Hybrid Siloxane Materials Based on a Mutually Reactive Epoxy–Amine System: Synthesis, Structure, and Thermal Stability Investigations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis
2.2. Morphology and Qualitative Composition of DS-PPD Conjugate
2.3. Thermal Stability Study
2.4. Wettability Study
2.5. Optical Properties Investigation
3. Materials and Methods
3.1. Materials
3.1.1. Synthesis of 1,3-bis(glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane (gp-DS)
3.1.2. Synthesis of Disiloxane–Phenylenediamine Conjugate (DS-PPD)
3.2. Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yilgör, E.; Yilgör, I. Silicone containing copolymers: Synthesis, properties and applications. Prog. Polym. Sci. 2014, 39, 1165–1195. [Google Scholar] [CrossRef]
- Yi, B.; Wang, S.; Hou, C.; Huang, X.; Cui, J.; Yao, X. Dynamic Siloxane Materials: From Molecular Engineering to Emerging Applications. Chem. Eng. J. 2020, 405, 127023. [Google Scholar] [CrossRef]
- Ratna, D. Handbook of Thermoset Resins; Smithers Rapra Technology: Billingham, UK, 2009. [Google Scholar]
- Paluvai, N.R.; Mohanty, S.; Nay, S.K. Synthesis and Modifications of Epoxy Resins and Their Composites: A Review. Polym. Plast. Technol. Eng. 2014, 53, 1723–1758. [Google Scholar] [CrossRef]
- Maity, T.; Samanta, B.C.; Dalai, S.; Banthia, A.K. Curing study of epoxy resin by new aromatic amine functional curing agents along with mechanical and thermal evaluation. Mat. Sci. Eng. A 2007, 464, 38–46. [Google Scholar] [CrossRef]
- Ignatenko, V.Y.; Ilyin, S.O.; Kostyuk, A.V.; Bondarenko, G.N.; Antonov, S.V. Acceleration of epoxy resin curing by using a combination of aliphatic and aromatic amines. Polym. Bull. 2019, 77, 1519–1540. [Google Scholar] [CrossRef]
- Fache, M.; Montérémal, C.; Boutevin, B.; Caillol, S. Amine hardeners and epoxy cross-linker from aromatic renewable resources. Eur. Polym. J. 2015, 73, 344–362. [Google Scholar] [CrossRef]
- Savonnet, E.; Le Coz, C.; Grau, E.; Grelier, S.; Defoort, B.; Cramail, H. Divanillin-based aromatic amines: Synthesis and use as curing agents for fully vanillin-based epoxy thermosets. Front. Chem. 2019, 7, 606. [Google Scholar] [CrossRef]
- Akbari, R.; Beheshty, M.H.; Shervin, M. Toughening of dicyandiamide-cured DGEBA based epoxy resins by CTBN liquid rubber. Iran. Polym. J. 2013, 22, 313–324. [Google Scholar] [CrossRef]
- Ramos, V.D.; Costa, H.M.; Soares, V.L.P.; Nascimento, R.S.V. Modification of epoxy resin, a comparison of different types of elastomer. Polym. Test. 2005, 24, 387–394. [Google Scholar] [CrossRef]
- Yeh, J.M.; Huang, H.Y.; Chen, C.L.; Su, W.F.; Yu, Y.H. Siloxane-modified epoxy resin–clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surf. Coat. Technol. 2006, 200, 2753–2763. [Google Scholar] [CrossRef]
- Tao, Z.; Yang, S.; Chen, J.; Fan, L. Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins. Eur. Polym. J. 2007, 43, 1470–1479. [Google Scholar] [CrossRef]
- Murias, P.; Byczyński, Ł.; Maciejewski, H.; Galina, H. A quantitative approach to dynamic and isothermal curing of an epoxy res-in modified with oligomeric siloxanes. J. Therm. Anal. Calorim. 2015, 122, 215–226. [Google Scholar] [CrossRef]
- Byczynski, Ł.; Dutkiewicz, M.; Maciejewski, H. Thermal and surface treated p-Phenylenediamine and p-Toluidine. J. Environ. Anal. Toxicol. 2015, 5, 1000329. [Google Scholar]
- Chakraborty, R. Development of Novel Cycloaliphatic Siloxanes for Thermal and UV-Curable Applications. Master’s Thesis, The Graduate Faculty of the University of Akron, Akron, OH, USA, 2008. [Google Scholar]
- Rosu, D.; Mustateata, F.; Cascaval, C.N. Investigation of the curing reactions of some multifunctional epoxy resins using differential scanning calorimetry. Thermochim. Acta 2001, 370, 105–110. [Google Scholar] [CrossRef]
- Innocenzi, P.; Kidchob, T. Hybrid organic-inorganic sol-gel materials based on epoxy-amine systems. J. Solgel Sci. Technol. 2005, 35, 225–235. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Branto, A.; Trivedi, D.; Nayak, G.; Singh, R.; Jana, S. Characterization of physical, thermal and spectroscopic properties of biofield energy properties of hybrid materials obtained from epoxy-functional urethane and siloxane. Polym. Bull. 2016, 73, 1247–1265. [Google Scholar]
- Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Maciejewski, H.; Da bek, I.; Fiedorow, R.; Dutkiewicz, M.; Majchrzak, M. Thermal stability of hybrid materials based on epoxy functional (poly)siloxanes. J. Therm. Anal. Calorim. 2012, 110, 1415–1424. [Google Scholar] [CrossRef]
- Harabagiu, V.; Pinteala, M.; Cotzur, C.; Holerca, M.N.; Ropot, M. Functional Polysiloxanes. Reaction of 1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane with amino compounds. J. Macromolec. Sci. A 1995, 32, 1641–1648. [Google Scholar] [CrossRef]
- Savitskii, A.V.; Kuznetsov, L.M. Infrared spectrum of paraphenylenediamine dihydrochloride. J. Struct. Chem. 1971, 12, 1016–1018. [Google Scholar] [CrossRef]
- Fortună, M.E.; Ignat, M.; Asandulesa, M.; Rotaru, R.; Pricop, L.; Harabagiu, V. Improved physico-chemical properties of mesoporous carbon by functionalization with aminopropyl-polydimethylsiloxane (APPDMS). J. Inorg. Organomet. Polym. Mater. 2018, 28, 2275–2287. [Google Scholar] [CrossRef]
- Tudorachi, N.; Lipsa, R.; Mustata, F.R. Thermal degradation of carboxymethyl starch-g-poly(lactic acid) copolymer by TG-FTIR-MS analysis. Ind. Eng. Chem. Res. 2012, 51, 15537–15545. [Google Scholar] [CrossRef]
- Kupareva, A.; Arvela, P.M.; Grénman, H.; Eränen, K.; Murzin, D.Y. Base-catalyzed transformations of tetramethyldisiloxane. Ind. Eng. Chem. Res. 2013, 52, 10080–10088. [Google Scholar] [CrossRef]
- Godoy, N.V.; Segatelli, M.G. Kinetic investigation of thermal formation processes of SiOC glasses derived from C-containing hybrid polymeric networks. J. Braz. Chem. Soc. 2015, 1, 899–909. [Google Scholar] [CrossRef]
- Tudorachi, N.; Chiriac, A.P.; Mustata, F. New nanocomposite based on poly(lactic-co-glycolic acid) copolymer and magnetite. Synth. Charact. Compos. Part B 2015, 72, 150–159. [Google Scholar] [CrossRef]
- Mustata, F.; Tudorachi, N.; Asandulesa, M.; Bicu, I. Thermal and electrical behavior of hybrid thermosets based on epoxy and maleimide resins cured with p-aminobenzoic acid. Int. J. Chem. Kinet. 2019, 51, 799–814. [Google Scholar] [CrossRef]
- Rotaru, R.; Fortuna, M.E.; Cojocaru, C.; Samoilă, P.; Pricop, L.; Harabagiu, V. Viscose-maghemite-goethite polymeric composite as sorbent for oil spill cleanup. Environ. Eng. Manag. J. 2019, 18, 1193–1200. [Google Scholar]
- Callister, W.D., Jr.; Rethwisch, D.G. Fundamentals of Materials Science and Engineering: An Integrated Approach; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Bistafa, C.; Modesto-Costa, L.; Canuto, S. A complete basis set study of the lowest n–π* and π–π* electronic transitions of acrolein in explicit water environment. Theor. Chem. Acc. 2016, 135, 129. [Google Scholar] [CrossRef]
- Fifere, N.; Airinei, A.; Timpu, D.; Rotaru, A.; Sacarescu, L.; Ursu, L. New insights into structural and magnetic properties of Ce doped ZnO nanoparticles. J. Alloys Compd. 2018, 757, 60–69. [Google Scholar] [CrossRef]
- Pricop, L.; Fortună, M.E.; Popovici, D.; Asandulesa, M.; Racles, C.; Zaltariov, M.F.; Marangoci, N.; Savin, M.; Harabagiu, V. Nickel Complexes of Guanidine Functionalized Trisiloxane. J. Inorg. Organomet. Polym. Mater. 2019, 29, 2024–2034. [Google Scholar] [CrossRef]
Sample | Heating Rate °C/min | Degradation Stage | Tonset DTG °C | Tpeak °C | W % | T10 °C | T20 °C | GS °C |
---|---|---|---|---|---|---|---|---|
DS/PPD (1/0.5) | 10 | I | 322 | 398 | 76.35 | 344 | 366 | 390 |
residue | 23.65 | |||||||
gp-DS | 10 | I | 287 | 337 | 99.88 | 270 | 292 | - |
residue | 0.12 | |||||||
PPD | 10 | I | 204 | 237 | 98.82 | 187 | 203 | - |
residue | 1.18 |
Sample | CAw [deg] | CAeg [deg] | Standard Deviation [deg] |
---|---|---|---|
gp-DS | 101.4 | 92.1 | 0.15–0.30 |
PPD | 82.1 | 77.6 | 0.17–0.29 |
DS-PPD | 97.0 | 85.7 | 0.16–0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortună, M.E.; Ignat, M.; Tudorachi, N.; Ungureanu, E.; Rotaru, R.; Harabagiu, V. Hybrid Siloxane Materials Based on a Mutually Reactive Epoxy–Amine System: Synthesis, Structure, and Thermal Stability Investigations. Inorganics 2024, 12, 118. https://doi.org/10.3390/inorganics12040118
Fortună ME, Ignat M, Tudorachi N, Ungureanu E, Rotaru R, Harabagiu V. Hybrid Siloxane Materials Based on a Mutually Reactive Epoxy–Amine System: Synthesis, Structure, and Thermal Stability Investigations. Inorganics. 2024; 12(4):118. https://doi.org/10.3390/inorganics12040118
Chicago/Turabian StyleFortună, Maria Emiliana, Maria Ignat, Niţă Tudorachi, Elena Ungureanu, Răzvan Rotaru, and Valeria Harabagiu. 2024. "Hybrid Siloxane Materials Based on a Mutually Reactive Epoxy–Amine System: Synthesis, Structure, and Thermal Stability Investigations" Inorganics 12, no. 4: 118. https://doi.org/10.3390/inorganics12040118
APA StyleFortună, M. E., Ignat, M., Tudorachi, N., Ungureanu, E., Rotaru, R., & Harabagiu, V. (2024). Hybrid Siloxane Materials Based on a Mutually Reactive Epoxy–Amine System: Synthesis, Structure, and Thermal Stability Investigations. Inorganics, 12(4), 118. https://doi.org/10.3390/inorganics12040118