Electronic and Steric Effects on Oxygen Reactivities of NiFeSe Complexes Related to O2-Damaged [NiFeSe]-Hydrogenases’ Active Site
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterizations
2.2. Oxygen Tolerance Test
2.2.1. The O2 Reaction of NiSe(CH3)FeCp
2.2.2. The O2 Reaction of NiSe(CH3)FeCp*
2.2.3. The O2 Reaction of NiSe(PhNMe2)FeCp
3. Discussion
3.1. Electronic Effect on the Fe Moiety
3.2. Intermediate Delocalization Effect on Se
4. Materials and Methods
4.1. General Materials and Techniques
4.2. IR Spectrometry Analysis and Reaction Progress Monitoring
4.3. X-ray Structure Analysis and Data Processing
4.4. DFT Calculation Methods
5. Conclusions
- (a)
- The three complexes can react with oxygen to form a 1-oxygen species, which is related to the O2-damaged [NiFeSe] hydrogenases‘ active sites.
- (b)
- Since NiSe(PhNMe2)FeCp and NiSe(CH3)FeCp shared identical v(CO) values, PhNMe2 had an electron-donating ability equivalent to that of the CH3 group. Cp* demonstrated better electron-donating properties than Cp, resulting in increased π-back-bonding from Fe to CO and a higher oxygen reactivity.
- (c)
- The -SeMe group, due to its greater lability and reduced steric bulk, produced a pair of isomers that were detected at different IR wavenumbers.
- (d)
- The -SeMe variant, owing to its small size and limited electron delocalization ability of the methyl group, exhibited lower oxygen reactivity—in other words, more decomposed byproducts and a lower yield of 1-oxygen uptake species.
- (e)
- Besides all the effects aforementioned, other factors might influence the complex oxidation reactivity.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, L.; Ajo-Franklin, C.M. Reaching full potential: Bioelectrochemical systems for storing renewable energy in chemical bonds. Curr. Opin. Biotechnol. 2019, 57, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, M.K.; Singh, T.P.; Kalita, P.; Dewan, A. Sustainable hydrogen generation and storage—A review. RSC adv. 2023, 13, 25253–25275. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Dai, S.; Teng, Y.; Wang, Q.; Zhang, Z.; Yang, Z.; Park, M.; Wang, H.; Jia, Z.; Wang, Y.; et al. Ultra-Efficient and Cost-Effective Platinum Nanomembrane Electrocatalyst for Sustainable Hydrogen Production. NanoMicro Lett. 2024, 16, 108. [Google Scholar] [CrossRef] [PubMed]
- Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148. [Google Scholar] [CrossRef]
- Heinekey, D.M. Hydrogenase enzymes: Recent structural studies and active site models. J. Organomet. Chem. 2009, 694, 2671–2680. [Google Scholar] [CrossRef]
- Ogata, H.; Hirota, S.; Nakahara, A.; Komori, H.; Shibata, N.; Kato, T.; Kano, K.; Higuchi, Y. Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: Conversion of the ready to the unready state. Structure 2005, 13, 1635–1642. [Google Scholar] [CrossRef]
- Shima, S.; Thauer, R.K. A third type of hydrogenase catalyzing H2 activation. Chem. Rec. 2007, 7, 37–46. [Google Scholar] [CrossRef]
- Volbeda, A.; Amara, P.; Darnault, C.; Mouesca, J.M.; Parkin, A.; Roessler, M.M.; Armstrong, F.A.; Fontecilla-Camps, J.C. X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Proc. Natl. Acad. Sci. USA 2012, 109, 5305–5310. [Google Scholar] [CrossRef]
- Wombwell, C.; Reisner, E. Synthetic Active Site Model of the [NiFeSe] Hydrogenase. Chemistry 2015, 21, 8096–8104. [Google Scholar] [CrossRef]
- Wombwell, C.; Reisner, E. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases. Dalton Trans. 2014, 43, 4483–4493. [Google Scholar] [CrossRef]
- Buhrke, T.; Lenz, O.; Krauss, N.; Friedrich, B. Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 is based on limited access of oxygen to the active site. J. Biol. Chem. 2005, 280, 23791–23796. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Rana, A.; Crouthers, D.; Mondal, B.; Das, P.K.; Darensbourg, M.Y.; Dey, A. Electrocatalytic O2 Reduction by [Fe-Fe]-Hydrogenase Active Site Models. J. Am. Chem. Soc. 2014, 136, 8847–8850. [Google Scholar] [CrossRef] [PubMed]
- Frielingsdorf, S.; Fritsch, J.; Schmidt, A.; Hammer, M.; Löwenstein, J.; Siebert, E.; Pelmenschikov, V.; Jaenicke, T.; Kalms, J.; Rippers, Y.; et al. Reversible [4Fe-3S] cluster morphing in an O(2)-tolerant [NiFe] hydrogenase. Nat. Chem. Biol. 2014, 10, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Shafaat, H.S.; Rüdiger, O.; Ogata, H.; Lubitz, W. [NiFe] hydrogenases: A common active site for hydrogen metabolism under diverse conditions. Biochim. Biophys. Acta 2013, 1827, 986–1002. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.C.; Tapia, C.; Gutiérrez-Sanz, O.; Ramos, A.R.; Keller, K.L.; Wall, J.D.; De Lacey, A.L.; Matias, P.M.; Pereira, I.A.C. The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis. Nat. Chem. Biol. 2017, 13, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.M.; Baltazar, C.S.A.; Cruz, D.R.; Lousa, D.; Soares, C.M. Studying O(2) pathways in [NiFe]- and [NiFeSe]-hydrogenases. Sci. Rep. 2020, 10, 10540. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Dey, S.; Darensbourg, M.Y.; Dey, A. Oxygen-Tolerant H2 Production by [FeFe]-H2ase Active Site Mimics Aided by Second Sphere Proton Shuttle. J. Am. Chem. Soc. 2018, 140, 12457–12468. [Google Scholar] [CrossRef]
- Pandelia, M.E.; Fourmond, V.; Tron-Infossi, P.; Lojou, E.; Bertrand, P.; Léger, C.; Giudici-Orticoni, M.T.; Lubitz, W. Membrane-bound hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus: Enzyme activation, redox intermediates and oxygen tolerance. J. Am. Chem. Soc. 2010, 132, 6991–7004. [Google Scholar] [CrossRef]
- Parkin, A.; Goldet, G.; Cavazza, C.; Fontecilla-Camps, J.C.; Armstrong, F.A. The difference a Se makes? Oxygen-tolerant hydrogen production by the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum. J. Am. Chem. Soc. 2008, 130, 13410–13416. [Google Scholar] [CrossRef]
- Lenz, O.; Lauterbach, L.; Frielingsdorf, S. O2-tolerant [NiFe]-hydrogenases of Ralstonia eutropha H16: Physiology, molecular biology, purification, and biochemical analysis. Methods Enzymol. 2018, 613, 117–151. [Google Scholar] [CrossRef]
- Barilone, J.L.; Ogata, H.; Lubitz, W.; van Gastel, M. Structural differences between the active sites of the Ni-A and Ni-B states of the [NiFe] hydrogenase: An approach by quantum chemistry and single crystal ENDOR spectroscopy. Phys. Chem. Chem. Phys. 2015, 17, 16204–16212. [Google Scholar] [CrossRef] [PubMed]
- Wulff, P.; Day, C.C.; Sargent, F.; Armstrong, F.A. How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases. Proc. Natl. Acad. Sci. USA 2014, 111, 6606–6611. [Google Scholar] [CrossRef] [PubMed]
- Baltazar, C.S.A.; Marques, M.C.; Soares, C.M.; DeLacey, A.M.; Pereira, I.A.C.; Matias, P.M. Nickel–Iron–Selenium Hydrogenases—An Overview. Eur. J. Inorg. Chem. 2011, 2011, 948–962. [Google Scholar] [CrossRef]
- Yang, X.; Elrod, L.C.; Reibenspies, J.H.; Hall, M.B.; Darensbourg, M.Y. Oxygen uptake in complexes related to [NiFeS]- and [NiFeSe]-hydrogenase active sites. Chem. Sci. 2019, 10, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Wombwell, C.; Caputo, C.A.; Reisner, E. [NiFeSe]-hydrogenase chemistry. Acc. Chem. Res. 2015, 48, 2858–2865. [Google Scholar] [CrossRef] [PubMed]
- Reich, H.J.; Hondal, R.J. Why Nature Chose Selenium. ACS Chem. Biol. 2016, 11, 821–841. [Google Scholar] [CrossRef] [PubMed]
- Rauchfuss, T.B. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc. Chem. Res. 2015, 48, 2107–2116. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, B.; Singleton, M.L.; Hall, M.B.; Darensbourg, M.Y. Sulfur oxygenates of biomimetics of the diiron subsite of the [FeFe]-hydrogenase active site: Properties and oxygen damage repair possibilities. J. Am. Chem. Soc. 2009, 131, 8296–8307. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Nayek, A.; Križan, A.; Coutard, N.; Morozan, A.; Ghosh Dey, S.; Lomoth, R.; Hammarström, L.; Artero, V.; Dey, A. A Bidirectional Bioinspired [FeFe]-Hydrogenase Model. J. Am. Chem. Soc. 2022, 144, 3614–3625. [Google Scholar] [CrossRef]
- Leone, L.; Sgueglia, G.; La Gatta, S.; Chino, M.; Nastri, F.; Lombardi, A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int. J. Mol. Sci. 2023, 24, 8605. [Google Scholar] [CrossRef]
- Caputo, C.A.; Gross, M.A.; Lau, V.W.; Cavazza, C.; Lotsch, B.V.; Reisner, E. Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst. Angew. Chem. Int. Ed. Engl. 2014, 53, 11538–11542. [Google Scholar] [CrossRef] [PubMed]
- Ogo, S. H2 and O2 activation by [NiFe]hydrogenases—Insights from model complexes. Coord. Chem. Rev. 2017, 334, 43–53. [Google Scholar] [CrossRef]
- Lindenmaier, N.J.; Wahlefeld, S.; Bill, E.; Szilvási, T.; Eberle, C.; Yao, S.; Hildebrandt, P.; Horch, M.; Zebger, I.; Driess, M. An S-Oxygenated [NiFe] Complex Modelling Sulfenate Intermediates of an O2-Tolerant Hydrogenase. Angew. Chem. Int. Ed. 2017, 56, 2208–2211. [Google Scholar] [CrossRef] [PubMed]
- Song, L.-C.; Chen, W.; Feng, L. Two heterodinuclear NiFe-based sulfenate complexes mimicking an S-oxygenated intermediate of an O2-tolerant [NiFe]-H2ase: Synthesis, structures, and reactivity. New J. Chem. 2020, 44, 14015–14023. [Google Scholar] [CrossRef]
- Yang, X.; Elrod, L.C.; Le, T.; Vega, V.S.; Naumann, H.; Rezenom, Y.; Reibenspies, J.H.; Hall, M.B.; Darensbourg, M.Y. Controlling O(2) Reactivity in Synthetic Analogues of [NiFeS]- and [NiFeSe]-Hydrogenase Active Sites. J. Am. Chem. Soc. 2019, 141, 15338–15347. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Darensbourg, M.Y. The roles of chalcogenides in O(2) protection of H(2)ase active sites. Chem. Sci. 2020, 11, 9366–9377. [Google Scholar] [CrossRef]
- Denny, J.A.; Darensbourg, M.Y. Metallodithiolates as ligands in coordination, bioinorganic, and organometallic chemistry. Chem. Rev. 2015, 115, 5248–5273. [Google Scholar] [CrossRef]
- Fogeron, T.; Todorova, T.K.; Porcher, J.-P.; Gomez-Mingot, M.; Chamoreau, L.-M.; Mellot-Draznieks, C.; Li, Y.; Fontecave, M. A Bioinspired Nickel(bis-dithiolene) Complex as a Homogeneous Catalyst for Carbon Dioxide Electroreduction. ACS Catal. 2018, 8, 2030–2038. [Google Scholar] [CrossRef]
- Ghosh, P.; Quiroz, M.; Wang, N.; Bhuvanesh, N.; Darensbourg, M.Y. Complexes of MN2S2·Fe(η5-C5R5)(CO) as platform for exploring cooperative heterobimetallic effects in HER electrocatalysis. Dalton Trans. 2017, 46, 5617–5624. [Google Scholar] [CrossRef]
- Jenkins, R.M.; Singleton, M.L.; Leamer, L.A.; Reibenspies, J.H.; Darensbourg, M.Y. Orientation and stereodynamic paths of planar monodentate ligands in square planar nickel N2S complexes. Inorg. Chem. 2010, 49, 5503–5514. [Google Scholar] [CrossRef]
- Kishima, T.; Matsumoto, T.; Nakai, H.; Hayami, S.; Ohta, T.; Ogo, S. A High-Valent Iron(IV) Peroxo Core Derived from O2. Angew. Chem. Int. Ed. 2016, 55, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Isegawa, M.; Sharma, A.K.; Ogo, S.; Morokuma, K. DFT Study on Fe(IV)-Peroxo Formation and H Atom Transfer Triggered O2 Activation by NiFe Complex. Organometallics 2018, 37, 1534–1545. [Google Scholar] [CrossRef]
R′-R | Reaction Time (min) | v1(CO) (cm−1) | v2(CO) (cm−1) | Yield (%) |
---|---|---|---|---|
CH3-Cp | 35 | 1929 | 1947 | 30 ± 4 |
CH3-Cp* | 35 | 1905 | 1941, 1927 | 56 ± 3 |
PhNMe2-Cp | 40 | 1929 | 1950 | 61 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Xu, E.; Hao, Y.; Yang, X.; Ni, M. Electronic and Steric Effects on Oxygen Reactivities of NiFeSe Complexes Related to O2-Damaged [NiFeSe]-Hydrogenases’ Active Site. Inorganics 2024, 12, 163. https://doi.org/10.3390/inorganics12060163
Qiao Y, Xu E, Hao Y, Yang X, Ni M. Electronic and Steric Effects on Oxygen Reactivities of NiFeSe Complexes Related to O2-Damaged [NiFeSe]-Hydrogenases’ Active Site. Inorganics. 2024; 12(6):163. https://doi.org/10.3390/inorganics12060163
Chicago/Turabian StyleQiao, Yuchen, Enting Xu, Yameng Hao, Xuemei Yang, and Ming Ni. 2024. "Electronic and Steric Effects on Oxygen Reactivities of NiFeSe Complexes Related to O2-Damaged [NiFeSe]-Hydrogenases’ Active Site" Inorganics 12, no. 6: 163. https://doi.org/10.3390/inorganics12060163
APA StyleQiao, Y., Xu, E., Hao, Y., Yang, X., & Ni, M. (2024). Electronic and Steric Effects on Oxygen Reactivities of NiFeSe Complexes Related to O2-Damaged [NiFeSe]-Hydrogenases’ Active Site. Inorganics, 12(6), 163. https://doi.org/10.3390/inorganics12060163