The Effect of General Bone Mineral Density on the Quantity and Quality of the Edentulous Mandible: A Cross-Sectional Clinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations and Study Registration
2.2. Inclusion and Exclusion Criteria
2.3. Dual-Energy X-ray Absorptiometry
2.4. CBCT Examinations
2.5. CBCT Measurements
2.6. Statistical Analysis
3. Results
3.1. Cortical Bone
3.2. Trabecular Bone
3.3. Total Mandibular Bone Volume
3.4. Regression Analysis
3.5. Agreement or Repeatability of the Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atwood, D.A. Reduction of residual ridges: A major oral disease entity. J. Prosthet. Dent. 1971, 26, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Atwood, D.A. Some clinical factors related to rate of resorption of residual ridges. J. Prosthet. Dent. 2001, 86, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Tallgren, A. The continuing reduction of the residual alveolar ridges in complete denture wearers: A mixed-longitudinal study covering 25 years. J. Prosthet. Dent. 1972, 27, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Lekholm, U.; Zarb, G.A. Patient selection and preparation. In Tissue Integrated Prostheses: Osseointegration in Clinical Dentistry, 1st ed.; Brånemark, P.I., Zarb, G.A., Alberktsson, T., Eds.; Quintessence Publishing Co: Chicago, IL, USA, 1985; pp. 199–209. [Google Scholar]
- Jahangiri, L.; Devlin, H.; Ting, K.; Nishimura, I. Current perspectives in residual ridge remodeling and its clinical implications: A review. J. Prosthet. Dent. 1998, 80, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Lekholm, U.; Gunne, J.; Henry, P.; Higuchi, K.; Lindén, U.; Bergström, C.; van Steenberghe, D. Survival of the Brånemark implant in partially edentulous jaws: A 10-year prospective multicenter study. Int. J. Oral. Maxillofac Implant. 1999, 14, 639–645. [Google Scholar]
- Trisi, P.; De Benedittis, S.; Perfetti, G.; Berardi, D. Primary stability, insertion torque and bone density of cylindric implant ad modum Branemark: Is there a relationship? An in vitro study. Clin. Oral Implant. Res. 2010, 22, 567–570. [Google Scholar] [CrossRef]
- Turkyilmaz, I.; Aksoy, U.; McGlumphy, E.A. Two Alternative Surgical Techniques for Enhancing Primary Implant Stability in the Posterior Maxilla: A Clinical Study Including Bone Density, Insertion Torque, and Resonance Frequency Analysis Data. Clin. Implant Dent. Relat. Res. 2008, 10, 231–237. [Google Scholar] [CrossRef]
- Gursoytrak, B.; Ataoglu, H. Use of resonance frequency analysis to evaluate the effects of surface properties on the stability of different implants. Clin. Oral Implant. Res. 2020, 31, 239–245. [Google Scholar] [CrossRef]
- Merheb, J.; Van Assche, N.; Coucke, W.; Jacobs, R.; Naert, I.; Quirynen, M. Relationship between cortical bone thickness or computerized tomography-derived bone density values and implant stability. Clin. Oral Implant. Res. 2010, 21, 612–617. [Google Scholar] [CrossRef]
- Miyamoto, I.; Tsuboi, Y.; Wada, E.; Suwa, H.; Iizuka, T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery—Clinical, prospective, biomechanical, and imaging study. Bone 2005, 37, 776–780. [Google Scholar] [CrossRef]
- Marquezan, M.; Osório, A.; Sant’Anna, E.; Souza, M.M.; Maia, L. Does bone mineral density influence the primary stability of dental implants? A systematic review. Clin. Oral Implant. Res. 2012, 23, 767–774. [Google Scholar] [CrossRef]
- Munakata, M.; Tachikawa, N.; Honda, E.; Shiota, M.; Kasugai, S. Influence of menopause on mandibular bone quantity and quality in Japanese women receiving dental implants. Arch. Osteoporos. 2011, 6, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Von Wowern, N. General and oral aspects of osteoporosis: A review. Clin. Oral Investig. 2001, 5, 71–82. [Google Scholar] [CrossRef]
- Peck, W.A. Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 1993, 94, 646–650. [Google Scholar] [CrossRef]
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis Prevention, Diagnosis, and Therapy. JAMA 2001, 285, 785–795. [Google Scholar] [CrossRef]
- WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ. Tech. Rep Ser. 1994, 843, 1–129. [Google Scholar]
- Melton, L.J., 3rd; Chrischilles, E.; Cooper, C.; Lane, A.W.; Riggs, B.L. Perspective how many women have osteoporosis? J. Bone Miner. Res. 1992, 7, 1005–1010. [Google Scholar] [CrossRef]
- Albright, F.; Smith, P.H.; Richardson, A.M. Post-menopausal osteoporosis. Its clinical features. JAMA 1941, 116, 2465–2474. [Google Scholar] [CrossRef]
- Nishimura, I.; Hosokawa, R.; Atwood, D.A. The knive-edge tendency in mandibular residual ridges in women. J. Prosthet. Dent. 1992, 67, 820–826. [Google Scholar] [CrossRef]
- Springe, B.; Slaidina, A.; Soboleva, U.; Lejnieks, A. Bone mineral density and mandibular residual ridge resorption. Int. J. Prosthodont. 2014, 27, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Klemetti, E.; Vainio, P. Effect of bone mineral density in skeleton and mandible on extraction of teeth and clinical alveolar height. J. Prosthet. Dent. 1993, 70, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Hirai, T.; Ishijima, T.; Hashikawa, Y.; Yajima, T. Osteoporosis and reduction of residual ridge in edentulous patients. J. Prosthet. Dent. 1993, 69, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Kribbs, P.J.; Chesnut, C.H., 3rd; Ott, S.M.; Kilcoyne, R.F. Relationships between mandibular and skeletal bone in a population of normal women. J. Prosthet. Dent. 1990, 63, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Balcikonyte, E.; Balciuniene, I.; Alekna, V. Bone mineral density and radiographic mandibular body height. Stomatologija 2003, 5, 137–140. [Google Scholar]
- Aminah, H.S.; Mahmud, M.; Rahajoeningsih, P. Relationship between the age, the bone density, and the height of mandibular residual ridge in edentulous women. Padjadjaran J. Dent. 2009, 21, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Calciolari, E.; Donos, N.; Park, J.-C.; Petrie, A.; Mardas, N. A systematic review on the correlation between skeletal and jawbone mineral density in osteoporotic subjects. Clin. Oral Implant. Res. 2016, 27, 433–442. [Google Scholar] [CrossRef]
- Naitoh, M.; Kurosu, Y.; Inagaki, K.; Katsumata, A.; Noguchi, T.; Ariji, E. Assessment of mandibular buccal and lingual cortical bones in postmenopausal women. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2007, 104, 545–550. [Google Scholar] [CrossRef]
- Barngkgei, I.; Al Haffar, I.; Khattab, R. Osteoporosis prediction from the mandible using cone-beam computed tomography. Imaging Sci. Dent. 2014, 44, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Bertl, K.; Subotic, M.; Heimel, P.; Schwarze, U.Y.; Tangl, S.; Ulm, C. Morphometric characteristics of cortical and trabecular bone in atrophic edentulous mandibles. Clin. Oral Implant. Res. 2015, 26, 780–787. [Google Scholar] [CrossRef]
- Slaidina, A.; Nikitina, E.; Springe, B.; Soboleva, U.; Abeltins, A.; Daukste, I.; Lejnieks, A. Bone mineral density and edentulous jaw bone quantity and quality. In Proceedings of the 6th Annual Congress of the Pan European Region of the International Association for Dental Research, Helsinki, Finland, 12–15 September 2012. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Al AlSheikh, H.; AlZain, S.; Warsy, A.; AlMukaynizi, F.; AlThomali, A. Mandibular residual ridge height in relation to age, gender and duration of edentulism in a Saudi population: A clinical and radiographic study. Saudi Dent. J. 2019, 31, 258–264. [Google Scholar] [CrossRef]
- Taguchi, A.; Tsuda, M.; Ohtsuka, M.; Kodama, I.; Sanada, M.; Nakamoto, T.; Inagaki, K.; Noguchi, T.; Kudo, Y.; Suei, Y.; et al. Use of dental panoramic radiographs in identifying younger postmenopausal women with osteoporosis. Osteoporos. Int. 2006, 17, 387–394. [Google Scholar] [CrossRef]
- Fanghänel, J.; Proff, P.; Dietze, S.; Bayerlein, T.; Mack, F.; Gedrange, T. The morphological and clinical relevance of mandibular and maxillary bone structures for implantation. Folia Morphol. 2006, 65, 49–53. [Google Scholar]
- Carlsson, G.E. Responses of jawbone to pressure. Gerodontology 2004, 21, 65–70. [Google Scholar] [CrossRef]
- Karaagaçlioglu, L.; Ozkan, P. Changes in mandibular ridge height in relation to aging and length of edentulism period. Int. J. Prosthodont. 1994, 7, 368–371. [Google Scholar]
- Devlin, H.; Ferguson, M.W. Alveolar ridge resorption and mandibular atrophy. A review of the role of local and systemic factors. Br. Dent. J. 1991, 170, 101–104. [Google Scholar] [CrossRef]
- Bergkvist, G.; Koh, K.-J.; Sahlholm, S.; Klintström, E.; Lindh, C. Bone density at implant sites and its relationship to assessment of bone quality and treatment outcome. Int. J. Oral Maxillofac. Implant. 2010, 25, 321–328. [Google Scholar]
- Matsuura, T.; Mizumachi, E.; Katafuchi, M.; Tokutomi, K.; Kido, H.; Matsuura, M.; Sato, H. Sex-related Differences in Cortical and Trabecular Bone Quantities at the Mandibular Molar. J. Hard Tissue Biol. 2014, 23, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Dekker, H.; Schulten, E.A.; Bruggenkate, C.M.T.; Bloemena, E.; van Ruijven, L.J.; Bravenboer, N. Regional differences in microarchitecture and mineralization of the atrophic edentulous mandible: A microcomputed tomography study. Arch. Oral Biol. 2022, 133, 105302. [Google Scholar] [CrossRef]
- Kinalski, M.; Boscato, N.; Damian, M.F. The accuracy of panoramic radiography as a screening of bone mineral density in women: A systematic review. Dentomaxillofacial Radiol. 2020, 49, 20190149. [Google Scholar] [CrossRef]
- Guerra, E.N.S.; Almeida, F.; Bezerra, F.V.; Figueiredo, P.T.D.S.; Silva, M.A.G.; Canto, G.D.L.; Pachêco-Pereira, C.; Leite, A.F. Capability of CBCT to identify patients with low bone mineral density: A systematic review. Dentomaxillofacial Radiol. 2017, 46, 20160475. [Google Scholar] [CrossRef]
- Nishiyama, K.K.; Macdonald, H.M.; Buie, H.R.; Hanley, D.A.; Boyd, S.K. Postmenopausal Women With Osteopenia Have Higher Cortical Porosity and Thinner Cortices at the Distal Radius and Tibia Than Women With Normal aBMD: An In Vivo HR-pQCT Study. J. Bone Miner. Res. 2010, 25, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, H.; Gonçalves, D.; Coriolano, H.-J.A.; Duarte, J.A. Bone Quality: The Determinants of Bone Strength and Fragility. Sports Med. 2014, 44, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Ulm, C.; Tepper, G.; Blahout, R.; Rausch-Fan, X.; Hienz, S.; Matejka, M. Characteristic features of trabecular bone in edentulous mandibles. Clin. Oral Implant. Res. 2009, 20, 594–600. [Google Scholar] [CrossRef] [PubMed]
Factor | Overall Mean (SD) (n = 127) | Normal BMD Mean (SD) (n = 39) | Osteopenia Mean (SD) (n = 57) | Osteoporosis Mean (SD) (n = 31) | p-Value |
---|---|---|---|---|---|
Age | 70.4 (8.9) | 68.9 (8.9) | 70.4 (9.1) | 72.5 (8.2) | 0.24 |
Height | 160.0 (5.9) | 160.9 (5.4) | 159.3 (6.1) | 159.9 (6.0) | 0.43 |
Weight | 73.1 (15.7) | 82.2 (16.7) | 71.7 (12.6) | 64.2 (13.8) | <0.001 * |
BMI | 28.6 (5.9) | 31.8 (6.0) | 28.3 (5.2) | 24.9 (4.6) | <0.001 * |
Normal BMD | Osteopenia | Osteoporosis | |||
---|---|---|---|---|---|
Region | Mean (SD) Number | Mean (SD) Number | Mean (SD) Number | p-Value | |
Lateral incisor | |||||
Cortical bone, CM | 93.7 (24.1) n = 39 | 77.2 (20.5) n = 57 | 70.7 (21.4) n = 30 | <0.001 * | |
Cortical bone, basal | 71.3 (20.6) n = 31 | 56.3 (14.0) n = 49 | 47.5 (15.0) n = 23 | <0.001 * | |
Cortical bone, alveolar | 27.5 (10.0) n = 31 | 22.8 (10.3) n = 49 | 22.9 (12.4) n = 23 | 0.12 | |
Trabecular bone, CM | 70.7 (33.0) n = 39 | 70.9 (28.9) n = 57 | 70.9 (32.4) n = 30 | >0.99 | |
Trabecular bone, basal | 50.4 (13.3) n = 31 | 51.1 (9.3) n = 49 | 54.7 (12.1) n = 23 | 0.35 | |
Trabecular bone, alveolar | 29.19 (18.6) n = 31 | 26.6 (19.5) n = 49 | 28.9 (19.9) n = 23 | 0.82 | |
Total bone, CM | 164.4 (41.2) n = 39 | 148.1 (38.6) n = 57 | 141.5 (38.5) n = 30 | 0.04 * | |
Total bone, basal | 121.7 (17.0) n = 31 | 107.4 (15.4) n = 49 | 102.1 (14.9) n = 23 | <0.001 * | |
Total bone, alveolar | 56.7 (25.3) n = 31 | 49.5 (26.6) n = 49 | 51.8 (28.8) n = 23 | 0.50 | |
First premolar | |||||
Cortical bone, CM | 84.4 (25.2) n = 39 | 70.8 (20.2) n = 57 | 66.7 (18.2) n = 30 | <0.001 * | |
Cortical bone, basal | 65.5 (21.6) n = 29 | 53.8 (13.8) n = 45 | 48.6 (13.8) n = 19 | 0.001 * | |
Cortical bone, alveolar | 20.5 (12.1) n = 29 | 17.7 (10.8) n = 45 | 17.6 (11.5) n = 19 | 0.54 | |
Trabecular bone, CM | 66.5 (36.9) n = 39 | 65.4 (29.3) n = 57 | 64.9 (32.7) n = 30 | 0.98 | |
Trabecular bone, basal | 51.5 (13.2) n = 29 | 51.6 (10.7) n = 45 | 54.2 (12.0) n = 19 | 0.69 | |
Trabecular bone, alveolar | 29.6 (23.2) n = 29 | 23.5 (18.5) n = 45 | 27.5 (19.3) n = 19 | 0.43 | |
Total bone, CM | 150.9 (43.7) n = 39 | 136.2 (38.7) n = 57 | 129.5 (40.4) n = 30 | 0.08 | |
Total bone, basal | 117.0 (20.3) n = 29 | 105.5 (14.7) n = 45 | 102.8 (15.3) n = 19 | 0.005 * | |
Total bone, alveolar | 50.1 (32.1) n = 29 | 41.2 (26.9) n = 45 | 45.0 (28.9) n = 19 | 0.44 | |
First molar | |||||
Cortical bone, CM | 58.9 (21.6) n = 39 | 53.8 (19.4) n = 57 | 50.8 (17.8) n = 31 | 0.21 | |
Cortical bone, basal | 50.0 (13.3) n = 19 | 42.3 (14.3) n = 30 | 41.9 (13.3) n = 15 | 0.14 | |
Cortical bone, alveolar | 15.0 (10.3) n = 19 | 14.5 (8.6) n = 30 | 16.2 (8.3) n = 15 | 0.85 | |
Trabecular bone, CM | 64.7 (41.3) n = 39 | 59.8 (31.9) n = 573 | 55.4 (30.9) n = 31 | 0.54 | |
Trabecular bone, basal | 58.4 (14.0) n = 19 | 54.5 (10.8) n = 30 | 56.2 (7.8) n = 15 | 0.51 | |
Trabecular bone, alveolar | 35.9 (26.1) n = 19 | 25.8 (21.7) n = 30 | 20.5 (19.8) n = 15 | 0.13 | |
Total bone, CM | 123.5 (49.5) n = 39 | 113.5 (40.1) n = 57 | 106.2 (39.8) n = 31 | 0.24 | |
Total bone, basal | 108.4 (14.5) n = 19 | 97.1 (15.6) n = 30 | 98.2 (15.6) n = 15 | 0.04 * | |
Total bone, alveolar | 50.6 (31.0) n = 19 | 40.3 (27.6) n = 30 | 36.7 (21.9) n = 15 | 0.29 |
Model | Factors | Est. Coeffic. | S.E. | p-Value | R2 |
---|---|---|---|---|---|
Cortical bone, CM | Intercept | 109.15 | 11.66 | <0.001 | |
DXA | 3.93 | 0.94 | <0.001 | ||
Age | −0.76 | 0.12 | <0.001 | ||
BMI | −0.94 | 0.2 | <0.001 | ||
Mandibular volume | 2.39 | 0.27 | <0.001 | ||
0.34 | |||||
Cortical bone, basal | Intercept | 111.82 | 11.53 | <0.001 | |
DXA | 4.64 | 0.85 | <0.001 | ||
Age | −0.78 | 0.11 | <0.001 | ||
BMI | −0.19 | 0.18 | 0.3 | ||
Mandibular volume | 0.52 | 0.26 | 0.05 | ||
0.32 | |||||
Cortical bone, alveolar | Intercept | 17.0 | 7.72 | 0.03 | |
DXA | 0.4 | 0.57 | 0.48 | ||
Age | −0.1 | 0.07 | 0.17 | ||
BMI | −0.42 | 0.12 | <0.001 | ||
Mandibular volume | 1.1 | 0.17 | <0.001 | ||
0.21 | |||||
Trabecular bone, CM | Intercept | −96.46 | 14.57 | <0.001 | |
DXA | −4.54 | 1.17 | <0.001 | ||
Age | 0.73 | 0.15 | <0.001 | ||
BMI | 0.24 | 0.25 | 0.32 | ||
Mandibular volume | 5.2 | 0.33 | <0.001 | ||
0.45 | |||||
Trabecular bone, basal | Intercept | −9.3 | 7.92 | 0.24 | |
DXA | −1.83 | 0.59 | <0.001 | ||
Age | 0.46 | 0.07 | <0.001 | ||
BMI | 0.15 | 0.13 | 0.23 | ||
Mandibular volume | 1.05 | 0.18 | <0.001 | ||
0.22 | |||||
Trabecular bone, alveolar | Intercept | −50.43 | 13.69 | <0.001 | |
DXA | −1.95 | 1.01 | 0.05 | ||
Age | 0.2 | 0.13 | 0.12 | ||
BMI | 0.18 | 0.22 | 0.42 | ||
Mandibular volume | 2.73 | 0.3 | <0.001 | ||
0.26 | |||||
Total bone, CM | Intercept | 29.22 | 16.46 | 0.08 | |
DXA | −0.36 | 1.34 | 0.79 | ||
Age | 0.05 | 0.17 | 0.75 | ||
BMI | −0.96 | 0.28 | <0.001 | ||
Mandibular volume | 6.41 | 0.43 | <0.001 | ||
0.43 | |||||
Total bone, basal | Intercept | 102.51 | 11.41 | <0.001 | |
DXA | 2.8 | 0.84 | <0.001 | ||
Age | −0.32 | 0.1 | <0.001 | ||
BMI | −0.04 | 0.18 | 0.83 | ||
Mandibular volume | 1.56 | 0.25 | <0.001 | ||
0.29 | |||||
Total bone, alveolar | Intercept | 4.54 | 15.93 | 0.78 | |
DXA | −1.2 | 1.16 | 0.3 | ||
Age | 0.18 | 0.14 | 0.2 | ||
BMI | −0.96 | 0.25 | <0.001 | ||
Mandibular volume | 2.26 | 0.39 | <0.001 | ||
0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slaidina, A.; Springe, B.; Abeltins, A.; Uribe, S.E.; Lejnieks, A. The Effect of General Bone Mineral Density on the Quantity and Quality of the Edentulous Mandible: A Cross-Sectional Clinical Study. Dent. J. 2023, 11, 17. https://doi.org/10.3390/dj11010017
Slaidina A, Springe B, Abeltins A, Uribe SE, Lejnieks A. The Effect of General Bone Mineral Density on the Quantity and Quality of the Edentulous Mandible: A Cross-Sectional Clinical Study. Dentistry Journal. 2023; 11(1):17. https://doi.org/10.3390/dj11010017
Chicago/Turabian StyleSlaidina, Anda, Baiba Springe, Andris Abeltins, Sergio E. Uribe, and Aivars Lejnieks. 2023. "The Effect of General Bone Mineral Density on the Quantity and Quality of the Edentulous Mandible: A Cross-Sectional Clinical Study" Dentistry Journal 11, no. 1: 17. https://doi.org/10.3390/dj11010017
APA StyleSlaidina, A., Springe, B., Abeltins, A., Uribe, S. E., & Lejnieks, A. (2023). The Effect of General Bone Mineral Density on the Quantity and Quality of the Edentulous Mandible: A Cross-Sectional Clinical Study. Dentistry Journal, 11(1), 17. https://doi.org/10.3390/dj11010017