Synthesis, Characterization and Study of Liquid Crystals Based on the Ionic Association of the Keplerate Anion [Mo132O372(CH3COO)30(H2O)72]42− and Imidazolium Cations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of the Mo132-Based Materials
2.1.1. Synthesis and Characterizations
Samples | Estimated Molecular Formula |
---|---|
(mimC12)36–Mo132 | (mimC12H25)36(NH4)6[Mo132O372(CH3COO)30(H2O)72]∙38H2O |
(mimC14)38–Mo132 | (mimC14H29)38(NH4)4[Mo132O372(CH3COO)30(H2O)72]∙30H2O |
(mimC16)41–Mo132 | (mimC16H33)41(NH4)1[Mo132O372(CH3COO)30(H2O)72]∙38H2O |
(mimC18)37–Mo132 | (mimC18H37)37(NH4)5[Mo132O372(CH3COO)30(H2O)72]∙48H2O |
(mimC20)37–Mo132 | (mimC20H41)37(NH4)5[Mo132O372(CH3COO)30(H2O)72]∙43H2O |
(mimC12)20(mimC20)20–Mo132 | (mimC12H25)20(mimC20H33)20(NH4)2[Mo132O372(CH3COO)30(H2O)72]∙38H2O |
(mimC12)33(mimC20)7–Mo132 | (mimC12H25)33 (mimC20H33)7(NH4)2[Mo132O372(CH3COO)30(H2O)72]∙48H2O |
(mimC12)8(mimC20)33–Mo132 | (mimC12H25)8 (mimC20H33)33(NH4)1 [Mo132O372(CH3COO)30(H2O)72]∙38H2O |
2.1.2. Thermal Stability of the Mo132-Based Materials
2.2. Liquid Crystal Properties
2.2.1. Polarized Optical Microscopy
2.2.2. Differential Scanning Calorimetry
Compounds | T/°C (Heating Mode) | MM g/mol | n(CH2) | ΔHm/kJ∙mol−1 | ΔSm/J∙mol−1∙K−1 | ΔH'm a/J∙mol−1 | ΔS'm a/J∙mol−1∙K−1 |
---|---|---|---|---|---|---|---|
(mimC12)36–Mo132 | +55 | 30982 | 396 | −4.3 | −13 | −10.95 | −0.03 |
(mimC14)38–Mo132 | +13 | 32387 | 494 | −46.3 | −162 | −94 | −0.33 |
(mimC16)41–Mo132 | +31 | 34889 | 615 | −204.1 | −671 | −331.8 | −1.1 |
(mimC18)37–Mo132 | +43 | 35059 | 629 | −158.5 | −501 | −252 | −0.8 |
(mimC20)37–Mo132 | +46 | 36006 | 703 | −163.8 | −514 | −233 | 0.73 |
DODA36–Mo132 [37] | +9 | 42982 | 1224 | −849.0 | −3009 | −639 | −2.45 |
DODA44–Mo132S60 [36] | +9 | 47838 | 1548 | −1333.0 | −4724 | −918 | −3.25 |
DODA56–Mo132S60 [36] | +9 | 55357 | 1904 | −1649.0 | −5848 | −866 | −3.07 |
DODACl | +18 | 586.5 | 34 | −83.1 | −278.5 | −2445 | −8.19 |
2.2.3. Small-Angle X-ray Diffraction Studies
Compounds | dhkl Measured/Å | I/a.u. | Indexation | Cell Parameters/Å |
---|---|---|---|---|
(mimC12)36–Mo132 | 36.90 | VS | c | |
23.19 | MW (broad) | c | ||
15.45 | MW (broad) | c | ||
(mimC14)38–Mo132 a | 35.57 | S | 001 | h = 35.57 ahex = 41.79 |
(mimC16)41–Mo132 | 40.71 | VS | c | |
24.55 | MW (broad) | c | ||
16.52 | MW (broad) | c | ||
(mimC18)37–Mo132 | 32.78 | VS | 001 | h = 32.78 |
16.34 | W | 002 | ahex = 45.29 | |
(mimC20)37–Mo132 | 35.34 | VS | 001 | h = 35.34 |
17.67 | W | 002 | ahex = 44.21 | |
(mimC12)20(mimC20)20–Mo132 | 32.91 | VS | 001 | h = 32.91 |
16.26 | W | 002 | ahex = 44.98 | |
(mimC12)33(mimC20)7–Mo132 b | 31.34 | VS | 001 | h = 31.34 |
15.22 | W | 002 | ahex = 45.23 | |
(mimC12)8(mimC20)33–Mo132 | 35.30 | VS | 001 | h = 35.30 |
17.60 | W | 002 | ahex = 43.42 | |
DODA36{Mo132} [37] | 26.9 13.3 9.1 | VS M W | 001 002 003 | h = 26.9 ahex = 54.2 |
DODA44–{Mo132S60} [36] | 34.20 16.98 11.40 | VS M W | 001 002 003 | h = 34.12 ahex = 51.64 |
DODA56–{Mo132S60} [36] | 34.91 | VS | 001 | h = 34.55 |
17.09 | M | 002 | ahex = 55.21 |
3. Experimental Section
3.1. Fourier Transformed Infrared (FT-IR) Spectra
3.2. Elemental Analyses
3.3. Water Content
3.4. Nuclear Magnetic Resonance (NMR)
3.5. Differential Scanning Calorimetry (DSC)
3.6. Temperature Dependent Polarized Optical Microscopy (TD-POM)
3.7. Small Angle X-ray Diffraction (SA-XRD)
3.8. Synthesis of Mo132-Based Materials
3.9. General Preparation of Mo132-Based Materials
3.9.1. (mimC12H25)36(NH4)4[Mo132O372(CH3COO)30(H2O)72]∙38H2O, (mimC12)36–Mo132
3.9.2. (mimC14H29)38(NH4)4[Mo132O372(CH3COO)30(H2O)72]∙30H2O, (mimC14)38–Mo132
3.9.3. (mimC16H33)41(NH4)1[Mo132O372(CH3COO)30(H2O)72].38H2O, (mimC16)41-Mo132
3.9.4. (mimC18H37)37(NH4)5[Mo132O372(CH3COO)30(H2O)72]∙48H2O, (mimC18)37–Mo132
3.9.5. (mimC20H41)37(NH4)5[Mo132O372(CH3COO)30(H2O)72]∙43H2O, (mimC20)37–Mo132
3.9.6. (mimC12H25)20(mimC20H33)20(NH4)2[Mo132O372(CH3COO)30(H2O)72]∙38H2O, (mimC12)20(mimC20)20–Mo132
3.9.7. (mimC12H25)33(mimC20H33)7(NH4)2[Mo132O372(CH3COO)30(H2O)72]∙48H2O, (mimC12)33(mimC20)7–Mo132
3.9.8. (mimC12H25)8(mimC20H33)33(NH4)1[Mo132O372(CH3COO)30(H2O)72]∙38H2O, (mimC12)8(mimC20)33–Mo132
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Binnemans, K.; Gorller-Walrand, C. Lanthanide-Containing Liquid Crystals and Surfactants. Chem. Rev. 2002, 102, 2303–2346. [Google Scholar] [CrossRef] [PubMed]
- Vila-Nadal, L.; Mitchell, S.G.; Markov, S.; Busche, C.; Georgiev, V.; Asenov, A.; Cronin, L. Towards Polyoxometalate-Cluster-Based Nano-Electronics. Chem.-Eur. J. 2013, 19, 16502–16511. [Google Scholar] [CrossRef] [PubMed]
- Evangelisti, F.; Guttinger, R.; More, R.; Luber, S.; Patzke, G.R. Closer to Photosystem II: A Co4O4 Cubane Catalyst with Flexible Ligand Architecture. J. Am. Chem. Soc. 2013, 135, 18734–18737. [Google Scholar] [CrossRef] [PubMed]
- Carraro, M.; Modugno, G.; Zamolo, V.; Bonchio, M.; Fabbretti, E. Polyoxometalate-Based Conjugates for Biological Targeting. J. Biol. Inorg. Chem. 2014, 19, S406–S406. [Google Scholar]
- Ibrahim, M.; Xiang, Y.X.; Bassil, B.S.; Lan, Y.H.; Powell, A.K.; de Oiveira, P.; Keita, B.; Kortz, U. Synthesis, Magnetism, and Electrochemistry of the Ni14 and Ni5-Containing Heteropolytungstates [Ni14(OH)6(H2O)10(HPO4)4(P2W15O56)4]34− and [Ni5(OH)4(H2O)4(β-GeW9O34)( β -GeW8O30(OH))]13−. Inorg. Chem. 2013, 52, 8399–8408. [Google Scholar] [CrossRef] [PubMed]
- Absillis, G.; Parac-Vogt, T.N. Peptide Bond Hydrolysis Catalyzed by the Wells–Dawson [Zr(α2-P2W17O61)2] Polyoxometalate. Inorg. Chem. 2012, 51, 9902–9910. [Google Scholar] [CrossRef] [PubMed]
- Riflade, B.; Oble, J.; Chenneberg, L.; Derat, E.; Hasenknopf, B.; Lacote, E.; Thorimbert, S. Hybrid Polyoxometalate Palladacycles: DFT Study and Application to the Heck Reaction. Tetrahedron 2013, 69, 5772–5779. [Google Scholar] [CrossRef]
- Wang, Y.F.; Weinstock, I.A. Polyoxometalate-Decorated Nanoparticles. Chem. Soc. Rev. 2012, 41, 7479–7496. [Google Scholar] [CrossRef] [PubMed]
- Rickert, P.G.; Antonio, M.R.; Firestone, M.A.; Kubatko, K.-A.; Szreder, T.; Wishart, J.F.; Dietz, M.L. Tetraalkylphosphonium Polyoxometalate Ionic Liquids: Novel, Organic-Inorganic Hybrid Materials. J. Phys. Chem. B 2007, 111, 4685–4692. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.K.; Li, W.; Zhang, J.; Sun, H.; Yan, Y.; Wu, L.X. Thermotropic Liquid Crystals of a Non-Mesogenic Group Bearing Surfactant-Encapsulated Polyoxometalate Complexes. Langmuir 2010, 26, 13201–13209. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.Y.; Sun, H.; Yan, Y.; Li, W.; Wu, L.X. Hydrogen-Bonding-Induced Supramolecular Liquid Crystals and Luminescent Properties of Europium-Substituted Polyoxometalate Hybrids. J. Phys. Chem. B 2009, 113, 2355–2364. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.Y.; Li, W.; Wang, J.F.; Wu, L.X. Mesomorphic Structures of Protonated Surfactant-Encapsulated Polyoxometalate Complexes. J. Phys. Chem. B 2008, 112, 3983–3988. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yin, S.Y.; Wang, J.F.; Wu, L.X. Tuning Mesophase of Ammonium Amphiphile-Encapsulated Polyoxometalate Complexes through Changing Component Structure. Chem. Mater. 2008, 20, 514–522. [Google Scholar] [CrossRef]
- Li, W.; Bu, W.F.; Li, H.L.; Wu, L.X.; Li, M. A Surfactant-Encapsulated Polyoxometalate Complex towards a Thermotropic Liquid Crystal. Chem. Commun. 2005, 3785–3787. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, J.; Wang, S.; Li, W.; Wu, L.X. Nematic Ion-Clustomesogens from Surfactant-Encapsulated Polyoxometalate Assemblies. Eur. J. Inorg. Chem. 2013, 1869–1875. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Liu, S.X.; Zhang, J.; Wu, L.X. Phase Modulation of Thermotropic Liquid Crystals of Tetra-n-Alkylammonium Polyoxometalate Ionic Complexes. Dalton Trans. 2013, 42, 7643–7650. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.Y.; Sun, H.; Yan, Y.; Zhang, H.; Li, W.; Wu, L.X. Self-Assembly and Supramolecular Liquid Crystals based on Organic Cation Encapsulated Polyoxometalate Hybrid Reverse Micelles and Pyridine Derivatives. J. Colloid Interface Sci. 2011, 361, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Gouzerh, P. Capsules with Highly Active Pores and Interiors: Versatile Platforms at the Nanoscale. Chem.-Eur. J. 2014, 20, 4862–4873. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Gouzerh, P. From Linking of Metal-Oxide Building Blocks in a Dynamic Lbrary to Giant Clusters with Unique Properties and Towards Adaptive Chemistry. Chem. Soc. Rev. 2012, 41, 7431–7463. [Google Scholar] [CrossRef] [PubMed]
- Kögerler, P.; Tsukerblat, B.; Müller, A. Structure-Related Frustrated Magnetism of Nanosized Polyoxometalates: Aesthetics and Properties in Harmony. Dalton Trans. 2010, 39, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Botar, B.; Kögerler, P.; Müller, A.; Garcia-Serres, R.; Hill, C.L. Ferrimagnetically Ordered Nanosized Polyoxomolybdate-Based Cluster Spheres. Chem. Commun. 2005, 5621–5623. [Google Scholar] [CrossRef] [PubMed]
- Rezaeifard, A.; Haddad, R.; Jafarpour, M.; Hakimi, M. Catalytic Epoxidation Activity of Keplerate Polyoxomolybdate Nanoball toward Aqueous Suspension of Olefins under Mild Aerobic Conditions. J. Am. Chem. Soc. 2013, 135, 10036–10039. [Google Scholar] [CrossRef] [PubMed]
- Kopilevich, S.; Gil, A.; Garcia-Rates, M.; Bonet-Avalos, J.; Bo, C.; Müller, A.; Weinstock, I.A. Catalysis in a Porous Molecular Capsule: Activation by Regulated Access to Sixty Metal Centers Spanning a Truncated Icosahedron. J. Am. Chem. Soc. 2012, 134, 13082–13088. [Google Scholar] [CrossRef] [PubMed]
- Ostroushko, A.A.; Grzhegorzhevskii, K.V. Electric Conductivity of Nanocluster Polyoxomolybdates in the Solid State and Solutions. Russ. J. Phys. Chem. A 2014, 88, 1008–1011. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Shi, Z.H.; Zhang, L.J.; ul Hassan, S.; Qu, N.N. Notable Third-Order Optical Nonlinearities of a Keplerate-Type Polyoxometalate in Solution and in Thin Films of PMMA. Appl. Phys. A 2013, 113, 563–568. [Google Scholar] [CrossRef]
- Zhang, L.J.; Shi, Z.H.; Zhang, L.H.; Zhou, Y.S.; ul Hassan, S. Fabrication and Optical Nonlinearities of Ultrathin Composite Films Incorporating a Keplerate Type Polyoxometalate. Mater. Lett. 2012, 86, 62–64. [Google Scholar] [CrossRef]
- Besson, C.; Schmitz, S.; Capella, K.M.; Kopilevich, S.; Weinstock, I.A.; Kögerler, P. A Regioselective Huisgen Reaction inside a Keplerate Polyoxomolybdate Nanoreactor. Dalton Trans. 2012, 41, 9852–9854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; He, L.P.; Wang, H.; Zhang, C.; Liu, W.S.; Bu, W.F. Star-Like Supramolecular Polymers Fabricated by a Keplerate Cluster with Cationic Terminated Polymers and their Self-Assembly into Vesicles. Chem. Commun. 2012, 48, 7067–7069. [Google Scholar] [CrossRef] [PubMed]
- Caruso, F.; Kurth, D.G.; Volkmer, D.; Koop, M.J.; Müller, A. Ultrathin Molybdenum Polyoxometalate-Polyelectrolyte Multilayer Films. Langmuir 1998, 14, 3462–3465. [Google Scholar] [CrossRef]
- Cazacu, A.; Mihai, S.; Nasr, G.; Mahon, E.; van der Lee, A.; Meffre, A.; Barboiu, M. Lipophilic Polyoxomolybdate Nanocapsules in Constitutional Dynamic Hybrid Materials. Inorg. Chim. Acta 2010, 363, 4214–4219. [Google Scholar] [CrossRef]
- Kurth, D.G.; Volkmer, D.; Ruttorf, M.; Richter, B.; Müller, A. Ultrathin Composite Films Incorporating the Nanoporous Isopolyoxomolybdate "Keplerate" (NH4)42[ Mo132O372(CH3COO)30(H2O)72]. Chem. Mater. 2000, 12, 2829–2831. [Google Scholar] [CrossRef]
- Kurth, D.G.; Lehmann, P.; Volkmer, D.; Müller, A.; Schwahn, D. Biologically Inspired Polyoxometalate-Surfactant Composite Materials. Investigations on the Structures of Discrete, Surfactant-Encapsulated Clusters, Monolayers, and Langmuir-Blodgett Films of (DODA)40(NH4)2(H2O)n[Mo132O372(CH3CO2)30(H2O)72]. Dalton Trans. 2000, 3989–3998. [Google Scholar] [CrossRef]
- Kurth, D.G.; Lehmann, P.; Volkmer, D.; Colfen, H.; Koop, M.J.; Müller, A.; Du Chesne, A. Surfactant-Encapsulated Clusters (SECs): (DODA)20(NH4)[H3Mo57V6(NO)6O183(H2O)18], a Case Study. Chem.-Eur. J. 2000, 6, 385–393. [Google Scholar] [CrossRef]
- Volkmer, D.; Du Chesne, A.; Kurth, D.G.; Schnablegger, H.; Lehmann, P.; Koop, M.J.; Müller, A. Toward Nanodevices: Synthesis and Characterization of the Nanoporous Surfactant-Encapsulated Keplerate (DODA)40(NH4)2(H2O)n[Mo132O372(CH3CO2)30(H2O)72]. J. Am. Chem. Soc. 2000, 122, 1995–1998. [Google Scholar] [CrossRef]
- Clemente-Leon, M.; Ito, T.; Yashiro, H.; Yamase, T. Two-Dimensional Array of Polyoxomolybdate Nanoball Constructed by Langmuir-Blodgett Semiamphiphilic Method. Chem. Mater. 2007, 19, 2589–2594. [Google Scholar] [CrossRef]
- Floquet, S.; Terazzi, E.; Korenev, V.S.; Hijazi, A.; Guénée, L.; Cadot, E. Layered Ionic Liquid-Crystalline Organisations Built from Nano-Capsules [Mo132O312S60(SO4)x(H2O)(132−2x)](12 + 2x)− and DODA+ cations. Liq. Cryst. 2014, 41, 1000–1007. [Google Scholar] [CrossRef]
- Floquet, S.; Terazzi, E.; Hijazi, A.; Guénée, L.; Piguet, C.; Cadot, E. Evidence of Ionic Liquid Crystal Properties for a DODA+ Salt of the Keplerate [Mo132O372(CH3COO)30(H2O)72]42−. New J. Chem. 2012, 36, 865–868. [Google Scholar] [CrossRef]
- Watfa, N.; Floquet, S.; Terazzi, E.; Haouas, M.; Salomon, W.; Korenev, V.S.; Taulelle, F.; Guénée, L.; Hijazi, A.; Naoufal, D.; et al. Synthesis, Characterization, and Tuning of the Liquid Crystal Properties of Ionic Materials based on the Cyclic Polyoxothiometalate [{Mo4O4S4(H2O)3(OH)2}2(P8W48O184)]36−. Soft Matter 2015, 11, 1087–1099. [Google Scholar] [CrossRef] [PubMed]
- Watfa, N.; Melgar, D.; Haouas, M.; Taulelle, F.; Hijazi, A.; Naoufal, D.; Bonet Avalos, J.; Floquet, S.; Bo, C.; Cadot, E. Hydrophobic Effect as Driving Force for Host-Guest Chemistry of a Multireceptor Keplerate-Type Capsule. J. Am. Chem. Soc. 2015, 137, 5845–5851. [Google Scholar] [CrossRef] [PubMed]
- Dutronc, T.; Terazzi, E.; Guénée, L.; Buchwalder, K.L.; Spoerri, A.; Emery, D.; Mareda, J.; Floquet, S.; Piguet, C. Enthalpy-Entropy Compensation Combined with Cohesive Free-Energy Densities for Tuning the Melting Temperatures of Cyanobiphenyl Derivatives. Chem.-Eur. J. 2013, 19, 8447–8456. [Google Scholar] [CrossRef] [PubMed]
- Deschenaux, R.; Donnio, B.; Guillon, D. Liquid-Crystalline Fullerodendrimers. New J. Chem. 2007, 31, 1064–1073. [Google Scholar] [CrossRef]
- Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Peters, F. Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate based on Molybdenum Oxide. Angew. Chem. 1998, 37, 3359–3363. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watfa, N.; Floquet, S.; Terazzi, E.; Salomon, W.; Guénée, L.; Buchwalder, K.L.; Hijazi, A.; Naoufal, D.; Piguet, C.; Cadot, E. Synthesis, Characterization and Study of Liquid Crystals Based on the Ionic Association of the Keplerate Anion [Mo132O372(CH3COO)30(H2O)72]42− and Imidazolium Cations. Inorganics 2015, 3, 246-266. https://doi.org/10.3390/inorganics3020246
Watfa N, Floquet S, Terazzi E, Salomon W, Guénée L, Buchwalder KL, Hijazi A, Naoufal D, Piguet C, Cadot E. Synthesis, Characterization and Study of Liquid Crystals Based on the Ionic Association of the Keplerate Anion [Mo132O372(CH3COO)30(H2O)72]42− and Imidazolium Cations. Inorganics. 2015; 3(2):246-266. https://doi.org/10.3390/inorganics3020246
Chicago/Turabian StyleWatfa, Nancy, Sébastien Floquet, Emmanuel Terazzi, William Salomon, Laure Guénée, Kerry Lee Buchwalder, Akram Hijazi, Daoud Naoufal, Claude Piguet, and Emmanuel Cadot. 2015. "Synthesis, Characterization and Study of Liquid Crystals Based on the Ionic Association of the Keplerate Anion [Mo132O372(CH3COO)30(H2O)72]42− and Imidazolium Cations" Inorganics 3, no. 2: 246-266. https://doi.org/10.3390/inorganics3020246
APA StyleWatfa, N., Floquet, S., Terazzi, E., Salomon, W., Guénée, L., Buchwalder, K. L., Hijazi, A., Naoufal, D., Piguet, C., & Cadot, E. (2015). Synthesis, Characterization and Study of Liquid Crystals Based on the Ionic Association of the Keplerate Anion [Mo132O372(CH3COO)30(H2O)72]42− and Imidazolium Cations. Inorganics, 3(2), 246-266. https://doi.org/10.3390/inorganics3020246