Cyanide Addition to Diiron and Diruthenium Bis-Cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Details
3.2. Reaction of Diiron μ-Allenyl Complex (1Fe) with Bu4NCN: Formation of [Fe2Cp2(CO)(µ-CO){µ,η1:η3-CH=C(MeC=CH2)C=O}] (4, Figure 5)
3.3. Reaction of Diruthenium μ-Allenyl Complex (1Ru-NCMe) with Bu4NCN: Synthesis and Isolation of [Ru2Cp2(CO)2{µ,η2:η2-CH(CN)=C=CMe2}] (5A, Figure 6), Identification of [Ru2Cp2(CN)(CO)(µ-CO){µ,η1:η2-CH=C=CMe2}] (5B1, 5B2, Figure 6)
3.4. Reaction of Diruthenium μ-Vinyl Complex (2Ru-Cl) with Bu4NCN: Synthesis of [Ru2Cp2(CN)(CO)(µ-CO){µ,η1:η2-C(Ph)=CHPh}] (6, Figure 7)
3.5. Reactions of Diiron and Diruthenium μ-Aminocarbyne Complexes (3) with Bu4NCN
3.5.1. Synthesis of [Ru2Cp2(CO)2(µ-CO){µ-C(CN)N(Me)(Cy)}] (7aRu, Figure 8)
3.5.2. Formation of [Fe2Cp2(CO)2(µ-CO){µ-C(CN)N(Me)Cy}] (7aFe, Figure 9) and [Fe2Cp2(CN)(CO)(µ-CO){µ-CN(Me)Cy}] (8aFe, Figure 9)
3.6. Thermal Decarbonylation Reactions
3.6.1. Synthesis of [Fe2Cp2(CN)(CO)(µ-CO){µ-CN(Me)2}] (8bFe, Figure 10)
3.6.2. Synthesis of [Ru2Cp2(CN)(CO)(µ-CO){µ-CN(Me)(Cy)}] (8aRu, Figure 11)
3.7. Attempt to Prepare 8aRu via Chloride–Cyanide Substitution
4. X-ray Crystallography
5. Details of DFT Calculations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Campos, J. Bimetallic cooperation across the periodic table. Nat. Rev. Chem. 2020, 4, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Ritleng, V.; Chetcuti, M.J. Hydrocarbyl Ligand Transformations on Heterobimetallic Complexes. Chem. Rev. 2007, 107, 797–858. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, R.; Deolka, S.; Khusnutdinova, J.R. Heterometallic bond activation enabled by unsymmetrical ligand scaffolds: Bridging the opposites. Chem. Sci. 2022, 13, 14008–14031. [Google Scholar] [CrossRef]
- Patra, S.; Maity, N. Recent advances in (hetero)dimetallic systems towards tandem catalysis. Coord. Chem. Rev. 2021, 434, 213803. [Google Scholar] [CrossRef]
- Knorr, M.; Jourdain, I. Activation of alkynes by diphosphine- and m-phosphido-spanned heterobimetallic complexes. Coord. Chem. Rev. 2017, 350, 217–247. [Google Scholar] [CrossRef]
- Mazzoni, R.; Salmi, M.; Zanotti, V. C-C Bond Formation in Diiron Complexes. Chem. Eur. J. 2012, 18, 10174–10194. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, F. Constructing Organometallic Architectures from Aminoalkylidyne Diiron Complexes. Eur. J. Inorg. Chem. 2018, 3987–4003. [Google Scholar] [CrossRef]
- Biancalana, L.; Marchetti, F. Aminocarbyne ligands in organometallic chemistry. Coord. Chem. Rev. 2021, 449, 214203. [Google Scholar] [CrossRef]
- Chen, J.; Wang, R. Remarkable reactions of cationic carbyne complexes of manganese, rhenium, and diiron with carbonylmetal anions. Coord. Chem. Rev. 2002, 231, 109–149. [Google Scholar] [CrossRef]
- Busetto, L.; Maitlis, P.M.; Zanotti, V. Bridging vinylalkylidene transition metal complexes. Coord. Chem. Rev. 2010, 254, 470–486. [Google Scholar] [CrossRef]
- Casey, C.P.; Marder, S.R.; Colborn, R.E.; Goodson, P.A. Conversion of Diiron Bridging Alkenyl Complexes to Monoiron Alkenyl Compounds and to Alkenes. Organometallics 1986, 5, 199–203. [Google Scholar] [CrossRef]
- Casey, C.P.; Meszaros, M.W.; Fagan, P.J.; Bly, R.K.; Marder, S.R.; Austin, E.A. Hydrocarbation—Formation of Diiron µ-Alkylidyne Complexes from the Addition of the Carbon-Hydrogen Bond of a µ-Methylidyne Complex across Alkenes. J. Am. Chem. Soc. 1986, 108, 4043–4053. [Google Scholar] [CrossRef]
- Bruce, G.C.; Knox, S.A.R.; Phillips, A.J. Synthesis of Butadiene via Vinyl-Ethylene Combination at a Diruthenium Centre. J. Chem. Soc. Chem. Commun. 1990, 716–718. [Google Scholar] [CrossRef]
- Turner, M.L.; Marsih, N.; Mann, B.E.; Quyoum, R.; Long, H.C.; Maitlis, P.M. Investigations by 13C NMR Spectroscopy of Ethene-Initiated Catalytic CO Hydrogenation. J. Am. Chem. Soc. 2002, 124, 10456–10472. [Google Scholar] [CrossRef]
- Tsurugi, H.; Laskar, P.; Yamamoto, K.; Mashima, K. Bonding and structural features of metal-metal bonded homo- and hetero-dinuclear complexes supported by unsaturated hydrocarbon ligands. J. Organomet. Chem. 2018, 869, 251–263. [Google Scholar] [CrossRef]
- Boni, A.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Cationic Diiron and Diruthenium µ-Allenyl Complexes: Synthesis, X-ray Structures and Cyclization Reactions with Ethyldiazoacetate/Amine Affording Unprecedented Butenolide- and Furaniminium-Substituted Bridging Carbene Ligands. Dalton Trans. 2010, 39, 10866–10875. [Google Scholar] [CrossRef]
- Bresciani, G.; Vančo, J.; Funaioli, T.; Zacchini, S.; Malina, T.; Pampaloni, G.; Dvořák, Z.; Trávníček, Z.; Marchetti, F. Anticancer Potential of Diruthenium Complexes with Bridging Hydrocarbyl Ligands from Bioactive Alkynols. Inorg. Chem. 2023, 62, 15875–15890. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, G.; Boni, S.; Funaioli, T.; Zacchini, S.; Pampaloni, G.; Busto, N.; Biver, T.; Marchetti, F. Adding Diversity to a Diruthenium Biscyclopentadienyl Scaffold via Alkyne Incorporation: Synthesis and Biological Studies. Inorg. Chem. 2023, 62, 12453–12467. [Google Scholar] [CrossRef] [PubMed]
- Dyke, A.F.; Knox, S.A.R.; Morris, M.J.; Naish, P.J. Organic chemistry of dinuclear metal centres. Part 3. µ-Carbene complexes of iron and ruthenium from alkynes via µ-vinyl cations. J. Chem. Soc. Dalton Trans. 1983, 1417–1426. [Google Scholar] [CrossRef]
- Agonigi, G.; Bortoluzzi, M.; Marchetti, F.; Pampaloni, G.; Zacchini, S.; Zanotti, V. Regioselective Nucleophilic Additions to Diiron Carbonyl Complexes Containing a Bridging Aminocarbyne Ligand: A Synthetic, Crystallographic and DFT Study. Eur. J. Inorg. Chem. 2018, 960–971. [Google Scholar] [CrossRef]
- Biancalana, L.; De Franco, M.; Ciancaleoni, G.; Zacchini, S.; Pampaloni, G.; Gandin, V.; Marchetti, F. Easily Available, Amphiphilic Diiron Cyclopentadienyl Complexes Exhibit in Vitro Anticancer Activity in 2D and 3D Human Cancer Cells through Redox Modulation Triggered by CO Release. Chem. Eur. J. 2021, 27, 10169–10185. [Google Scholar] [CrossRef] [PubMed]
- Vančo, J.; Fiaschi, M.; Biancalana, L.; Malina, T.; Dvořák, Z.; Funaioli, T.; Zacchini, S.; Guelfi, M.; Trávníček, Z.; Marchetti, F. An Exceptionally Aqueous Stable Diruthenium N-Indolyl Aminocarbyne Complex as a Prospective Anticancer Drug. Inorg. Chem. Front. 2024, 1417–1426. [Google Scholar] [CrossRef]
- Luh, T.Y. Trimethylamine N-Oxide-A Versatile Reagent for Organometallic Chemistry. Coord. Chem. Rev. 1984, 60, 255–276. [Google Scholar] [CrossRef]
- Adams, K.J.; Barker, J.J.; Knox, S.A.R.; Orpen, A.G. Linking and fragmentation of alkynes at a triruthenium centre. J. Chem. Soc. Dalton Trans. 1996, 975–988. [Google Scholar] [CrossRef]
- Bresciani, G.; Zacchini, S.; Pampaloni, G.; Bortoluzzi, M.; Marchetti, F. η6-Coordinated ruthenabenzenes from three-component assembly on a diruthenium μ-allenyl scaffold. Dalton Trans. 2022, 51, 8390–8400. [Google Scholar] [CrossRef]
- Bresciani, G.; Zacchini, S.; Pampaloni, G.; Marchetti, F. Carbon-Carbon Bond Coupling of Vinyl Molecules with an Allenyl Ligand at a Diruthenium Complex. Organometallics 2022, 41, 1006–1014. [Google Scholar] [CrossRef]
- Bresciani, G.; Boni, S.; Zacchini, S.; Pampaloni, G.; Bortoluzzi, M.; Marchetti, F. Alkyne-alkenyl coupling at a diruthenium complex. Dalton Trans. 2022, 51, 15703–15715. [Google Scholar] [CrossRef] [PubMed]
- Doherty, N.M.; Howard, J.A.K.; Knox, S.A.R.; Terrill, N.J.; Yates, M.I. Reactivity of Alkenes at a Diruthenium Centre: Combination with Methylene and Oxidative Activation. J. Chem. Soc. Chem. Commun. 1989, 638–640. [Google Scholar] [CrossRef]
- Pimparkar, S.; Koodan, A.; Maiti, S.; Ahmed, N.S.; Mostafa, M.M.M.; Maiti, D. C–CN bond formation: An overview of diverse strategies. Chem. Commun. 2021, 57, 22102232. [Google Scholar] [CrossRef]
- Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. Ruthenium-Catalyzed Oxidative Cyanation of Tertiary Amines with Molecular Oxygen or Hydrogen Peroxide and Sodium Cyanide: Sp3 C-H Bond Activation and Carbon—Carbon Bond Formation. J. Am. Chem. Soc. 2008, 130, 11005–11012. [Google Scholar] [CrossRef]
- White, D.A.; Baizer, M.M. Tetra-alkylammonium Cyanides as Nucleophilic and Basic Reagents. J. Chem. Soc. Perkin Trans. 1973, 1, 2230–2236. [Google Scholar] [CrossRef]
- Bartley, S.L.; Bernstein, S.N.; Dunbar, K.R. Acetonitrile and cyanide compounds containing metal-metal bonds: Syntheses, structures and applications to solid-state chemistry. Inorg. Chim. Acta 1993, 213, 213–231. [Google Scholar] [CrossRef]
- Zanotti, V.; Bordoni, S.; Busetto, L.; Carlucci, L.; Palazzi, A.; Serra, R.; Albano, V.G.; Monari, M.; Prestopino, F.; Laschi, F.; et al. Diiron Aminoalkylidene Complexes. Organometallics 1995, 14, 5232–5241. [Google Scholar] [CrossRef]
- Busetto, L.; Carlucci, L.; Zanotti, V.; Albano, V.G.; Monari, M. Ruthenium complexes with bridging functionalized alkylidene ligands. Synthesis of [Ru2Cp2(CO)2(μ-CO){μ-C(X)N(Me)CH2Ph}] (X = H, CN) and molecular structure of the CN derivative. J. Organomet. Chem. 1993, 447, 271–275. [Google Scholar] [CrossRef]
- Albano, V.G.; Busetto, L.; Monari, M.; Zanotti, V. Reactions of acetonitrile di-iron μ-aminocarbyne complexes: Synthesis and structure of [Fe2(μ-CNMe2)(μ-H)(CO)2(Cp)2]. J. Organomet. Chem. 2000, 606, 163–168. [Google Scholar] [CrossRef]
- Bresciani, G.; Biancalana, L.; Zacchini, S.; Pampaloni, G.; Ciancaleoni, G.; Marchetti, F. Diiron bis-cyclopentadienyl complexes as transfer hydrogenation catalysts: The key role of the bridging aminocarbyne ligand. Appl. Organomet. Chem. 2023, 37, e6990. [Google Scholar] [CrossRef]
- Busetto, L.; Zanotti, V. Carbene ligands in diiron complexes. J. Organomet. Chem. 2005, 690, 5430–5440. [Google Scholar] [CrossRef]
- Trylus, K.-H.; Kernbach, U.; Brüdgam, I.; Fehlhammer, W.P. Reaction patterns of ‘tetraferrio-azaallenium’, [(OC)3Cp2Fe2(μ4-CNC)Fe2Cp2(CO)3]+, and its ‘activated cyanide’-precursor (μ-phthalimidocarbyne)- tricarbonyldicyclopentadienyldiiron(1+). Inorg. Chim. Acta 1999, 291, 266–278. [Google Scholar]
- Schoch, S.; Bresciani, G.; Saviozzi, C.; Funaioli, T.; Bortoluzzi, M.; Pampaloni, G.; Marchetti, F. Iminium Substituent Directs Cyanide and Hydride Additions to Triiron Vinyliminium Complexes. New J. Chem. 2023, 47, 8828–8844. [Google Scholar] [CrossRef]
- Marchetti, F.; Zacchini, S.; Zanotti, V. Amination of Bridging Vinyliminium Ligands in Diiron Complexes: C-N Bond Forming Reactions for Amidine-Alkylidene Species. Organometallics 2018, 37, 107–115. [Google Scholar] [CrossRef]
- Sulaiman, A.; Jiang, Y.-Z.; Khurram Javed, M.; Wu, S.-Q.; Li, Z.-Y.; Bu, X.-H. Tuning of spin-crossover behavior in two cyano-bridged mixed-valence Fe III2FeII trinuclear complexes based on a TpR ligand. Inorg. Chem. Front. 2022, 9, 241–248. [Google Scholar] [CrossRef]
- Ghosh, P.; Quiroz, M.; Pulukkody, R.; Bhuvanesha, N.; Darensbourg, M.Y. Bridging cyanides from cyanoiron metalloligands to redox-active dinitrosyl iron units. Dalton Trans. 2018, 47, 11812–11819. [Google Scholar] [CrossRef] [PubMed]
- Johansen, C.M.; Peters, J.C. Catalytic Reduction of Cyanide to Ammonia and Methane at a Mononuclear Fe Site. J. Am. Chem. Soc. 2024, 146, 5343–5354. [Google Scholar] [CrossRef] [PubMed]
- Tard, C.; Pickett, C.J. Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases. Chem. Rev. 2009, 109, 2245–2274. [Google Scholar] [CrossRef] [PubMed]
- Fontecilla-Camps, J.C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases. Chem. Rev. 2007, 107, 4273–4303. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, R.; Gabiccini, A.; Cesari, C.; Zanotti, V.; Gualandi, I.; Tonelli, D. Diiron Complexes Bearing Bridging Hydrocarbyl Ligands as Electrocatalysts for Proton Reduction. Organometallics 2015, 34, 3228–3235. [Google Scholar] [CrossRef]
- Arrigoni, F.; Bertini, L.; De Gioia, L.; Cingolani, A.; Mazzoni, R.; Zanotti, V.; Zampella, G. Mechanistic Insight into Electrocatalytic H2 Production by [Fe2(CN){μ-CN(Me)2}(μ-CO)(CO)(Cp)2]: Effects of Dithiolate Replacement in [FeFe] Hydrogenase Models. Inorg. Chem. 2017, 56, 13852–13864. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, F.; Bertini, L.; De Gioia, L.; Zampella, G.; Mazzoni, R.; Cingolani, A.; Gualandi, I.; Tonelli, D.; Zanotti, V. On the importance of cyanide in diiron bridging carbyne complexes, unconventional [FeFe]-hydrogenase mimics without dithiolate: An electrochemical and DFT investigation. Inorg. Chim. Acta 2020, 510, 119745. [Google Scholar] [CrossRef]
- Knox, S.A.R.; Marchetti, F. Additions and intramolecular migrations of nucleophiles in cationic diruthenium μ-allenyl complexes. J. Organomet. Chem. 2007, 692, 4119–4128. [Google Scholar] [CrossRef]
- Hoel, E.L.; Ansell, G.B.; Leta, S. Thermal and Photochemical Rearrangements of a Bridging Cyclopropylidene Ligand to Aliene In a Diiron Complex. Organometallics 1986, 5, 585–587. [Google Scholar] [CrossRef]
- Al-Obaidi, Y.N.; Baker, P.K.; Green, M.; White, N.D.; Taylor, G.E. Reactions of co-ordinated ligands. Part 25. The synthesis of µ-allene-dicarbonylbis(η5-indenyl)dirhodium and protonation to form a bridged cationic vinyl complex; molecular structures of µ-allene-dicarbonylbis(η5-indenyl)dirhodium and dicarbonyl-bis(η5-indenyl)-µ-(1-methylvinyl)-dirhodium(Rh–Rh) tetrafluoroborate. J. Chem. Soc. Dalton Trans. 1981, 2321–2327. [Google Scholar] [CrossRef]
- Wu, I.Y.; Tseng, T.W.; Chen, C.T.; Cheng, M.C.; Lin, Y.C.; Wang, Y. Synthesis of heterobimetallic allene complexes. Inorg. Chem. 1993, 32, 1539–1540. [Google Scholar] [CrossRef]
- Justice, A.K.; Linck, R.C.; Rauchfuss, T.B. Diruthenium Dithiolato Cyanides: Basic Reactivity Studies and a Post Hoc Examination of Nature’s Choice of Fe versus Ru for Hydrogenogenesis. Inorg. Chem. 2006, 45, 2406–2412. [Google Scholar] [CrossRef] [PubMed]
- Darensbourg, D.J.; Lee, W.-Z.; Yarbrough, J.C. Synthesis and Characterization of a Monocyanide-Bridged Bimetallic Iron(II) and Copper(I) Complex. Inorg. Chem. 2001, 40, 6533–6536. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.S.; Romerosa, A.; Sierra-Martin, B.; Fernandez-Barbero, A. A Water Soluble Diruthenium–Gold Organometallic Microgel. Angew. Chem. Int. Ed. 2008, 47, 8665–8669. [Google Scholar] [CrossRef] [PubMed]
- Doherty, S.; Hogarth, G.; Waugh, M.; Clegg, W.; Elsegood, M.R.J. Conversion of s,h-Allenyl Group into a s,s-(Diphenylphosphino)allyl and a Hexa-1,3,5-triene-2,6-diyl Ligand at a Diiron Center. Organometallics 2000, 19, 5696–5708. [Google Scholar] [CrossRef]
- Dennett, J.N.L.; Knox, S.A.R.; Anderson, K.M.; Charmant, J.P.H.; Orpen, A.G. The synthesis of [FeRu(CO)2(μ-CO)2(Cp)(C5Me5)] and convenient entries to its organometallic chemistry. Dalton Trans. 2005, 63–73. [Google Scholar] [CrossRef]
- Dennett, J.N.L.; Knox, S.A.R.; Charmant, J.P.H.; Gillon, A.L.; Orpen, A.G. Synthesis and reactivity of m-butadienyl diruthenium cations. Inorg. Chim. Acta 2003, 354, 29–40. [Google Scholar] [CrossRef]
- Biancalana, L.; Ciancaleoni, G.; Zacchini, S.; Pampaloni, G.; Marchetti, F. Carbonyl-isocyanide mono-substitution in [Fe2Cp2(CO)4]: A re-visitation. Inorg. Chim. Acta 2020, 517, 120181. [Google Scholar] [CrossRef]
- Guillevic, M.A.; Hancox, E.L.; Mann, B.E. A reinvestigation of the solution structure and dynamics of [Fe2(η5-C5H5)2(CO)4–n(CNMe)n], n= 1 or 2. J. Chem. Soc. Dalton Trans. 1992, 1729–1733. [Google Scholar] [CrossRef]
- Adams, R.D.; Cotton, F.A. Low-valent metal isocyanine complexes. V. Structure and dynamical stereochemistry of bis(pentahaptocyclopentadienyl)tricarbonyl(tert-butyl isocyanide)diiron(Fe-Fe),(.eta.5-C5H5)2Fe2(CO)3[CNC(CH3)3]. Inorg. Chem. 1974, 13, 257–262. [Google Scholar] [CrossRef]
- Fehlhammer, W.P.; Schröder, A.; Schoder, F.; Fuchs, J.; Völkl, A.; Boyadjiev, B.; Schrölkamp, S. Synthese, Struktur und Dynamik van [Fe2(CN)(Cp)2(CO)3]−. J. Organomet. Chem. 1991, 411, 405–417. [Google Scholar] [CrossRef]
- Jennings, M.C.; Puddephatt, R.J.; Manojlović-Muir, L.; Muir, K.W.; Mwariri, B.N. Binding modes of cyanide at trinuclear clusters. Crystal structure of [Pt3(μ3-CO)(CN)(dppm)3][PF6]. Inorg. Chim. Acta 1993, 212, 191–197. [Google Scholar] [CrossRef]
- Hoffbauer, M.R.; Iluc, V.M. [2+2] Cycloadditions with an Iron Carbene: A Critical Step in Enyne Metathesis. J. Am. Chem. Soc. 2021, 143, 5592–5597. [Google Scholar] [CrossRef]
- Bresciani, G.; Schoch, S.; Biancalana, L.; Zacchini, S.; Bortoluzzi, M.; Pampaloni, G.; Marchetti, F. Cyanide–alkene competition in a diiron complex and isolation of a multisite (cyano)alkylidene–alkene species. Dalton Trans. 2022, 51, 1936–1945. [Google Scholar] [CrossRef] [PubMed]
- Biancalana, L.; Fiaschi, M.; Zacchini, S.; Marchetti, F. Formation and structural characterization of a diiron aminoalkylidene complex with N-cyano substituent. Inorg. Chim. Acta 2022, 541, 121093. [Google Scholar] [CrossRef]
- Busetto, L.; Carlucci, L.; Zanotti, V.; Albano, V.G.; Braga, D. Synthesis, reactions, and X-ray structures of the functionalized isocyanide complexes [Fe2{µ-CNC(O)SR}(µ-CO)(CO)2(cp)2] (cp =η-C5H5, R = Me or Et) and of their carbyne and carbene derivatives. J. Chem. Soc. Dalton Trans. 1990, 243–250. [Google Scholar] [CrossRef]
- Albano, V.G.; Busetto, L.; Carlucci, L.; Cassani, M.C.; Monari, M.; Zanotti, V. Synthesis of dinuclear iron and ruthenium aminoalkylidene complexes and the molecular structure of the novel cis-[Ru2(CO)2(Cp)2{μ-C(CN)N(Me)Bz}2](Cp = η-C5H5; Bz = CH2Ph). J. Organomet. Chem. 1995, 488, 133–139. [Google Scholar] [CrossRef]
- Friedman, L.; Shechter, H. Preparation of Nitriles from Halides and Sodium Cyanide. An Advantageous Nucleophilic Displacement in Dimethyl Sulfoxide. J. Org. Chem. 1960, 25, 877–879. [Google Scholar] [CrossRef]
- Bresciani, G.; Zacchini, S.; Pampaloni, G.; Bortoluzzi, M.; Marchetti, F. Diiron Aminocarbyne Complexes with NCE− Ligands (E = O, S, Se). Molecules 2023, 28, 3251. [Google Scholar] [CrossRef]
- Albano, V.G.; Busetto, L.; Camiletti, C.; Monari, M.; Zanotti, V. Further investigations on C-C bond formation at the diruthenium aminocarbyne complexes [Ru2{μ-CN(Me)R}(μ-CO)(CO)2(Cp)2]SO3CF3 (R = Me, CH2Ph) and molecular structure of [Ru2(μ-CNMe2)(μ-CO)(COPh)(CO)(Cp)2]. J. Organomet. Chem. 1998, 563, 153–159. [Google Scholar] [CrossRef]
- Albano, V.G.; Busetto, L.; Camiletti, C.; Castellari, C.; Monari, M.; Zanotti, V. Selective C-C bond formation at diiron μ-aminocarbyne complexes. J. Chem. Soc. Dalton Trans. 1997, 4671–4676. [Google Scholar] [CrossRef]
- Boss, K.; Manning, A.R.; Muller-Bunz, H. The structure of the red-brown form of [Fe2(η5-C5H4Me)2(CO)(CN)(μ-CO)(μ-CNMe2)] and its confirmation as a cis isomer. Z. Krist. Cryst. Mater. 2006, 221, 266–269. [Google Scholar] [CrossRef]
- Alvarez, M.A.; García, M.E.; García-Vivó, D.; Ruiz, M.A.; Vega, M.F. Insertion, Rearrangement, and Coupling Processes in the Reactions of the Unsaturated Hydride Complex [W2(η5-C5H5)2(H)(μ-PCy2)(CO)2] with Isocyanides. Organometallics 2013, 32, 4543–4555. [Google Scholar] [CrossRef]
- Knorr, M.; Strohmann, C. Syntheses, Structures, and Reactivity of Dinuclear Molybdenum-Platinum and Tungsten-Platinum Complexes with Bridging Carbonyl, Sulfur Dioxide, Isonitrile, and Aminocarbyne Ligands and a dppa Backbone (dppa)Ph2PNHPPh2). Organometallics 1999, 18, 248–257. [Google Scholar] [CrossRef]
- Zhou, X.; Barton, B.E.; Chambers, G.M.; Rauchfuss, T.B. Preparation and Protonation of Fe2(pdt)(CNR)6, Electron-Rich Analogues of Fe2(pdt)(CO)6. Inorg. Chem. 2016, 55, 3401–3412. [Google Scholar] [CrossRef] [PubMed]
- Basolo, F. Polyhedron report number 32: Kinetics and mechanisms of CO substitution of metal carbonyls. Polyhedron 1990, 9, 1503–1535. [Google Scholar] [CrossRef]
- Fajardo, J.; Peters, J.C., Jr. Catalytic nitrogen-to-ammonia conversion by osmium and ruthenium complexes. J. Am. Chem. Soc. 2017, 139, 16105–16108. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, A.W.; Ruiz-Morales, Y.; Jan Baerends, E.; Ziegler, T. Dissociation Energies, Vibrational Frequencies, and 13C NMR Chemical Shifts of the 18-Electron Species [M(CO)6]n (M = Hf−Ir, Mo, Tc, Ru, Cr, Mn, Fe). A Density Functional Study. Inorg. Chem. 1997, 36, 5031–5036. [Google Scholar] [CrossRef]
- Hughes, A.K.; Wade, K. Metal–metal and metal–ligand bond strengths in metal carbonyl clusters. Coord. Chem. Rev. 2000, 197, 191–229. [Google Scholar] [CrossRef]
- Menges, F. “Spectragryph—Optical Spectroscopy Software”, Version 1.2.5, @ 2016–2017. Available online: https://www.effemm2.de/spectragryph (accessed on 30 April 2024).
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef]
- Willker, W.; Leibfritz, D.; Kerssebaum, R.; Bermel, W. Gradient selection in inverse heteronuclear correlation spectroscopy. Magn. Reson. Chem. 1993, 31, 287–292. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS-2008/1-Bruker AXS Area Detector Scaling and Absorption Correction; Bruker AXS: Madison, WI, USA, 2008. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comp. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Rolfes, J.D.; Neese, F.; Pantazis, D.A. All-electron scalar relativistic basis sets for the elements Rb-Xe. J. Comput. Chem. 2020, 41, 1842. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787. [Google Scholar] [CrossRef]
8aFe | 8aRu | |
---|---|---|
IR (CH2Cl2), ῦ/cm−1 | ||
CO (terminal) | 1959 | 1962 |
CO (bridging) | 1803 | 1804 |
C≡N | 2089 | 2098 |
m-CN | 1528 | 1540 |
1H NMR (CDCl3), δ/ppm | ||
Cp | 4.80, 4.64 | 5.32, 5.20 |
N-Me | 4.04 | 3.76 |
13C NMR (CDCl3), δ/ppm | ||
CO (terminal) | 262.2 | 232.6 |
CO (bridging) | 212.6 | 199.3 |
m-CN | 336.1 | 303.8 |
Cp | 90.2, 90.0 | 91.5, 90.0 |
N-Me | 44.2 | 45.4 |
C≡N | 140.6 | 143.3 |
7aRu·CH2Cl2 | trans-8bFe·2H2O | |
---|---|---|
Formula | C23H26Cl2N2O3Ru2 | C16H20Fe2N2O4 |
FW | 651.50 | 416.04 |
T, K | 100(2) | 100(2) |
λ, Å | 0.71073 | 0.71073 |
Crystal system | Monoclinic | Triclinic |
Space group | C2/c | P |
a, Å | 23.6049(17) | 7.1749(15) |
b, Å | 11.0767(8) | 8.0419(17) |
c, Å | 18.9574(14) | 14.623(3) |
α, ° | 90 | 92.379(9) |
β, ° | 98.353(3) | 96.023(9) |
γ, ° | 90 | 106.019(9) |
Cell Volume, Å3 | 4904.1(6) | 804.3(3) |
Z | 8 | 2 |
Dc, g∙cm−3 | 1.765 | 1.718 |
μ, mm−1 | 1.477 | 1.827 |
F(000) | 2592 | 428 |
Crystal size, mm | 0.21 × 0.19 × 0.14 | 0.15 × 0.11 × 0.08 |
θ limits, ° | 1.744–27.998 | 2.642–24.993 |
Reflections collected | 34,456 | 5435 |
Independent reflections | 5925 [Rint = 0.0503] | 2799 [Rint = 0.0558] |
Data/restraints/parameters | 5925/71/300 | 2799/334/223 |
Goodness on fit on F2 a | 1.031 | 1.127 |
R1 (I > 2σ(I)) b | 0.0353 | 0.0818 |
wR2 (all data) c | 0.0962 | 0.2074 |
Largest diff. peak and hole, e Å−3 | 1.482/−1.560 | 1.961/−1.392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinci, A.; Ciancaleoni, G.; Zacchini, S.; Marchetti, F. Cyanide Addition to Diiron and Diruthenium Bis-Cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands. Inorganics 2024, 12, 147. https://doi.org/10.3390/inorganics12060147
Cinci A, Ciancaleoni G, Zacchini S, Marchetti F. Cyanide Addition to Diiron and Diruthenium Bis-Cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands. Inorganics. 2024; 12(6):147. https://doi.org/10.3390/inorganics12060147
Chicago/Turabian StyleCinci, Alessia, Gianluca Ciancaleoni, Stefano Zacchini, and Fabio Marchetti. 2024. "Cyanide Addition to Diiron and Diruthenium Bis-Cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands" Inorganics 12, no. 6: 147. https://doi.org/10.3390/inorganics12060147
APA StyleCinci, A., Ciancaleoni, G., Zacchini, S., & Marchetti, F. (2024). Cyanide Addition to Diiron and Diruthenium Bis-Cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands. Inorganics, 12(6), 147. https://doi.org/10.3390/inorganics12060147