. 2004, 14, 1988–1994. [Google Scholar] [CrossRef]
- Sfameni, S.; Lawnick, T.; Rando, G.; Visco, A.; Textor, T.; Plutino, M.R. Functional Silane-Based Nanohybrid Materials for the Development of Hydrophobic and Water-Based Stain Resistant Cotton Fabrics Coatings. Nanomaterials 2022, 12, 3404. [Google Scholar] [CrossRef]
- Mennig, M.; Schmitt, M.; Schmidt, H. Synthesis of Ag-Colloids in Sol-Gel Derived SiO2-Coatings on Glass. J. Sol-Gel Sci. Technol. 1997, 8, 1035–1042. [Google Scholar] [CrossRef]
- Prokopenko, V.B.; Gurin, V.S.; Alexeenko, A.A.; Kulikauskas, V.S.; Kovalenko, D.L. Surface segregation of transition metals in sol-gel silica films. J. Phys. D Appl. Phys. 2000, 33, 3152–3155. [Google Scholar] [CrossRef]
- Dunn, B.; Zink, J.I. Optical properties of sol–gel glasses doped with organic molecules. J. Mater. Chem. 1991, 1, 903–913. [Google Scholar] [CrossRef]
- Reisfeld, R. Prospects of sol–gel technology towards luminescent materials. Opt. Mater. 2001, 16, 1–7. [Google Scholar] [CrossRef]
- Trovato, V.; Sfameni, S.; Rando, G.; Rosace, G.; Libertino, S.; Ferri, A.; Plutino, M.R. A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective. Molecules 2022, 27, 5709. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H. Nanoparticles by chemical synthesis, processing to materials and innovative applications. Appl. Organomet. Chem. 2001, 15, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Böhmer, M.R.; Keursten, T.A.P.M. Incorporation of pigments in TEOS derived matrices. J. Sol-Gel Sci. Technol. 2000, 19, 361–364. [Google Scholar] [CrossRef]
- Carturan, G.; Campostrini, R.; Diré, S.; Scardi, V.; De Alteriis, E. Inorganic gels for immobilization of biocatalysts: Inclusion of invertase-active whole cells of yeast (saccharomyces cerevisiae) into thin layers of SiO2 gel deposited on glass sheets. J. Mol. Catal. 1989, 57, L13–L16. [Google Scholar] [CrossRef]
- Livage, J.; Coradin, T.; Roux, C. Encapsulation of biomolecules in silica gels. J. Phys. Condens. Matter 2001, 13, R673–R691. [Google Scholar] [CrossRef]
- Puoci, F.; Saturnino, C.; Trovato, V.; Iacopetta, D.; Piperopoulos, E.; Triolo, C.; Bonomo, M.G.; Drommi, D.; Parisi, O.I.; Milone, C.; et al. Sol–Gel Treatment of Textiles for the Entrapping of an Antioxidant/Anti-Inflammatory Molecule: Functional Coating Morphological Characterization and Drug Release Evaluation. Appl. Sci. 2020, 10, 2287. [Google Scholar] [CrossRef] [Green Version]
- Novak, B.M. Hybrid Nanocomposite Materials?between inorganic glasses and organic polymers. Adv. Mater. 1993, 5, 422–433. [Google Scholar] [CrossRef]
- Pomogailo, A.D. Hybrid polymer-inorganic nanocomposites. Russ. Chem. Rev. 2000, 69, 53–80. [Google Scholar] [CrossRef]
- Böttcher, H.; Soltmann, U.; Mertig, M.; Pompe, W. Biocers: Ceramics with incorporated microorganisms for biocatalytic, biosorptive and functional materials development. J. Mater. Chem. 2004, 14, 2176–2188. [Google Scholar] [CrossRef]
- Böttcher, H.; Kallies, K.-H.; Haufe, H. Model investigations of controlled release of bioactive compounds from thin metal oxide layers. J. Sol-Gel Sci. Technol. 1997, 8, 651–654. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, J.; Dong, H.; Dong, J.H.; Qiu, K.; Jansen-Varnum, S.A. Preparation and Physisorption Characterization of D-Glucose-Templated Mesoporous Silica Sol−Gel Materials. Chem. Mater. 1999, 11, 2023–2029. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Eid, B.M.; Sharaf, S.M. Functional Finishes for Cotton-Based Textiles: Current Situation and Future Trends. In Textiles and Clothing: Environmental Concerns and Solutions; Shabbir, M., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2019; pp. 131–190. [Google Scholar]
- Mahltig, B.; Haufe, H.; Böttcher, H. Functionalisation of textiles by inorganic sol–gel coatings. J. Mater. Chem. 2005, 15, 4385–4398. [Google Scholar] [CrossRef]
- Attia, N.F.; Mohamed, A.; Hussein, A.; El-Demerdash, A.-G.M.; Kandil, S.H. Bio-inspired one-dimensional based textile fabric coating for integrating high flame retardancy, antibacterial, toxic gases suppression, antiviral and reinforcement properties. Polym. Degrad. Stab. 2022, 205, 110152. [Google Scholar] [CrossRef]
- Attia, N.F.; Osama, R.; Elashery, S.E.A.; Kalam, A.; Al-Sehemi, A.G.; Algarni, H. Recent Advances of Sustainable Textile Fabric Coatings for UV Protection Properties. Coatings 2022, 12, 1597. [Google Scholar] [CrossRef]
- Chen, F.; Zhai, L.; Yang, H.; Zhao, S.; Wang, Z.; Gao, C.; Zhou, J.; Liu, X.; Yu, Z.; Qin, Y.; et al. Unparalleled Armour for Aramid Fiber with Excellent UV Resistance in Extreme Environment. Adv. Sci. 2021, 8, 2004171. [Google Scholar] [CrossRef]
- Sui, Z.; Guo, Z.; Li, Y.; Zhang, Q.; Zu, B.; Zhao, X. Study on preparation and performance of multifunctional linen fabric finishing agent. Text. Res. J. 2022, 93. [Google Scholar] [CrossRef]
- Arik, B.; Karaman Atmaca, O.D. The effects of sol–gel coatings doped with zinc salts and zinc oxide nanopowders on multifunctional performance of linen fabric. Cellulose 2020, 27, 8385–8403. [Google Scholar] [CrossRef]
- Abo El-Ola, S.M.; El-Bendary, M.A.; Mohamed, N.H.; Kotb, R.M. Substantial Functional Finishing and Transfer Printing of Polyester Fabric Using Zinc Oxide/Polyurethane Nanocomposite. Fibers Polym. 2022, 23, 2798–2808. [Google Scholar] [CrossRef]
- Prilla, K.A.V.; Jacinto, J.M.; Ricardo, L.J.O.; Box, J.T.S.; Lim, A.B.C.; Francisco, E.F.; De Vera, G.I.N.; Yaya, J.A.T.; Natividad, V.V.M.; Awi, E.N.; et al. Flame retardant and uv-protective cotton fabrics functionalized with copper (II) oxide nanoparticles. ANTORCHA 2020, 7, 11–16. [Google Scholar]
- Maghimaa, M.; Alharbi, S.A. Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. J. Photochem. Photobiol. B Biol. 2020, 204, 111806. [Google Scholar] [CrossRef]
- Abramova, A.V.; Abramov, V.O.; Bayazitov, V.M.; Voitov, Y.; Straumal, E.A.; Lermontov, S.A.; Cherdyntseva, T.A.; Braeutigam, P.; Weiße, M.; Günther, K. A sol-gel method for applying nanosized antibacterial particles to the surface of textile materials in an ultrasonic field. Ultrason. Sonochem. 2020, 60, 104788. [Google Scholar] [CrossRef] [PubMed]
- Olczyk, J.; Sójka-Ledakowicz, J.; Walawska, A.; Antecka, A.; Siwińska-Ciesielczyk, K.; Zdarta, J.; Jesionowski, T. Antimicrobial Activity and Barrier Properties against UV Radiation of Alkaline and Enzymatically Treated Linen Woven Fabrics Coated with Inorganic Hybrid Material. Molecules 2020, 25, 5701. [Google Scholar] [CrossRef] [PubMed]
- Attia, N.F.; Ebissy, A.A.E.; Morsy, M.S.; Sadak, R.A.; Gamal, H. Influence of Textile Fabrics Structures on Thermal, UV Shielding, and Mechanical Properties of Textile Fabrics Coated with Sustainable Coating. J. Nat. Fibers 2021, 18, 2189–2196. [Google Scholar] [CrossRef]
- Sezgin Bozok, S.; Ogulata, R.T. Applying Softener Doped Silica Coating to Cotton Denim Fabrics. J. Nat. Fibers 2022, 19, 7566–7578. [Google Scholar] [CrossRef]
- Babaahmadi, V.; Abuzade, R.A.; Montazer, M. Enhanced ultraviolet-protective textiles based on reduced graphene oxide-silver nanocomposites on polyethylene terephthalate using ultrasonic-assisted in-situ thermal synthesis. J. Appl. Polym. Sci. 2022, 139, 52196. [Google Scholar] [CrossRef]
- Porrawatkul, P.; Pimsen, R.; Kuyyogsuy, A.; Teppaya, N.; Noypha, A.; Chanthai, S.; Nuengmatcha, P. Microwave-assisted synthesis of Ag/ZnO nanoparticles using Averrhoa carambola fruit extract as the reducing agent and their application in cotton fabrics with antibacterial and UV-protection properties. RSC Adv. 2022, 12, 15008–15019. [Google Scholar] [CrossRef]
- Filipič, J.; Glažar, D.; Jerebic, Š.; Kenda, D.; Modic, A.; Roškar, B.; Vrhovski, I.; Štular, D.; Golja, B.; Smolej, S.; et al. Tailoring of Antibacterial and UV-protective Cotton Fabric by an in situ Synthesis of Silver Particles in the Presence of a Sol-gel Matrix and Sumac Leaf Extract. Tekstilec 2020, 63, 4–13. [Google Scholar] [CrossRef]
- Noorian, S.A.; Hemmatinejad, N.; Navarro, J.A.R. Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. Int. J. Biol. Macromol. 2020, 154, 1215–1226. [Google Scholar] [CrossRef]
- Liang, Z.; Zhou, Z.; Li, J.; Zhang, S.; Dong, B.; Zhao, L.; Wu, C.; Yang, H.; Chen, F.; Wang, S. Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for fiber bulk. Chem. Eng. J. 2021, 415, 128980. [Google Scholar] [CrossRef]
- Zhai, L.; Huang, Z.; Luo, Y.; Yang, H.; Xing, T.; He, A.; Yu, Z.; Liu, J.; Zhang, X.; Xu, W.; et al. Decorating aramid fibers with chemically-bonded amorphous TiO2 for improving UV resistance in the simulated extreme environment. Chem. Eng. J. 2022, 440, 135724. [Google Scholar] [CrossRef]
- Liu, H.-K. Investigation on the pressure infiltration of sol-gel processed textile ceramic matrix composites. J. Mater. Sci. 1996, 31, 5093–5099. [Google Scholar] [CrossRef]
- Brzeziński, S.; Kowalczyk, D.; Borak, B.; Jasiorski, M.; Tracz, A. Applying the sol-gel method to the deposition of nanocoats on textiles to improve their abrasion resistance. J. Appl. Polym. Sci. 2012, 125, 3058–3067. [Google Scholar] [CrossRef]
- Liu, J.; Berg, J.C. An aqueous sol–gel route to prepare organic–inorganic hybrid materials. J. Mater. Chem. 2007, 17, 4430–4435. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, F.; Wei, Q.; Wu, N. Surface modification of polyester nonwoven fabrics by Al2O3 sol–gel coating. J. Coatings Technol. Res. 2009, 6, 537–541. [Google Scholar] [CrossRef]
- Colleoni, C.; Donelli, I.; Freddi, G.; Guido, E.; Migani, V.; Rosace, G. A novel sol-gel multi-layer approach for cotton fabric finishing by tetraethoxysilane precursor. Surf. Coatings Technol. 2013, 235, 192–203. [Google Scholar] [CrossRef]
- Rosu, C.; Lin, H.; Jiang, L.; Breedveld, V.; Hess, D.W. Sustainable and long-time ‘rejuvenation’ of biomimetic water-repellent silica coating on polyester fabrics induced by rough mechanical abrasion. J. Colloid Interface Sci. 2018, 516, 202–214. [Google Scholar] [CrossRef]
- Schramm, C.; Binder, W.H.; Tessadri, R. Durable Press Finishing of Cotton Fabric with 1,2,3,4-Butanetetracarboxylic Acid and TEOS/GPTMS. J. Sol-Gel Sci. Technol. 2004, 29, 155–165. [Google Scholar] [CrossRef]
- Trovato, V.; Rosace, G.; Colleoni, C.; Sfameni, S.; Migani, V.; Plutino, M.R. Sol-gel based coatings for the protection of cultural heritage textiles. IOP Conf. Ser. Mater. Sci. Eng. 2020, 777, 012007. [Google Scholar] [CrossRef]
- Textor, T.; Bahners, T.; Schollmyer, E. Modern Approaches for Intelligent Surface Modification. J. Ind. Text. 2003, 32, 279–289. [Google Scholar] [CrossRef]
- Xu, T.; Xie, C.S. Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Prog. Org. Coatings 2003, 46, 297–301. [Google Scholar] [CrossRef]
- Vigneshwaran, N.; Kumar, S.; Kathe, A.A.; Varadarajan, P.V.; Prasad, V. Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 2006, 17, 5087–5095. [Google Scholar] [CrossRef]
- Li, F.; Xing, Y.; Ding, X. Silica xerogel coating on the surface of natural and synthetic fabrics. Surf. Coatings Technol. 2008, 202, 4721–4727. [Google Scholar] [CrossRef]
- Sequeira, S.; Evtuguin, D.V.; Portugal, I.; Esculcas, A.P. Synthesis and characterisation of cellulose/silica hybrids obtained by heteropoly acid catalysed sol–gel process. Mater. Sci. Eng. C 2007, 27, 172–179. [Google Scholar] [CrossRef]
- GUGUMUS, F. Developments in the UV-Stabilisation of Polymers; Applied Science Publishers: London, UK, 1979. [Google Scholar]
- Biswa, R. Das UV Radiation Protective Clothing. Open Text. J. 2010, 3, 14–21. [Google Scholar]
- Osterwalder, U.; Schlenker, W.; Rohwer, H.; Martin, E.; Schuh, S. Facts and Ficton on Ultraviolet Protection by Clothing. Radiat. Prot. Dosim. 2000, 91, 255–259. [Google Scholar] [CrossRef]
- Wang, R.H.; Xin, J.H.; Tao, X.M. UV-Blocking Property of Dumbbell-Shaped ZnO Crystallites on Cotton Fabrics. Inorg. Chem. 2005, 44, 3926–3930. [Google Scholar] [CrossRef]
- Daoud, W.A.; Xin, J.H. Low Temperature Sol-Gel Processed Photocatalytic Titania Coating. J. Sol-Gel Sci. Technol. 2004, 29, 25–29. [Google Scholar] [CrossRef]
- Xin, J.H.; Daoud, W.A.; Kong, Y.Y. A New Approach to UV-Blocking Treatment for Cotton Fabrics. Text. Res. J. 2004, 74, 97–100. [Google Scholar] [CrossRef]
- Abidi, N.; Hequet, E.; Tarimala, S.; Dai, L.L. Cotton fabric surface modification for improved UV radiation protection using sol–gel process. J. Appl. Polym. Sci. 2007, 104, 111–117. [Google Scholar] [CrossRef]
- Onar, N.; Ebeoglugil, M.F.; Kayatekin, I.; Celik, E. Low-temperature, sol–gel-synthesized, silver-doped titanium oxide coatings to improve ultraviolet-blocking properties for cotton fabrics. J. Appl. Polym. Sci. 2007, 106, 514–525. [Google Scholar] [CrossRef]
- Xing, Y.; Ding, X. UV photo-stabilization of tetrabutyl titanate for aramid fibers via sol–gel surface modification. J. Appl. Polym. Sci. 2007, 103, 3113–3119. [Google Scholar] [CrossRef]
- Dong, Y.; Bai, Z.; Zhang, L.; Liu, R.; Zhu, T. Finishing of cotton fabrics with aqueous nano-titanium dioxide dispersion and the decomposition of gaseous ammonia by ultraviolet irradiation. J. Appl. Polym. Sci. 2006, 99, 286–291. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chen, C.-C. Physical properties of the crosslinked cellulose catalyzed with nanotitanium dioxide under UV irradiation and electronic field. Appl. Catal. A Gen. 2005, 293, 171–179. [Google Scholar] [CrossRef]
- Park, Y.R.; Kim, K.J. Structural and optical properties of rutile and anatase TiO2 thin films: Effects of Co doping. Thin Solid Films 2005, 484, 34–38. [Google Scholar] [CrossRef]
- Sawada, K.; Sugimoto, M.; Ueda, M. Chan Hun Park Hydrophilic Treatment of Polyester Surfaces Using TiO2 Photocatalytic Reactions. Text. Res. J. 2003, 73, 819–822. [Google Scholar] [CrossRef]
- Han, K.; Yu, M. Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation. J. Appl. Polym. Sci. 2006, 100, 1588–1593. [Google Scholar] [CrossRef]
- Pan, Z.W.; Dai, Z.R.; Wang, Z.L. Nanobelts of Semiconducting Oxides. Science 2001, 291, 1947–1949. [Google Scholar] [CrossRef] [Green Version]
- Pinnavaia, T.J.; Beall, G.W. (Eds.) Polymer–Clay Nanocomposites. John Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Behnajady, M.; Modirshahla, N.; Hamzavi, R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 2006, 133, 226–232. [Google Scholar] [CrossRef]
- Ahmed, N.S.E.; El-Shishtawy, R.M. The use of new technologies in coloration of textile fibers. J. Mater. Sci. 2010, 45, 1143–1153. [Google Scholar] [CrossRef]
- Rilda, Y.; Fadhli, F.; Syukri, S.; Alif, A.; Aziz, H.; Chandren, S.; Nur, H. Self-cleaning TiO2-SiO2 clusters on cotton textile prepared by dip-spin coating process. J. Teknol. 2016, 78. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shen, Y.; Xu, L.; Cai, Z.; Zhang, H. Thermal crystallization of low-temperature prepared anatase nano-TiO2 and multifunctional finishing of cotton fabrics. J. Text. Inst. 2016, 107, 651–662. [Google Scholar] [CrossRef]
- Shaban, M.; Abdallah, S.; Khalek, A.A. Characterization and photocatalytic properties of cotton fibers modified with ZnO nanoparticles using sol–gel spin coating technique. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Noorian, S.A.; Hemmatinejad, N.; Bashari, A. One-Pot Synthesis of Cu 2 O/ZnO Nanoparticles at Present of Folic Acid to Improve UV-Protective Effect of Cotton Fabrics. Photochem. Photobiol. 2015, 91, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Mills, A.; Lee, S.-K. A web-based overview of semiconductor photochemistry-based current commercial applications. J. Photochem. Photobiol. A Chem. 2002, 152, 233–247. [Google Scholar] [CrossRef]
- Langlet, M.; Kim, A.; Audier, M.; Herrmann, J.M. Sol-gel preparation of photocatalytic TiO2 films on polymer substrates. J. Sol-Gel Sci. Technol. 2002, 25, 223–234. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Ziółek, M.; Nawrocki, J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B Environ. 2003, 46, 639–669. [Google Scholar] [CrossRef]
- Karkmaz, M.; Puzenat, E.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation of the alimentary azo dye amaranth. Appl. Catal. B Environ. 2004, 51, 183–194. [Google Scholar] [CrossRef]
- Lo, P.-H.; Kumar, S.A.; Chen, S.-M. Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode. Colloids Surf. B Biointerfaces 2008, 66, 266–273. [Google Scholar] [CrossRef]
- Weibel, A.; Bouchet, R.; Knauth, P. Electrical properties and defect chemistry of anatase (TiO2). Solid State Ion. 2006, 177, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Verran, J.; Sandoval, G.; Allen, N.S.; Edge, M.; Stratton, J. Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension. Dye. Pigment. 2007, 73, 298–304. [Google Scholar] [CrossRef]
- Norris, J.R.; Meisel, D. Photochemical Energy Conversion; Elsevier: New York, NY, USA, 1989. [Google Scholar]
- Gratzel, M. Heterogenous Photochemical Electron Transfer; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781351081658. [Google Scholar]
- Kontos, A.I.; Arabatzis, I.M.; Tsoukleris, D.S.; Kontos, A.G.; Bernard, M.C.; Petrakis, D.E.; Falaras, P. Efficient photocatalysts by hydrothermal treatment of TiO2. Catal. Today 2005, 101, 275–281. [Google Scholar] [CrossRef]
- Šegota, S.; Ćurković, L.; Ljubas, D.; Svetličić, V.; Houra, I.F.; Tomašić, N. Synthesis, characterization and photocatalytic properties of sol-gel TiO2 films. Ceram. Int. 2011, 37, 1153–1160. [Google Scholar] [CrossRef]
- Kho, Y.K.; Iwase, A.; Teoh, W.Y.; Mädler, L.; Kudo, A.; Amal, R. Photocatalytic H 2 Evolution over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile. J. Phys. Chem. C 2010, 114, 2821–2829. [Google Scholar] [CrossRef]
- Randorn, C.; Irvine, J.T.S.; Robertson, P. Synthesis of visible-light-activated yellow amorphous TiO2 photocatalyst. Int. J. Photoenergy 2008, 2008, 426872. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Li, Y.; Zhao, G.; Cai, X. Photocatalytic degradation characteristic of amorphous TiO2-W thin films deposited by magnetron sputtering. Trans. Nonferrous Met. Soc. China 2006, 16, s280–s284. [Google Scholar] [CrossRef]
- Onar, N.; Aksit, A.C.; Sen, Y.; Mutlu, M. Antimicrobial, UV-protective and self-cleaning properties of cotton fabrics coated by dip-coating and solvothermal coating methods. Fibers Polym. 2011, 12, 461–470. [Google Scholar] [CrossRef]
- Fulekar, M.H. Environmental Biotechnology; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780429065040. [Google Scholar]
- Yuranova, T.; Mosteo, R.; Bandara, J.; Laub, D.; Kiwi, J. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J. Mol. Catal. A Chem. 2006, 244, 160–167. [Google Scholar] [CrossRef]
- Bu, S.; Jin, Z.; Liu, X.; Yang, L.; Cheng, Z. Fabrication of TiO2 porous thin films using peg templates and chemistry of the process. Mater. Chem. Phys. 2004, 88, 273–279. [Google Scholar] [CrossRef]
- Zhang, W.J.; Yang, B.; Bai, J.W. Photocatalytic Activity of TiO2/Ti Film Prepared by Sol-Gel Method on Methyl Orange Degradation. Adv. Mater. Res. 2011, 214, 65–69. [Google Scholar] [CrossRef]
- Boiteux, G.; Boullanger, C.; Cassagnau, P.; Fulchiron, R.; Seytre, G. Influence of Morphology on PTC in Conducting Polypropylene-Silver Composites. Macromol. Symp. 2006, 233, 246–253. [Google Scholar] [CrossRef]
- Lee, H.-H.; Chou, K.-S.; Shih, Z.-W. Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives. Int. J. Adhes. Adhes. 2005, 25, 437–441. [Google Scholar] [CrossRef]
- Xu, M.; Feng, J.Q.; Cao, X.L. Electrical properties of nano-silver/polyacrylamide/ethylene vinyl acetate composite. J. Shanghai Univ. 2008, 12, 85–90. [Google Scholar] [CrossRef]
- Gorenšek, M.; Recelj, P. Nanosilver Functionalized Cotton Fabric. Text. Res. J. 2007, 77, 138–141. [Google Scholar] [CrossRef]
- Jiang, S.; Newton, E.; Yuen, C.-W.M.; Kan, C.-W.; Jiang, S.-X.K. Application of Chemical Silver Plating on Polyester and Cotton Blended Fabric. Text. Res. J. 2007, 77, 85–91. [Google Scholar] [CrossRef]
- Schartel, B.; Pötschke, P.; Knoll, U.; Abdel-Goad, M. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur. Polym. J. 2005, 41, 1061–1070. [Google Scholar] [CrossRef]
- Xue, P.; Park, K.H.; Tao, X.M.; Chen, W.; Cheng, X.Y. Electrically conductive yarns based on PVA/carbon nanotubes. Compos. Struct. 2007, 78, 271–277. [Google Scholar] [CrossRef]
- Mondal, S.; Hu, J.L. A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating. J. Appl. Polym. Sci. 2007, 103, 3370–3376. [Google Scholar] [CrossRef]
- Kim, H.-S.; Park, B.H.; Yoon, J.-S.; Jin, H.-J. Preparation and characterization of poly[(butylene succinate)-co-(butylene adipate)]/carbon nanotube-coated silk fiber composites. Polym. Int. 2007, 56, 1035–1039. [Google Scholar] [CrossRef]
- Yen, C.-Y.; Lin, Y.-F.; Hung, C.-H.; Tseng, Y.-H.; Ma, C.-C.M.; Chang, M.-C.; Shao, H. The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites. Nanotechnology 2008, 19, 045604. [Google Scholar] [CrossRef]
- Wei, Q.; Yu, L.; Wu, N.; Hong, S. Preparation and Characterization of Copper Nanocomposite Textiles. J. Ind. Text. 2008, 37, 275–283. [Google Scholar] [CrossRef]
- Dong, W.; Zhu, C.; Bongard, H.-J. Preparation and optical properties of UV dye DMT-doped silica films. J. Phys. Chem. Solids 2003, 64, 399–404. [Google Scholar] [CrossRef]
- Tiller, J. Selbststerilisierende Oberflächen. Nachr. Aus Der Chem. 2007, 55, 499–502. [Google Scholar] [CrossRef]
- Johns, K. Hygienic coatings: The next generation. Surf. Coatings Int. Part B Coatings Trans. 2003, 86, 101–110. [Google Scholar] [CrossRef]
- Ovington, L.G. Battling Bacteria in Wound Care. Home Healthc. Nurse J. Home Care Hosp. Prof. 2001, 19, 622–630. [Google Scholar] [CrossRef]
- MacKeen, P.C.; Person, S.; Warner, S.C.; Snipes, W.; Stevens, S.E. Silver-coated nylon fiber as an antibacterial agent. Antimicrob. Agents Chemother. 1987, 31, 93–99. [Google Scholar] [CrossRef]
- Knittel, D.; Schollmeyer, E. Chitosan and its derivatives for textile finishing Part 4: Permanent finishing of cotton with ionic carbohydrates and analysis of thin layers obtained. Melliand Textilb. Int. 2002, 83, 58–61. [Google Scholar]
- Gadre, S.Y.; Gouma, P.I. Biodoped Ceramics: Synthesis, Properties, and Applications. J. Am. Ceram. Soc. 2006, 89, 2987–3002. [Google Scholar] [CrossRef]
- Huang, J.; Ichinose, I.; Kunitake, T. Biomolecular Modification of Hierarchical Cellulose Fibers through Titania Nanocoating. Angew. Chemie Int. Ed. 2006, 45, 2883–2886. [Google Scholar] [CrossRef]
- Leivo, J.; Meretoja, V.; Vippola, M.; Levänen, E.; Vallittu, P.; Mäntylä, T.A. Sol–gel derived aluminosilicate coatings on alumina as substrate for osteoblasts. Acta Biomater. 2006, 2, 659–668. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Q.; Fu, F.; Liu, X. Durable antimicrobial cotton textiles modified with inorganic nanoparticles. Cellulose 2016, 23, 2791–2808. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, X.; Liang, J. Antimicrobial modification review. BioResources 2015, 10, 1964–1985. [Google Scholar]
- Ielo, I.; Giacobello, F.; Castellano, A.; Sfameni, S.; Rando, G.; Plutino, M.R. Development of Antibacterial and Antifouling Innovative and Eco-Sustainable Sol–Gel Based Materials: From Marine Areas Protection to Healthcare Applications. Gels 2022, 8, 26. [Google Scholar]
- Buket, A.R.I.K.; Seventekin, N. Evaluation of Antibacterial and Structural Properties of Cotton Fabric Coated By Chitosan/Titania and Chitosan/Silica Hybrid Sol-Gel Coatings. Text. Appar. 2011, 21, 107–115. [Google Scholar]
- Buşilă, M.; Muşat, V.; Textor, T.; Mahltig, B. Synthesis and characterization of antimicrobial textile finishing based on Ag:ZnO nanoparticles/chitosan biocomposites. RSC Adv. 2015, 5, 21562–21571. [Google Scholar] [CrossRef]
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces 2010, 79, 5–18. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, X.; Gao, H. One-step synthesis of silver-poly(4-vinylpyridine) hybrid microgels by γ-irradiation and surfactant-free emulsion polymerisation. The photoluminescence characteristics. Colloids Surf. A Physicochem. Eng. Asp. 2006, 275, 45–49. [Google Scholar] [CrossRef]
- Dimitrov, D.S. Interactions of antibody-conjugated nanoparticles with biological surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2006, 282–283, 8–10. [Google Scholar] [CrossRef]
- Liu, J.-K.; Yang, X.-H.; Tian, X.-G. Preparation of silver/hydroxyapatite nanocomposite spheres. Powder Technol. 2008, 184, 21–24. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Courtney, H.; Bettenga, M.; Agrawal, C.M.; Bumgardner, J.D.; Ong, J.L. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 2006, 27, 5512–5517. [Google Scholar] [CrossRef]
- Magaña, S.M.; Quintana, P.; Aguilar, D.H.; Toledo, J.A.; Ángeles-Chávez, C.; Cortés, M.A.; León, L.; Freile-Pelegrín, Y.; López, T.; Sánchez, R.M.T. Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A Chem. 2008, 281, 192–199. [Google Scholar] [CrossRef]
- Esteban-Cubillo, A.; Pecharromán, C.; Aguilar, E.; Santarén, J.; Moya, J.S. Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J. Mater. Sci. 2006, 41, 5208–5212. [Google Scholar] [CrossRef]
- Le Pape, H.; Solano-Serena, F.; Contini, P.; Devillers, C.; Maftah, A.; Leprat, P. Evaluation of the anti-microbial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon N. Y. 2002, 40, 2947–2954. [Google Scholar] [CrossRef]
- Hu, C.H.; Xu, Z.R.; Xia, M.S. Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism. Vet. Microbiol. 2005, 109, 83–88. [Google Scholar] [CrossRef]
- Kang, S.; Pinault, M.; Pfefferle, L.D.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007, 23, 8670–8673. [Google Scholar] [CrossRef]
- Kang, S.; Herzberg, M.; Rodrigues, D.F.; Elimelech, M. Antibacterial Effects of Carbon Nanotubes: Size Does Matter! Langmuir 2008, 24, 6409–6413. [Google Scholar] [CrossRef]
- Mahltig, B.; Fiedler, D.; Fischer, A.; Simon, P. Antimicrobial coatings on textiles–modification of sol–gel layers with organic and inorganic biocides. J. Sol-Gel Sci. Technol. 2010, 55, 269–277. [Google Scholar] [CrossRef]
- Poli, R.; Colleoni, C.; Calvimontes, A.; Polášková, H.; Dutschk, V.; Rosace, G. Innovative sol–gel route in neutral hydroalcoholic condition to obtain antibacterial cotton finishing by zinc precursor. J. Sol-Gel Sci. Technol. 2015, 74, 151–160. [Google Scholar] [CrossRef]
- Tarimala, S.; Kothari, N.; Abidi, N.; Hequet, E.; Fralick, J.; Dai, L.L. New approach to antibacterial treatment of cotton fabric with silver nanoparticle–doped silica using sol–gel process. J. Appl. Polym. Sci. 2006, 101, 2938–2943. [Google Scholar] [CrossRef]
- Mahltig, B.; Gutmann, E.; Meyer, D.C.; Reibold, M.; Dresler, B.; Günther, K.; Faßler, D.; Böttcher, H. Solvothermal preparation of metallized titania sols for photocatalytic and antimicrobial coatings. J. Mater. Chem. 2007, 17, 2367–2374. [Google Scholar] [CrossRef]
- Mahltig, B.; Fischer, A. Inorganic/organic polymer coatings for textiles to realize water repellent and antimicrobial properties-A study with respect to textile comfort. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1562–1568. [Google Scholar] [CrossRef]
- Rivero, P.J.; Goicoechea, J. Sol-Gel Technology for Antimicrobial Textiles; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081005859. [Google Scholar]
- Wang, S.; Hou, W.; Wei, L.; Jia, H.; Liu, X.; Xu, B. Antibacterial activity of nano-SiO2 antibacterial agent grafted on wool surface. Surf. Coatings Technol. 2007, 202, 460–465. [Google Scholar] [CrossRef]
- Mahltig, B.; Textor, T. Silver containing sol-gel coatings on polyamide fabrics as antimicrobial finish-description of a technical application process for wash permanent antimicrobial effect. Fibers Polym. 2010, 11, 1152–1158. [Google Scholar] [CrossRef]
- Li, Q.; Chen, S.-L.; Jiang, W.-C. Durability of nano ZnO antibacterial cotton fabric to sweat. J. Appl. Polym. Sci. 2007, 103, 412–416. [Google Scholar] [CrossRef]
- Rios, P.F.; Dodiuk, H.; Kenig, S.; McCarthy, S.; Dotan, A. Durable ultra-hydrophobic surfaces for self-cleaning applications. Polym. Adv. Technol. 2008, 19, 1684–1691. [Google Scholar] [CrossRef]
- Ikezawa, S.; Homyara, H.; Kubota, T.; Suzuki, R.; Koh, S.; Mutuga, F.; Yoshioka, T.; Nishiwaki, A.; Ninomiya, Y.; Takahashi, M.; et al. Applications of TiO2 film for environmental purification deposited by controlled electron beam-excited plasma. Thin Solid Films 2001, 386, 173–176. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Arami, M.; Limaee, N.Y.; Tabrizi, N.S. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid Interface Sci. 2006, 295, 159–164. [Google Scholar] [CrossRef]
- Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization. Chem. Mater. 2005, 17, 2588–2595. [Google Scholar] [CrossRef]
- Cermenati, L.; Pichat, P.; Guillard, C.; Albini, A. Probing the TiO2 Photocatalytic Mechanisms in Water Purification by Use of Quinoline, Photo-Fenton Generated OH• Radicals and Superoxide Dismutase. J. Phys. Chem. B 1997, 101, 2650–2658. [Google Scholar] [CrossRef]
- Nazari, A.; Montazer, M.; Rashidi, A.; Yazdanshenas, M.; Anary-Abbasinejad, M. Nano TiO2 photo-catalyst and sodium hypophosphite for cross-linking cotton with poly carboxylic acids under UV and high temperature. Appl. Catal. A Gen. 2009, 371, 10–16. [Google Scholar] [CrossRef]
- Keshmiri, M.; Mohseni, M.; Troczynski, T. Development of novel TiO2 sol–gel-derived composite and its photocatalytic activities for trichloroethylene oxidation. Appl. Catal. B Environ. 2004, 53, 209–219. [Google Scholar] [CrossRef]
- Fu, G.; Vary, P.S.; Lin, C.-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. J. Phys. Chem. B 2005, 109, 8889–8898. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-K.; Chan, C.-C.; Hsu, C.-S.; Chen, C.-Y. Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions. Thin Solid Films 2006, 494, 274–278. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Yeo, S.Y.; Lee, H.J.; Jeong, S.H. Preparation of nanocomposite fibers for permanent antibacterial effect. J. Mater. Sci. 2003, 38, 2143–2147. [Google Scholar] [CrossRef]
- Ayyad, O.; Muñoz-Rojas, D.; Oró-Solé, J.; Gómez-Romero, P. From silver nanoparticles to nanostructures through matrix chemistry. J. Nanopart. Res. 2010, 12, 337–345. [Google Scholar] [CrossRef]
- Yu, D.-G. Formation of colloidal silver nanoparticles stabilized by Na+–poly(γ-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids Surf. B Biointerfaces 2007, 59, 171–178. [Google Scholar] [CrossRef]
- Nersisyan, H.H.; Lee, J.H.; Son, H.T.; Won, C.W.; Maeng, D.Y. A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion. Mater. Res. Bull. 2003, 38, 949–956. [Google Scholar] [CrossRef]
- Courrol, L.C.; de Oliveira Silva, F.R.; Gomes, L. A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf. A Physicochem. Eng. Asp. 2007, 305, 54–57. [Google Scholar] [CrossRef]
- Xie, Y.; Ye, R.; Liu, H. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf. A Physicochem. Eng. Asp. 2006, 279, 175–178. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Sneha, K.; Won, S.W.; Cho, C.-W.; Kim, S.; Yun, Y.-S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces 2009, 73, 332–338. [Google Scholar] [CrossRef]
- Durán, N.; Marcato, P.D.; De Souza, G.I.H.; Alves, O.L.; Esposito, E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 2007, 3, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Dastjerdi, R.; Mojtahedi, M.R.M.; Shoshtari, A.M.; Khosroshahi, A. Investigating the production and properties of Ag/TiO 2/PP antibacterial nanocomposite filament yarns. J. Text. Inst. 2010, 101, 204–213. [Google Scholar] [CrossRef]
- Dastjerdi, R.; Mojtahedi, M.R.M.; Shoshtari, A.M. Comparing the effect of three processing methods for modification of filament yarns with inorganic nanocomposite filler and their bioactivity against Staphylococcus aureus. Macromol. Res. 2009, 17, 378–387. [Google Scholar] [CrossRef]
- Lok, C.-N.; Ho, C.-M.; Chen, R.; He, Q.-Y.; Yu, W.-Y.; Sun, H.; Tam, P.K.-H.; Chiu, J.-F.; Che, C.-M. Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles. J. Proteome Res. 2006, 5, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Hwang, Y.H.; Yi, S.C. Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J. Mater. Sci. 2005, 40, 5413–5418. [Google Scholar] [CrossRef]
- Jeong, S.H.; Yeo, S.Y.; Yi, S.C. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J. Mater. Sci. 2005, 40, 5407–5411. [Google Scholar] [CrossRef]
- Stobie, N.; Duffy, B.; McCormack, D.E.; Colreavy, J.; Hidalgo, M.; McHale, P.; Hinder, S.J. Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol–gel coating. Biomaterials 2008, 29, 963–969. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.-C.; Lin, Y.-N.; Jian, S.-R.; Tseng, S.-C.; Weng, M.-X.; Liu, Y.-P.; Lee, P.-T.; Chen, P.-Y.; Hsu, R.-Q.; Wu, W.-F.; et al. Observation of Growth of Human Fibroblasts on Silver Nanoparticles. J. Phys. Conf. Ser. 2007, 61, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Ma, X.; Wei, D.; Dong, J.; Qian, W. Direct formation of silver nanoparticles in cuttlebone-derived organic matrix for catalytic applications. Colloids Surf. A Physicochem. Eng. Asp. 2008, 330, 234–240. [Google Scholar] [CrossRef]
- Yeo, S.Y.; Jeong, S.H. Preparation and characterization of polypropylene/silver nanocomposite fibers. Polym. Int. 2003, 52, 1053–1057. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Ilić, V.; Šaponjić, Z.; Vodnik, V.; Molina, R.; Dimitrijević, S.; Jovančić, P.; Nedeljković, J.; Radetić, M. Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J. Mater. Sci. 2009, 44, 3983–3990. [Google Scholar] [CrossRef]
- Potiyaraj, P.; Kumlangdudsana, P.; Dubas, S.T. Synthesis of silver chloride nanocrystal on silk fibers. Mater. Lett. 2007, 61, 2464–2466. [Google Scholar] [CrossRef]
- Simončič, B.; Klemenčič, D. Preparation and performance of silver as an antimicrobial agent for textiles: A review. Text. Res. J. 2016, 86, 210–223. [Google Scholar] [CrossRef]
- Mohamed, A.L.; El-Naggar, M.E.; Shaheen, T.I.; Hassabo, A.G. Laminating of chemically modified silan based nanosols for advanced functionalization of cotton textiles. Int. J. Biol. Macromol. 2017, 95, 429–437. [Google Scholar] [CrossRef]
- Tam, K.H.; Djurišić, A.B.; Chan, C.M.N.; Xi, Y.Y.; Tse, C.W.; Leung, Y.H.; Chan, W.K.; Leung, F.C.C.; Au, D.W.T. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 2008, 516, 6167–6174. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, Y.; Povey, M.; York, D. ZnO nanofluids—A potential antibacterial agent. Prog. Nat. Sci. 2008, 18, 939–944. [Google Scholar] [CrossRef]
- Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 2001, 3, 643–646. [Google Scholar] [CrossRef]
- Karunakaran, C.; Rajeswari, V.; Gomathisankar, P. Enhanced photocatalytic and antibacterial activities of sol–gel synthesized ZnO and Ag-ZnO. Mater. Sci. Semicond. Process. 2011, 14, 133–138. [Google Scholar] [CrossRef]
- Ansari, M.A.; Khan, H.M.; Khan, A.A.; Sultan, A.; Azam, A. Characterization of clinical strains of MSSA, MRSA and MRSE isolated from skin and soft tissue infections and the antibacterial activity of ZnO nanoparticles. World J. Microbiol. Biotechnol. 2012, 28, 1605–1613. [Google Scholar] [CrossRef]
- Wang, H.; Xie, C.; Zhang, W.; Cai, S.; Yang, Z.; Gui, Y. Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mater. 2007, 141, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Farouk, A.; Moussa, S.; Ulbricht, M.; Schollmeyer, E.; Textor, T. ZnO-modified hybrid polymers as an antibacterial finish for textiles. Text. Res. J. 2014, 84, 40–51. [Google Scholar] [CrossRef]
- Znaidi, L. Sol–gel-deposited ZnO thin films: A review. Mater. Sci. Eng. B 2010, 174, 18–30. [Google Scholar] [CrossRef]
Precursors and Additives | Synthetic Approach | Textile Substrate | Deposition Approach | Wear-Resistance Tests Performed | Ref. |
---|---|---|---|---|---|
Methyltrimethoxysilane | Sol–gel | Continuous filament polyester double-knit interlock fabric | Soaking | Custom aging-abrasion-impact, wicking and laundry testing protocols | [104] |
GPTMS *, TEOS and 1,2,3,4-butanetetracarboxylic acid | Sol–gel | Cotton fabrics | Impregnation | Abrasion resistance (dry crease-recovery angle test) | [105] |
Aluminum isopropoxide | Sol–gel | Nonwoven PET fabrics | Impregnation | Mechanical resistance (breaking strength and elongation at break) | [102] |
TEOS and Dibutyltindiacetate | Sol–gel | Cotton fabrics | Pad–dry–cure process | Mechanical resistance (tensile strength and elongation) | [106] |
TEOS, GPTMS, Aluminum (III) isopropoxide | Sol–gel | Commercial cotton woven fabric | Pad–dry–cure process | Abrasion and laundering tests | [100] |
Tensile Strength (N) | Elongation (%) | Tensile Strength (N) | Elongation (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Warp | Weft | Warp | Weft | Warp | Weft | Warp | Weft | ||
CO_UT | 240.3 | 265.5 | 17.0 | 16.0 | 240.3 | 265.5 | 17.0 | 16.0 | CO_UT |
CO_0.03M-1L | 325.2 | 225.5 | 17.5 * | 15.3 | 207.3 | 220.1 | 16.8 | 13.9 | CO_0.3M-1L |
CO_0.03M-3L | 302.4 | 326.6 | 16.3 | 17.8 | 190.9 | 222.4 | 13.8 | 12.2 | CO_0.3M-3L |
CO_0.03M-6L | 317.9 | 302.4 | 15.5 | 16.3 | 150.0 | 125.5 | 7.5 | 11.0 | CO_0.3M-6L |
CO_0.03M-1L-C | 317.2 | 250.3 | 16.3 | 16.7 | 200.1 | 205.7 | 15.2 | 14.0 | CO_0.3M-1L-C |
CO_0.03M-3L-C | 357.1 | 230.2 | 16.3 | 17.9 | 185.0 | 203.1 | 13.8 | 13.9 | CO_0.3M-3L-C |
CO_0.03M-6L-C | 282.3 | 306.7 | 14.5 | 16.1 | 150.7 | 179.2 | 10.5 | 13.5 | CO_0.3M-6L-C |
Precursors and Additives | Synthetic Approach | Textile Substrate | Deposition Approach | UV-Response Features | Ref. |
---|---|---|---|---|---|
Titanium isopropoxide, TEOS and chitosan | Sol–gel | Acrylic acid binder-coated cotton fabrics | Spin-coating | Self-cleaning by photodegradation of methylene blue dye | [130] |
Tetrabutyl titanate | Sol–gel | Cotton fabrics | Dip–pad–steam process | UV resistance and self-cleaning towards wine and coffee stains | [131] |
Degussa P-25 TiO2 powder and polyglycol | Aqueous dispersion | Cotton woven fabric and a polyester/cotton blend woven fabric | Pad–dry–cure process | Decomposition of gaseous ammonia | [121] |
Zinc acetate dihydrate | Sol–gel | Cotton fabrics | Spin-coating | Self-cleaning by photodegradation of methyl orange dye | [132] |
Copper sulphate, Zinc chloride and folic acid | In situ synthesis | Cotton fabrics | Impregnation | Self-cleaning by photodegradation of methylene blue dye | [133] |
Rice husk silica nanoparticle-chitosan | In situ synthesis | Polyester-warp, polyester braids, viscose-warp, and viscose-braids textile fabrics | Impregnation | UPF improved by 260% | [91] |
Titanium (IV) isopropoxide | - | Poly(m-phenyleneisophthalamide) fiber | Modified atomic layer deposition | 54.08% retention of initial tenacity even exposure to UV irradiation | [98] |
Zinc chloride and 4-aminobenzoic acid | In situ synthesis | Pre-oxidated cotton fabric | Sonochemical modification process | EUPF% * of 62.19% and 61.92% after the washing and abrasion processes | [96] |
Precursors and Additives | Synthetic Approach | Textile Substrate | Deposition Approach | Antibacterial Properties | Ref. |
---|---|---|---|---|---|
Chitosan/titanium-IV-isopropoxide and chitosan/TEOS | Sol–gel | Cotton | Pad–cure method | Staphylococcus aureus and Klebsiella pneumoniae | [176] |
AgNO3 and nano-SiO2 | Adsorption | Wool | Impregnation | Escherichia coli and Staphylococcus aureus | [195] |
AgNO3, TEOS and 3-glycidyloxypropyltriethoxysilane | Sol–gel | Polyamide fabrics | Pad–dry–cure process | Escherichia coli | [196] |
ZnO and GPTMS | Sol–gel | Half-bleached pure cotton | Pad–cure method | Escherichia coli and Micrococcus luteus | [197] |
Zinc acetate dihydrate and GPTMS | Sol–gel | Cotton | Pad–dry–cure method | Staphylococcus aureus and Klebsiella pneumoniae | [190] |
Zinc chloride and 4-aminobenzoic acid | In situ synthesis by sonochemical process | Bleached cotton fabric | Immersion | Escherichia coli and Staphylococcus aureus | [96] |
ZnO nanopowder, polyether polyurethane emulsion and folic acid | Water dispersion | Bleached PET fabrics | Coating | Escherichia coli and Staphylococcus aureus | [86] |
Copper nitrate (V) trihydrate, sodium silicate and laccase | Precipitation method | Raw linen woven fabrics | Pad–dry–cure method | Staphylococcus aureus, Escherichia coli and the fungus Candida albicans | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfameni, S.; Hadhri, M.; Rando, G.; Drommi, D.; Rosace, G.; Trovato, V.; Plutino, M.R. Inorganic Finishing for Textile Fabrics: Recent Advances in Wear-Resistant, UV Protection and Antimicrobial Treatments. Inorganics 2023, 11, 19. https://doi.org/10.3390/inorganics11010019
Sfameni S, Hadhri M, Rando G, Drommi D, Rosace G, Trovato V, Plutino MR. Inorganic Finishing for Textile Fabrics: Recent Advances in Wear-Resistant, UV Protection and Antimicrobial Treatments. Inorganics. 2023; 11(1):19. https://doi.org/10.3390/inorganics11010019
Chicago/Turabian StyleSfameni, Silvia, Mariam Hadhri, Giulia Rando, Dario Drommi, Giuseppe Rosace, Valentina Trovato, and Maria Rosaria Plutino. 2023. "Inorganic Finishing for Textile Fabrics: Recent Advances in Wear-Resistant, UV Protection and Antimicrobial Treatments" Inorganics 11, no. 1: 19. https://doi.org/10.3390/inorganics11010019
APA StyleSfameni, S., Hadhri, M., Rando, G., Drommi, D., Rosace, G., Trovato, V., & Plutino, M. R. (2023). Inorganic Finishing for Textile Fabrics: Recent Advances in Wear-Resistant, UV Protection and Antimicrobial Treatments. Inorganics, 11(1), 19. https://doi.org/10.3390/inorganics11010019