Synthesis of Cobalt(III) Complexes Derived from Pyridoxal: Structural Cleavage Evaluations and In Silico Calculations for Biological Targets
Abstract
:1. Introduction
2. Results and Discussion
2.1. [CoIII(LnC)(L0C)] Series Complexes (C1’–C4’)
2.2. [CoIII(LnC)(L0C)] Series Complexes (C1–C4)
2.3. In Silico Calculations on Feasible Biological Targets for CoIII Complexes
3. Materials and Methods
3.1. Materials and General Instrumentation
3.2. X-ray Crystallography
3.3. S-Alkylated Aniline Synthesis
3.4. Synthesis of Iminic Ligands L1C–L4C
3.5. Synthesis of [CoIII(LnC)(L0C)] Series Complexes (C1’–C4’)
3.5.1. Conventional Method
3.5.2. Alternative One-Pot Synthesis
3.6. Synthesis of [CoIII(LnC)2]PF6 Series Complexes (C1–C4)
3.6.1. Conventional Method
3.6.2. Alternative One-Pot Synthesis
3.7. In Silico Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, S.; Kumar Manna, C.; Naskar, R.; Das, A.; Mondal, T.K. Synthesis of new rhodium(III) complex by benzylic CS bond cleavage of thioether containing NNS donor Schiff base ligand: Investigation of catalytic activity towards transfer hydrogenation of ketones. Inorg. Chim. Acta 2021, 515, 120096. [Google Scholar] [CrossRef]
- Wang, L.; He, W.; Yu, Z. Transition-metal mediated carbon–sulfur bond activation and transformations. Chem. Soc. Rev. 2013, 42, 599–621. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Wang, Q.; Wu, P.; Wang, H.; Zhou, Y.-G.; Yu, Z. Transition-metal mediated carbon–sulfur bond activation and transformations: An update. Chem. Soc. Rev. 2020, 49, 4307–4359. [Google Scholar] [CrossRef] [PubMed]
- Bag, J.; Barman, S.; Maiti, B.K.; Pal, K. M(II) (M=Cu, Ni) Assisted C−S bond cleavage and oxidative dehydrogenation of amine on non-innocent salen type ligand platforms by varying nitrogen vs. sulfur coordination atoms. Eur. J. Inorg. Chem. 2022, 11, e202101107. [Google Scholar] [CrossRef]
- Wongnate, T.; Ragsdale, S.W. The reaction mechanism of methyl-coenzyme M reductase. J. Biol. Chem. 2015, 290, 9322–9334. [Google Scholar] [CrossRef] [PubMed]
- Pattanayak, P.; Patra, D.; Brandão, P.; Mal, D.; Felix, V. Synthesis and characterization of palladium(II) complex of Schiff base ligand: CS bond cleavage and catalytic activity. Inorg. Chem. Commun. 2015, 53, 68–71. [Google Scholar] [CrossRef]
- Biswas, S.; Roy, P.; Mondal, T.K. Synthesis of palladium(II) complex with NNS donor Schiff base ligand via C S bond cleavage: X-ray structure, electrochemistry and DFT computation. J. Mol. Struct. 2017, 1142, 110–115. [Google Scholar] [CrossRef]
- Elsby, M.R.; Ghostine, K.; Das, U.K.; Gabidullin, B.M.; Baker, R.T. Iron-SNS and -CNS complexes: Selective caryl–S bond cleavage and amine-borane dehydrogenation catalysis. Organometallics 2019, 38, 3844–3851. [Google Scholar] [CrossRef]
- Roy, P.; Manna, C.K.; Naskar, R.; Mondal, T.K. Synthesis of a rhodium(III) triphenylphosphine complex via C S bond cleavage of an azo-thioether ligand: X-ray structure, electrochemistry and catalysis towards transfer hydrogenation of ketones. Polyhedron 2019, 158, 208–214. [Google Scholar] [CrossRef]
- Majouga, A.G.; Beloglazkina, E.K.; Moiseeva, A.A.; Shilova, O.V.; Manzheliy, E.A.; Lebedeva, M.A.; Davies, E.S.; Khlobystov, A.N.; Zyk, N.V. Cleavage of the C–S bond with the formation of a binuclear copper complex with 2-thiolato-3-phenyl-5-(pyridine-2-ylmethylene)-3,5-dihydro-4H-imidazole-4-one. A new mimic of the active site of N2O reductase. Dalton Trans. 2013, 42, 6290. [Google Scholar] [CrossRef]
- Chakraborty, P.; Chandra, S.K.; Chakravorty, A. Ring-size specific transformations of cobalt(III)-thioether chelates activated by base. Co-C formation or C-S cleavage? Organometallics 1993, 12, 4726–4727. [Google Scholar] [CrossRef]
- Chakraborty, P.; Karmakar, S.; Chandra, S.K.; Chakravorty, A. New cobalt complexes incorporating thioether chelation and base-induced homolog-selective transformations thereof. Inorg. Chem. 1994, 33, 816–822. [Google Scholar] [CrossRef]
- Rajsekhar, G.; Rao, C.P.; Saarenketo, P.K.; Kolehmainen, E.; Rissanen, K. C–S bond cleavage by cobalt: Synthesis, characterization and crystal structure determination of 1,2-di-(o-salicylaldiminophenylthio)ethane and its Co(III) product with C–S bond cleaved fragments. Inorg. Chem. Commun. 2002, 5, 649–652. [Google Scholar] [CrossRef]
- Rajsekhar, G.; Rao, C.P.; Saarenketo, P.; Nättinen, K.; Rissanen, K. Complexation behaviour of hexadentate ligands possessing N2O4 and N2O2S2 cores: Differential reactivity towards Co(II), Ni(II) and Zn(II) salts and structures of the products. New J. Chem. 2004, 28, 75–84. [Google Scholar] [CrossRef]
- Singh, A.K.; Mukherjee, R. Cobalt(II) and cobalt(III) complexes of thioether-containing hexadentate pyrazine amide ligands: C–S bond cleavage and cyclometallation reaction. Dalton Trans. 2008, 14, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Cleave, C.V.; Crans, D.C. The first-row transition metals in the periodic table of medicine. Inorganics 2019, 7, 111. [Google Scholar] [CrossRef]
- Osman, D.; Cooke, A.; Young, T.R.; Deery, E.; Robinson, N.J.; Warren, M.J. The requirement for cobalt in vitamin B12: A paradigm for protein metalation. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118896. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Zadeh, M.; Mohamadzadeh, M. Vitamin B12 regulates the transcriptional, metabolic, and epigenetic programing in human ileal epithelial cells. Nutrients 2022, 14, 2825. [Google Scholar] [CrossRef] [PubMed]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12, folate, and the methionine remethylation cycle—Biochemistry, pathways, and regulation. J. Inherit. Metab. Dis. 2019, 42, 673–685. [Google Scholar] [CrossRef]
- Renfrew, A.K.; O’Neill, E.S.; Hambley, T.W.; New, E.J. Harnessing the properties of cobalt coordination complexes for biological application. Coord. Chem. Rev. 2018, 375, 221–233. [Google Scholar] [CrossRef]
- Acharyya, K.; Mukherjee, P.S. Organic imine cages: Molecular marriage and applications. Angew. Chem. Int. Ed. 2019, 58, 8640–8653. [Google Scholar] [CrossRef]
- Basak, D.; van Leusen, J.; Gupta, T.; Kögerler, P.; Bertolasi, V.; Ray, D. Unusually distorted pseudo-octahedral coordination environment around CoII from thioether Schiff base ligands in dinuclear [CoLn] (Ln = La, Gd, Tb, Dy, Ho) complexes: Synthesis, structure, and understanding of magnetic behavior. Inorg. Chem. 2020, 59, 2387–2405. [Google Scholar] [CrossRef]
- Fontana, L.A.; Stüker, M.; Oliveira, G.M.; Iglesias, B.A.; Back, D.F. Pro-oxidant activity of nickel (II) pyridoxal complexes. Synthesis, characterization and peroxidase activity assays. Inorg. Chem. Commun. 2015, 62, 55–59. [Google Scholar] [CrossRef]
- Rocha, J.F.; Pina, A.F.; Sousa, S.F.; Cerqueira, N.M.F.S.A. PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries: A structural and mechanistic perspective. Catal. Sci. Technol. 2019, 9, 4864–4876. [Google Scholar] [CrossRef]
- Casas, J.S.; Couce, M.D.; Sordo, J. Coordination chemistry of vitamin B6 and derivatives: A structural overview. Coord. Chem. Rev. 2012, 256, 3036–3062. [Google Scholar] [CrossRef]
- Naskar, S.; Naskar, S.; Butcher, R.J.; Chattopadhyay, S.K. Synthesis, X-ray crystal structures and spectroscopic properties of two Ni(II) complexes of pyridoxal Schiff’s bases with diamines: Importance of steric factor in stabilization of water helices in the lattices of metal complex. Inorg. Chim. Acta 2010, 363, 404–411. [Google Scholar] [CrossRef]
- Siqueira, J.D.; de Pellegrin, S.F.; dos Santos, S.S.; Iglesias, B.A.; Piquini, P.C.; Arantes, L.P.; Soares, F.A.; Chaves, O.A.; Neves, A.; Back, D.F. SOD activity of new copper II complexes with ligands derived from pyridoxal and toxicity in Caenorhabditis elegans. J. Inorg. Biochem. 2020, 204, 110950. [Google Scholar] [CrossRef]
- Anthony, E.J.; Bolitho, E.M.; Bridgewater, H.E.; Carter, O.W.L.; Donnelly, J.M.; Imberti, C.; Lant, E.C.; Lermyte, F.; Needham, R.J.; Palau, M.; et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888–12917. [Google Scholar] [CrossRef]
- Kabir, E.; Noyan, M.R.O.K.; Hossain, M.A. Synthesis, biological and medicinal impacts of metallodrugs: A study. Res. Chem. 2023, 5, 100935. [Google Scholar] [CrossRef]
- Szefler, B.; Czeleń, P. Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin—A Review. Int. J. Mol. Sci. 2023, 24, 1548. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, C.; Gao, X.; Yao, Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022, 12, 2115–2132. [Google Scholar] [CrossRef]
- Komlyagina, V.I.; Romashev, N.F.; Besprozvannykh, V.K.; Arakelyan, J.; Wu, C.; Chubarov, A.S.; Bakaev, I.V.; Soh, Y.K.; Abramov, P.A.; Cheung, K.L.; et al. Effects of bis(imino)acenaphthene (bian)-derived ligands on the cytotoxicity, DNA interactions, and redox activity of palladium(II) bipyridine complexes. Inorg. Chem. 2023, 62, 11541–11553. [Google Scholar] [CrossRef]
- Bian, M.; Fan, R.; Yang, Z.; Chen, Y.; Xu, Z.; Lu, Y.; Liu, W. Pt(II)-NHC complex induces ROS-ERS-related DAMP balance to harness immunogenic cell death in hepatocellular carcinoma. J. Med. Chem. 2022, 65, 1848–1866. [Google Scholar] [CrossRef]
- Phan, T.T.V.; Huynh, T.-C.; Manivasagan, P.; Mondal, S.; Oh, J. An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials 2020, 10, 66. [Google Scholar] [CrossRef]
- Mirzaei, S.; Hushmandi, K.; Zabolian, A.; Saleki, H.; Torabi, S.M.R.; Ranjbar, A.; SeyedSaleh, S.; Sharifzadeh, S.O.; Khan, H.; Ashrafizadeh, M.; et al. Elucidating role of reactive oxygen species (ROS) in cisplatin chemotherapy: A focus on molecular pathways and possible therapeutic strategies. Molecules 2021, 26, 2382. [Google Scholar] [CrossRef]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef]
- Carneiro, T.J.; Martins, A.S.; Marques, M.P.M.; Gil, A.M. Metabolic aspects of palladium(II) potential anti-cancer drugs. Front. Oncol. 2020, 12, 590970. [Google Scholar] [CrossRef]
- Jahankhani, K.; Ahangari, F.; Adcock, I.M.; Mortaz, E. Possible cancer-causing capacity of COVID-19: Is SARS-CoV-2 an oncogenic agent? Biochimie 2023, 213, 130–138. [Google Scholar] [CrossRef]
- Li, J.; Bai, H.; Qiao, H.; Du, C.; Yao, P.; Zhang, Y.; Cai, Y.; Jia, Y.; Wei, X.; Li, C.; et al. Causal effects of COVID-19 on cancer risk: A Mendelian randomization study. J. Med. Virol. 2023, 95, e28722. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Kumar, S.; Ganguly, K.K.; Ghosh, P.; Tabassum, S.; Basu, B.; Basu, M. COVID-19 and cancer: Insights into their association and influence on genetic and epigenetic landscape. Epigenomics 2023, 15, 227–248. [Google Scholar] [CrossRef]
- Casini, A.; Pothig, A. Metals in cancer research: Beyond platinum metallodrugs. ACS Cent. Sci. 2024, 10, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, I.; Bashir, M.; Arjmand, F.; Tabassum, S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord. Chem. Rev. 2021, 445, 214104. [Google Scholar] [CrossRef]
- Kar, K.; Ghosh, D.; Kabi, B.; Chandra, A. A concise review on cobalt Schiff base complexes as anticancer agents. Polyhedron 2022, 222, 115890. [Google Scholar] [CrossRef]
- Smilowicz, D.; Metzler-Nolte, N. Bioconjugates of Co(III) complexes with Schiff base ligands and cell penetrating peptides: Solid phase synthesis, characterization and antiproliferative activity. J. Inorg. Biochem. 2020, 206, 111041. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Paliwal, S.K.; Iyer, M.R.; Patil, V.M. Promising Schiff bases in antiviral drug design and discovery. Med. Chem. Res. 2023, 32, 1063–1076. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.L.; Simmers, C.; Knight, D.A. Cobalt complexes as antiviral and antibacterial agents. Pharmaceuticals 2010, 3, 1711–1728. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.; de Giglio, M.A.R.; Roviello, G.N. Deciphering the relationship between SARS-CoV-2 and cancer. Int. J. Mol. Sci. 2023, 24, 7803. [Google Scholar] [CrossRef] [PubMed]
- Tyler, L.A.; Olmstead, M.M.; Mascharak, P.K. Conversion of azomethine moiety to carboxamido group at cobalt(III) center in model complexes of Co-containing nitrile hydratase. Inorg. Chem. 2001, 40, 5408–5414. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhou, Q.; Zhang, Y.; Zeng, G.; Li, G.; Shi, Z.; Wang, B.; Feng, S. Inspiration from old molecules: Field-induced slow magnetic relaxation in three air-stable tetrahedral cobalt(ii) compounds. Chem. Commun. 2013, 49, 5289. [Google Scholar] [CrossRef]
- Pattanayak, P.; Pratihar, J.L.; Patra, D.; Lin, C.-H.; Paul, S.; Chakraborty, K. Synthesis, characterization, structure, redox property, antibacterial and catalytic activity of tridentate Schiff base cobalt(III), nickel(II) and palladium(II) complexes. Polyhedron 2013, 51, 275–282. [Google Scholar] [CrossRef]
- Chaves, O.A.; Rodrigues-Santos, C.E.; Echevarria, Á.; Sacramento, C.Q.; Fintelman-Rodrigues, N.; Temerozo, J.R.; Castro-Faria-Neto, H.C.; E Souza, T.M.L. Fluorine atoms on C6H5-corrole affect the interaction with Mpro and PLpro proteases of SARS-CoV-2: Molecular docking and 2D-QSAR approaches. Int. J. Mol. Sci. 2022, 23, 10936. [Google Scholar] [CrossRef]
- Enyedy, I.J.; Egan, W.J. Can we use docking and scoring for hit-to-lead optimization? J. Comput. Aided Mol. Des. 2008, 22, 161–168. [Google Scholar] [CrossRef]
- Basourakos, S.P.; Li, L.; Aparicio, A.M.; Corn, P.G.; Kim, J.; Thompson, T.C. Combination platinum-based and DNA damage response-targeting cancer therapy: Evolution and future directions. Curr. Med. Chem. 2017, 24, 1586–1606. [Google Scholar] [CrossRef]
- Brulikova, J.; Hlavac, J.; Hradil, P. DNA interstrand cross-linking agents and their chemotherapeutic potential. Curr. Med. Chem. 2012, 19, 364–385. [Google Scholar] [CrossRef]
- Martin, L.P.; Hamilton, T.C.; Schilder, R.J. Platinum resistance: The role of DNA repair pathways. Clin. Cancer Res. 2008, 14, 1291–1295. [Google Scholar] [CrossRef]
- Martins, F.M.; Siqueira, J.D.; Iglesias, B.A.; Chaves, O.A.; Back, D.F. Pyridoxal water-soluble cobalt(II) helicates: Synthesis, structural analysis, and interactions with biomacromolecules. J. Inorg. Biochem. 2022, 233, 111854. [Google Scholar] [CrossRef]
- Griess, B.; Tom, E.; Domann, F.; Teoh-Fitzgerald, M. Extracellular superoxide dismutase and its role in cancer. Free Rad. Biol. Med. 2017, 112, 464–479. [Google Scholar] [CrossRef]
- Sheng, Y.; Abreu, I.A.; Cabell, D.E.; Maroney, M.J.; Miller, A.-F.; Teixeira, M.; Valentine, J.S. Superoxide dismutases and superoxide reductases. Chem. Rev. 2014, 114, 3854–3918. [Google Scholar] [CrossRef]
- Siqueira, J.D.; de Pellegrin, S.F.; Fontana, L.A.; Iglesias, B.A.; Sagrillo, M.R.; Oliveira, P.S.; Rossato, A.; da Silva Silveira, L.; Neves, A.; Chaves, O.A.; et al. Copper (II) complexes derived from pyridoxal: Structural correlations, cytotoxic activities, and molecular docking. Inorg. Chim. Acta 2021, 526, 120530. [Google Scholar] [CrossRef]
- Chaves, O.A.; Iglesias, B.A.; Serpa, C. Biophysical characterization of the interaction between a transport human plasma protein and the 5,10,15,20-tetra(pyridine-4-yl)porphyrin. Molecules 2022, 27, 5341. [Google Scholar] [CrossRef]
- Naveenraj, S.; Anandan, S. Binding of serum albumins with bioactive substances–Nanoparticles to drugs. J. Photochem. Photobiol. C 2013, 14, 53–71. [Google Scholar] [CrossRef]
- Chaves, O.A.; Acunha, T.V.; Iglesias, B.A.; Jesus, C.S.H.; Serpa, C. Effect of peripheral platinum(II) bipyridyl complexes on the interaction of tetra-cationic porphyrins with human serum albumin. J. Mol. Liq. 2020, 301, 112466. [Google Scholar] [CrossRef]
- Da Silveira, C.H.; Chaves, O.A.; Marques, A.C.; Rosa, N.M.P.; Costa, L.A.S.; Iglesias, B.A. Synthesis, photophysics, computational approaches, and biomolecule interactive studies of metalloporphyrins containing pyrenyl units: Influence of the metal center. Eur. J. Inorg. Chem. 2022, 12, e202200075. [Google Scholar] [CrossRef]
- Sarmento, C.O.; Pinheiro, B.F.A.; Abrahão, J.; Chaves, O.A.; Moreira, M.B.; Nikolaou, S. Interactions of a ruthenium-ketoprofen compound with human serum albumin and DNA: Insights from spectrophotometric titrations and molecular docking calculations. ChemistrySelect 2022, 7, e202104020. [Google Scholar] [CrossRef]
- Tisoco, I.; Donatoni, M.C.; Victória, H.F.V.; de Toledo, J.R.; Krambrock, K.; Chaves, O.A.; de Oliveira, K.T.; Iglesias, B.A. Photophysical, photooxidation, and biomolecule-interaction of meso-tetra(thienyl)porphyrins containing peripheral Pt(II) and Pd(II) complexes. Insights for photodynamic therapy applications. Dalton Trans. 2022, 51, 1646–1657. [Google Scholar] [CrossRef] [PubMed]
- Parvarinezhad, S.; Salehi, M.; Kubicki, M.; Malekshah, R.E. Experimental and theoretical studies of new Co(III) complexes of hydrazide derivatives proposed as multi-target inhibitors of SARS-CoV-2. Appl. Organomet. Chem. 2022, 36, e6836. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, K.; Vlasiou, M.C. Metal-based complexes against SARS-CoV-2. Biometals 2022, 35, 639–652. [Google Scholar] [CrossRef] [PubMed]
- El-Lateef, H.M.A.; El-Dabea, T.; Khalaf, M.M.; Abu-Dief, A.M. Development of metal complexes for treatment of coronaviruses. Int. J. Mol. Sci. 2022, 23, 6418. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Zhang, Y.; Li, Y.; Ye, F.; Guo, Y.; Xia, L.; Zhong, X.; Chi, X.; Zhou, Q. Structural basis for the different states of the spike protein of SARS-CoV-2 in complex with ACE2. Cell Res. 2021, 31, 717–719. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, 71, 3–8. [Google Scholar]
- Farrugia, L.J. ORTEP-3 for Windows—A version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Cryst. 1997, 30, 565. [Google Scholar] [CrossRef]
- Drew, H.R.; Wing, R.M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R.E. Structure of a B-DNA dodecamer: Conformation and dynamics. Proc. Natl. Acad. Sci. USA 1981, 78, 2179–2183. [Google Scholar] [CrossRef] [PubMed]
- Wardell, M.; Wang, Z.; Ho, J.X.; Robert, J.; Ruker, F.; Ruble, J.; Carter, D.C. The atomic structure of human methemalbumin at 1.9 Å. Biochem. Biophys. Res. Commun. 2002, 291, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.D.; de Pellegrin, S.F.; Fioravanço, L.P.; Fontana, L.A.; Iglesias, B.A.; Chaves, O.A.; Back, D.F. Self-association synthesis with ortho-vanillin to promote mono- and heptanuclear complexes and their evaluation as antioxidant agents. J. Mol. Struct. 2022, 1256, 132480. [Google Scholar] [CrossRef]
- Soares, M.A.G.; de Aquino, P.A.; Costa, T.; Serpa, C.; Chaves, O.A. Insights into the effect of glucose on the binding between human serum albumin and the nonsteroidal anti-inflammatory drug nimesulide. Int. J. Biol. Macromol. 2024, 265, 131148. [Google Scholar] [CrossRef]
Parameter | CoIII-Donor Atom | C1’ | C2’ | C3’ | C4’ | Literature |
Bonds lengths (Å) | CoIII-N(iminic) | 1.911 (3) 1.919 (3) | 1.915 (4) 1.918 (4) | 1.924 (2) 1.936 (2) | 1.897 (5) 1.904 (5) | 1.913 (3) [14] |
1.926 (2) [14] | ||||||
1.903 (2) [48] | ||||||
1.910 (2) [48] | ||||||
CoIII-O(phenolate) | 1.900 (3) 1.920 (3) | 1.916 (3) 1.917 (3) | 1.9187 (19) 1.9311 (19) | 1.903 (3) 1.927 (3) | 1.894 (2) [14] | |
1.914 (2) [14] | ||||||
CoIII-S(thioether) | 2.2193 (12) | 2.2444 (14) | 2.2485 (10) | 2.2379 (15) | 2.2274 (9) [14] | |
CoIII-S(thiolate) | 2.2345 (13) | 2.2330 (14) | 2.2504 (10) | 2.2377 (16) | 2.2384 (9) [14] | |
2.237 (2) [48] | ||||||
2.243 (1) [48] | ||||||
Parameter | Donor Atom-CoIII-Donor Atom | C1’ | C2’ | C3’ | C4’ | |
Bonds angles (°) | O(phenolate)-CoIII-N(imine) | 86.83 (13) | 86.77 (13) | 88.26 (9) | 88.33 (15) | |
87.89 (13) | 87.44 (14) | 89.53 (9) | 88.35 (17) | |||
92.60 (14) | 94.05 (14) | 92.40 (9) | 92.00 (17) | |||
93.09 (13) | 94.10 (14) | 93.24 (9) | 93.37 (17) | |||
O(phenolate)-CoIII-O(phenolate) | 89.07 (13) | 87.65 (12) | 86.45 (8) | 88.22 (14) | ||
N(imine)-CoIII-N(imine) | 178.86 (15) | 178.31 (14) | 177.19 (9) | 178.27 (17) | ||
O(phenolate)-CoIII-S(thioether) | 94.27 (9) | 93.72 (10) | 93.11 (7) | 93.40 (11) | ||
176.35 (10) | 177.68 (10) | 178.00 (6) | 178.36 (11) | |||
N(imine)-CoIII-S(thioether) | 88.57 (10) | 87.83 (10) | 85.64 (7) | 86.45 (14) | ||
90.48 (11) | 91.26 (10) | 93.72 (8) | 91.83 (13) | |||
O(phenolate)-CoIII-S(thiolate) | 92.13 (10) | 94.64 (10) | 93.11 (7) | 93.12 (11) | ||
178.76 (9) | 176.92 (10) | 179.42 (6) | 178.49 (12) | |||
N(imine)-CoIII-S(thiolate) | 87.74 (12) | 88.15 (10) | 87.12 (8) | 87.34 (14) | ||
92.81 (11) | 90.34 (10) | 90.11 (7) | 92.27 (14) | |||
S(thioether)-CoIII-S(thiolate) | 84.53 (5) | 84.06 (6) | 87.31 (4) | 85.26 (6) |
Parameter | CoIII-Donor Atom | C1 | C2 | C3 | C4 | Literature |
Bond lengths (Å) | CoIII-N(iminic) | 1.925 (3) | 1.916 (3) | 1.9164 (13) | 1.913 (3) | 1.9224 (18) [50] |
1.927 (3) | 1.923 (3) | 1.9187 (13) | 1.913 (4) | 1.9248 (18) [50] | ||
CoIII-O(phenolate) | 1.878 (3) | 1.883 (3) | 1.8793 (11) | 1.873 (3) | 1.8809 (15) [50] | |
1.880 (3) | 1.883 (3) | 1.8893 (10) | 1.876 (3) | 1.8870 (15) [50] | ||
CoIII-S(thioether) | 2.2423 (14) | 2.2780 (15) | 2.2684 (4) | 2.2253 (13) | 2.2494 (7) [50] | |
2.2472 (14) | 2.2840 (14) | 2.2698 (4) | 2.2456 (12) | 2.2630 (6) [50] | ||
Parameter | Donor Atom-CoIII-Donor Atom | C1 | C2 | C3 | C4 | |
Bonds angles (°) | O(phenolate)-CoIII-N(imine) | 86.23 (13) | 89.61 (12) | 90.49 (5) | 86.10 (13) | |
86.97 (13) | 89.82 (12) | 90.79 (5) | 86.85 (14) | |||
93.89 (13) | 91.35 (13) | 91.95 (5) | 93.83 (13) | |||
94.40 (13) | 91.81 (12) | 92.41 (5) | 94.20 (14) | |||
O(phenolate)-CoIII-O(phenolate) | 88.92 (13) | 89.28 (12) | 87.83 (5) | 89.03 (13) | ||
N(imine)-CoIII-N(imine) | 178.62 (14) | 178.12 (13) | 176.08 (5) | 179.26 (15) | ||
O(phenolate)-CoIII-S(thioether) | 92.03 (10) | 90.94 (9) | 91.32 (3) | 91.44 (10) | ||
92.59 (10) | 91.99 (9) | 92.92 (4) | 92.82 (10) | |||
177.41 (9) | 176.82 (9) | 177.15 (4) | 177.35 (9) | |||
178.40 (9) | 177.45 (9) | 177.65 (4) | 178.12 (10) | |||
N(imine)-CoIII-S(thioether) | 87.45 (11) | 85.48 (11) | 84.88 (4) | 87.64 (11) | ||
87.79 (11) | 85.98 (9) | 85.83 (4) | 88.19 (11) | |||
90.83 (11) | 92.36 (10) | 91.39 (4) | 91.12 (12) | |||
92.42 (10) | 93.55 (10) | 92.26 (4) | 92.06 (10) | |||
S(thioether)-CoIII-S(thiolate) | 86.50 (6) | 87.92 (4) | 88.026 (15) | 86.77 (5) |
DNA | HSA | SOD Mimetic | Spike Glycoprotein | ||||||
---|---|---|---|---|---|---|---|---|---|
Sample | Major Groove | Minor Groove | Site I | Site II | Site III | Distance Complex: O2− (Å) | Down Conformation | Up Conformation | Complex ACE2 |
C1 | 36.8 | 38.3 | 20.1 | ----- | 24.6 | 1.70 | 47.8 | 37.3 | 36.0 |
C2 | 37.6 | 41.5 | ----- | ----- | 24.9 | 1.80 | 43.6 | 41.8 | 37.5 |
C3 | 40.6 | 44.5 | 10.3 | ----- | 17.2 | 2.00 | 46.6 | 42.8 | 42.1 |
C4 | 41.1 | 47.1 | ----- | ----- | 29.8 | 1.80 | 54.1 | 51.1 | 44.6 |
C1’ | 36.3 | 43.1 | 42.5 | ----- | 59.4 | 2.10 | 46.8 | 44.0 | 40.5 |
C2’ | 36.2 | 44.4 | 25.3 | ----- | 53.5 | 2.50 | 45.4 | 42.7 | 38.5 |
C3’ | 40.4 | 45.2 | 28.9 | ----- | 51.0 | 2.10 | 49.4 | 46.4 | 39.9 |
C4’ | 41.5 | 45.7 | 23.4 | ----- | 54.6 | 2.00 | 53.4 | 49.5 | 45.9 |
Sample | Connected Points | Interactions | Distance (Å) |
---|---|---|---|
DG-04 | Hydrogen bonding | 2.80 | |
DNA: C1–C4 | DC-21 | Hydrogen bonding | 3.10 |
DG-22 | Van der Waals | 3.30 | |
DC-03 | Van der Waals | 3.60 | |
DNA: C1’–C4’ | DG-04 | Hydrogen bonding | 2.00 |
DA-05 | Van der Waals | 2.50 | |
DG-22 | Van der Waals | 1.70 | |
Arg-117 | Hydrogen bonding | 1.70 | |
Pro-118 | Van der Waals | 2.60 | |
Tyr-138 | Van der Waals | 1.30 | |
HSA: C1–C4 | Pro-146 | Van der Waals | 3.00 |
Phe-165 | Van der Waals | 2.10 | |
Leu-182 | Van der Waals | 3.00 | |
Arg-186 | Van der Waals | 3.70 | |
Pro-118 | Van der Waals | 2.40 | |
Tyr-138 | Van der Waals | 3.60 | |
Ile-142 | Van der Waals | 1.00 | |
HSA: C1’–C4’ | Tyr-161 | Hydrogen bonding | 2.00 |
Phe-165 | Van der Waals | 2.80 | |
Leu-182 | Van der Waals | 2.70 | |
Arg-186 | Hydrogen bonding | 2.20 | |
Lys-190 | Van der Waals | 2.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontana, L.A.; Martins, F.M.; Siqueira, J.D.; Serpa, C.; Chaves, O.A.; Back, D.F. Synthesis of Cobalt(III) Complexes Derived from Pyridoxal: Structural Cleavage Evaluations and In Silico Calculations for Biological Targets. Inorganics 2024, 12, 171. https://doi.org/10.3390/inorganics12060171
Fontana LA, Martins FM, Siqueira JD, Serpa C, Chaves OA, Back DF. Synthesis of Cobalt(III) Complexes Derived from Pyridoxal: Structural Cleavage Evaluations and In Silico Calculations for Biological Targets. Inorganics. 2024; 12(6):171. https://doi.org/10.3390/inorganics12060171
Chicago/Turabian StyleFontana, Liniquer André, Francisco Mainardi Martins, Josiéli Demetrio Siqueira, Carlos Serpa, Otávio Augusto Chaves, and Davi Fernando Back. 2024. "Synthesis of Cobalt(III) Complexes Derived from Pyridoxal: Structural Cleavage Evaluations and In Silico Calculations for Biological Targets" Inorganics 12, no. 6: 171. https://doi.org/10.3390/inorganics12060171
APA StyleFontana, L. A., Martins, F. M., Siqueira, J. D., Serpa, C., Chaves, O. A., & Back, D. F. (2024). Synthesis of Cobalt(III) Complexes Derived from Pyridoxal: Structural Cleavage Evaluations and In Silico Calculations for Biological Targets. Inorganics, 12(6), 171. https://doi.org/10.3390/inorganics12060171