Laser Technology in Dentistry: From Clinical Applications to Future Innovations
Abstract
:1. Introduction
2. Clinical Applications of the Laser in Dentistry
3. Lasers in Soft Tissue Surgery
4. Lasers in Hard Tissue Surgery in Dentistry
Direction | Use | Bibliographies |
---|---|---|
Prophylaxis | Laser descaling | [30] |
Disinfection of the oral cavity | Disinfection of the oral cavity | [22,31] |
Periodontology | Treatment of periodontal disease | [32,33] |
Gingivectomy procedures | ||
Orthodontics | Facilitation of tooth movement | [34] |
Elimination of injuries caused by the device | ||
Implantology | Bone preparation | [35,36] |
Disinfection of the implant area | ||
Endodontics | Root canal treatment | [37] |
Oral surgery | Tooth extraction | [38,39,40] |
Soft tissue surgery | ||
Teeth whitening | Soft tissue surgery | [39] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Myers, T.D. The future of lasers in dentistry. J. Clin. Laser Med. Surg. 1991, 9, 399–404. [Google Scholar] [CrossRef]
- Parker, S.P.A. Laser-tissue interaction. Br. Dent. J. 2007, 202, 73–81. [Google Scholar] [CrossRef]
- Romanos, G.E.; Nentwig, G.H. Diode laser (980 nm) in oral and maxillofacial surgical procedures: Clinical observations based on clinical applications. J. Clin. Laser Med. Surg. 1999, 17, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Pham, C.M.; Chen, C.Y.; Kim, D.M. The effects of using erbium, chromium-doped laser on the surface modification, bacterial decontamination, and cell adhesion on zirconia discs: An in vitro study. Lasers Med. Sci. 2021, 36 (Suppl. S1), 1701–1708. [Google Scholar] [CrossRef]
- Goharkhay, K.; Moritz, A.; Wilder-Smith, P.; Schoop, U.; Kluger, W.; Jakolitsch, S.; Sperr, W. Effects on oral soft tissue produced by a diode laser in vitro. Lasers Surg. Med. 1999, 25, 401–406. [Google Scholar] [CrossRef]
- Walsh, L.J. The current status of laser applications in dentistry. Aust. Dent. J. 2003, 48, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Parker, S. Introduction, history of lasers and laser light production. Br. Dent. J. 2007, 202, 21–31. [Google Scholar] [CrossRef]
- Parker, S.; Verma, S. Lasers in dentistry: An innovative technology. Br. Dent. J. 2019, 6, 1–6. [Google Scholar]
- Kimura, Y. Lasers in endodontics: A review. Int. Endod. J. 2000, 33, 173–185. [Google Scholar] [CrossRef]
- Asnaashari, M.; Zadsirjan, S. Application of laser in oral surgery. J. Lasers Med. Sci. 2014, 5, 97–107. [Google Scholar]
- Abu-Ta’a, M.; Karameh, R. Laser and its application in periodontology: A review of literature. Open J. Stomatol. 2022, 12, 305–320. [Google Scholar] [CrossRef]
- Tzanakakis, E.G.C.; Skoulas, E.; Pepelassi, E.; Koidis, P.; Tzoutzas, I.G. The use of lasers in dental materials: A review. Materials 2021, 14, 3370. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, S.; Mulder, R. The use of laser-based technologies in dentistry: Ethical issues and safety considerations. S. Afr. Dent. J. 2015, 70, 464–466. [Google Scholar]
- George, R. Laser in dentistry-Review. Int. J. Dent. Clin. 2009, 1, 13–19. [Google Scholar]
- Gutknecht, N. State of the art in lasers for dentistry. J. Laser Health Acad. 2008, 3, 1–5. [Google Scholar]
- Lazăr, A.-P.; Dinulescu, T.; Dako, T.; Mârţu, M.-A.; Suciu, M.; Lazăr, L. Laser in periodontology: A review of the fields of applicability and therapeutic effects. Rom. J. Oral Rehabil. 2022, 14, 108. [Google Scholar]
- Diaci, J.; Gaspirc, B. Comparison of Er and Er, Cr lasers used in dentistry. J. Laser Health Acad. 2012, 1, 1–3. [Google Scholar]
- Verma, S.K.; Maheshwari, S.; Singh, R.K.; Chaudhari, P.K. Laser in Dentistry: An Innovative Tool in Modern Dental Practice. Natl. J. Maxillofac. Surg. 2012, 3, 124–132. [Google Scholar] [CrossRef]
- Malcangi, G.; Patano, A.; Trilli, I.; Piras, F.; Ciocia, A.M.; Inchingolo, A.D.; Mancini, A.; Hazballa, D.; Di Venere, D.; Inchingolo, F.; et al. Therapeutic and adverse effects of lasers in dentistry: A systematic review. Photonics 2023, 10, 650. [Google Scholar] [CrossRef]
- Minamizato, T. Slip-cast zirconia dental roots with tunnels drilled by laser process. J. Prosthet. Dent. 1990, 63, 677–684. [Google Scholar] [CrossRef]
- Ting, M.; Alluri, L.S.C.; Sulewski, J.G.; Suzuki, J.B.; da Silva, A.P.B. Laser treatment of peri-implantitis: A systematic review of radiographic outcomes. Dent. J. 2022, 10, 20. [Google Scholar] [CrossRef]
- Shukla, P.; Dahiya, A.; Sharma, N. Future directions for lasers in general dental practice: Cost reduction and accessibility. J. Dent. Pract. 2024, 12, 201–216. [Google Scholar]
- Binrayes, A. An update on the use of lasers in prosthodontics. Cureus 2024, 16, e57282. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Vyas, T.; Kewalia, K.; Barupal, S. Laser in dentistry—A review. Univ. J. Dent. Sci. 2023, 9, 21. [Google Scholar] [CrossRef]
- Panova, N.K.; Nikolova, K.T.; Dikova, T.D. Application of lasers and laser processing technologies in modern dentistry: A review. J. Chem. Technol. Metall. 2023, 58, 1116–1127. [Google Scholar] [CrossRef]
- Agop-Forna, D.; Sălceanu, M.; Topoliceanu, C.; Creţu, C.; Vasincu, D.; Forna, N. Dental Lasers in Restorative Dentistry: A Review. Rom. J. Oral Rehabil. 2021, 13, 7. [Google Scholar]
- Alghamdi, M.A.M.; Halawani, M.; Alarawi, H.A.; Alzaidi, A.M.; Alhogail, L.H.; Alsobhi, S.W.O.; Alamrai, A.H.M.; Alrashedi, J.A.M.; AlRashidi, A.N.B.; Al-Ghamdi, T.A.A. The Use of Laser Technology in Dentistry: A Comprehensive Review. Migr. Lett. 2022, 19, 577–586. [Google Scholar]
- American Academy of Periodontology. Lasers in Periodontics: A Position Paper. J. Periodontol. 2002, 73, 1231–1239. [Google Scholar] [CrossRef]
- Coluzzi, D.J.; Parker, S.P.A. (Eds.) Lasers in Dentistry—Current Concepts, 2nd ed.; Springer: Cham, Switzerland, 2023; pp. 437–585. [Google Scholar]
- Mathew, M.G. Lasers in Dentistry—Current Concepts. Br. Dent. J. 2024, 236, 597. [Google Scholar] [CrossRef]
- Everett, J.D.; Rossmann, J.A.; Kerns, D.G.; Al-Hashimi, I. Laser-Assisted Non-Surgical Periodontal Therapy: A Double-Blind, Randomized Clinical Trial. Open Dent. J. 2017, 11, 79–90. [Google Scholar] [CrossRef]
- Colluzzi, D. Fundamentals of dental lasers: Science and instruments. Dent. Clin. N. Am. 2004, 48, 1017–1059. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraj, S.; Ari, G.; Rajendran, S.; Mahendra, J. A Review on the Use of Lasers in Periodontics. Ann. Rom. Soc. Cell Biol. 2021, 24, 1056–1061. [Google Scholar]
- Dutta Majumdar, J.; Manna, I. Laser processing of materials. Sadahana 2003, 28, 495–562. [Google Scholar] [CrossRef]
- Papadopoulos, C.A.; Vouros, I.; Menexes, G.; Konstantinidis, A. The Utilization of a Diode Laser in the Surgical Treatment of Peri-Implantitis. A Randomized Clinical Trial. Clin. Oral Investig. 2015, 19, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, I.; McBride, M.; Newton, P.; Kurtz, K. Laser surface treatment to improve properties of cast titanium. Dent. Mater. 2009, 25, 629–633. [Google Scholar] [CrossRef]
- Rodriguez Salazar, D.Y.; Málaga Rivera, J.A.; Laynes Effio, J.E.; Valencia-Arias, A. A Systematic Review of Trends in Photobiomodulation in Dentistry between 2018 and 2022: Advances and Investigative Agenda. F1000Research 2023, 12, 1415. [Google Scholar] [CrossRef]
- Nevins, M.; Nevins, M.L.; Camelo, M.; Boyesen, J.L.; Kim, D.M. Laser-Assisted New Attachment Procedure in the Treatment of Periodontal Pockets: A Retrospective Evaluation of Clinical Outcomes in a Private Practice. J. Periodontol. 2022, 93, 739–747. [Google Scholar]
- Slot, D.E.; Jorritsma, K.H.; Cobb, C.M.; van der Weijden, G.A. The Effect of a Laser-Assisted Periodontal Therapy (LANAP) on Periodontal Parameters: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2022, 49, 907–920. [Google Scholar]
- de Oliveira, G.; Da Costa, M.C.; Barbosa, D.B. Laser-assisted endodontic disinfection: An in vitro comparative study of diode and Nd lasers. J. Endod. 2021, 47, 487–492. [Google Scholar]
- Hong, J.-U.; Kwon, J.-J.; Heo, S.C.; Shin, S.-H.; Kim, H.J.; Lee, J.-Y. Effects of photobiomodulation on bone remodeling in an osteoblast–osteoclast co-culture system. Lasers Med. Sci. 2022, 37, 1049–1059. [Google Scholar] [CrossRef]
- Cronshaw, M.; Parker, S.; Anagnostaki, E.; Mylona, V.; Lynch, E.; Grootveld, M. Photobiomodulation Dose Parameters in Dentistry: A Systematic Review and Meta-Analysis. Dent. J. 2020, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.M.; Bice, R.W.; Gilbert, W.A. Orthodontic Treatment of Periodontally Compromised Teeth after Laser Periodontal Therapy: A Case Report. Photobiomodul. Photomed. Laser Surg. 2021, 39, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Di Palma, G.; Inchingolo, A.M.; Patano, A.; Palumbo, I.; Guglielmo, M.; Trilli, I.; Netti, A.; Ferrara, I.; Viapiano, F.; Inchingolo, A.D.; et al. Photobiomodulation and Growth Factors in Dentistry: A Systematic Review. Photonics 2023, 10, 1095. [Google Scholar] [CrossRef]
- Mester, E.; Mester, A.F.; Mester, A. The Biomedical Effects of Laser Application. Lasers Surg. Med. 1985, 5, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Monteiro, F.; Oliveira, S.; Costa, I.; Catarino, S.O.; Carvalho, Ó.; Padrão, J.; Zille, A.; Pinho, T.; Silva, F.S. Optimization of a Photobiomodulation Protocol to Improve the Cell Viability, Proliferation and Protein Expression in Osteoblasts and Periodontal Ligament Fibroblasts for Accelerated Orthodontic Treatment. Biomedicines 2024, 12, 180. [Google Scholar] [CrossRef]
- Rojas, J.; Torres, A.; Contreras, D. Photobiomodulation: The Future of Laser Therapy in Dentistry. J. Laser Dent. 2024, 14, 45–59. [Google Scholar]
- El Mobadder, M.; Abi Nader, E.; Rizk, F. Photobiomodulation and its effect on post-extraction wound healing. J. Dent. Surg. 2023, 22, 33–44. [Google Scholar]
- Zein, R.; Sukari, H.; Nasser, M. The role of photobiomodulation in orthodontic tooth movement. J. Orthod. Laser Ther. 2021, 10, 152–164. [Google Scholar]
- Ciurescu, C.E.; Dima, L.; Ciurescu, V.A.; Noja, G.G.; Istodor, A.V.; Moga, M.A.; Ardelean, L.C.; Rusu, L.-C.; Leretter, M.T. Laser Therapy Effects on Periodontal Status: A Randomized Study Using Gaussian Network Analysis and Structural Equation Modeling Approach. Medicina 2024, 60, 437. [Google Scholar] [CrossRef]
- Oliveira, G.; Barbosa, D.B. Denosumab Use as a Predictor Variable for External Cervical Resorption: A Case-Control Study. J. Endod. 2021, 47, 366–373. [Google Scholar] [CrossRef]
- Smith, T.; Yamada, T.; Patel, N. Integration of Lasers with AI in Personalized Dental Treatments: Current Trends and Future Prospects. Dent. Technol. Today 2024, 5, 78–89. [Google Scholar]
- Coluzzi, D.J.; Parker, S. Minimally invasive laser surgery in dentistry: Recent advances and future perspectives. Int. J. Laser Dent. 2023, 13, 102–114. [Google Scholar]
- Hamblin, M.R. Photobiomodulation therapy within clinical dentistry: Theoretical and applied concepts. Lasers Med. Sci. 2019, 34, 199–212. [Google Scholar]
- Mamalis, A.; Siegel, D.; Jagdeo, J. Visible red light emitting diode photobiomodulation for skin fibrosis: Key molecular pathways. Curr. Dermatol. Rep. 2016, 5, 121–128. [Google Scholar] [CrossRef]
- Aykol, G.; Baser, U.; Maden, I.; Kazak, Z.; Onan, U.; Tanrikulu-Kucuk, S.; Ademoglu, E.; Issever, H.; Yalcin, F. The effect of low-level laser therapy as an adjunct to non-surgical periodontal treatment. J. Periodontol. 2011, 82, 481–488. [Google Scholar] [CrossRef]
- Soni, S.; Thakar, S. A Review of Photobiomodulation and Its Application in Dentistry. Indian J. Dent. Sci. 2022, 14, 209–212. [Google Scholar] [CrossRef]
- Esposito, A.; Savini, A.; Romanos, G.E. The role of lasers in peri-implantitis treatment: Future perspectives. Clin. Implant Dent. Relat. Res. 2024, 26, 112–119. [Google Scholar]
- Huang, Q.; Li, Z.; Lyu, P.; Zhou, X.; Fan, Y. Current Applications and Future Directions of Lasers in Endodontics: A Narrative Review. Bioengineering 2023, 10, 296. [Google Scholar] [CrossRef]
- Alzaid, N.; Ghulam, O.; Albani, M.; Alharbi, R.; Othman, M.; Taher, H.; Albaradie, S.; Ahmed, S. Revolutionizing Dental Care: A Comprehensive Review of Artificial Intelligence Applications Among Various Dental Specialties. Cureus 2023, 15, e47033. [Google Scholar] [CrossRef] [PubMed]
- Luke, A.M.; Mathew, S.; Altawash, M.M.; Madan, B.M. Lasers: A Review with Their Applications in Oral Medicine. J. Lasers Med. Sci. 2019, 10, 324–329. [Google Scholar] [CrossRef]
- Soares, D.M.; Mazzoni, A.; Breschi, L. Laser photobiomodulation: A new frontier in endodontic treatment. J. Endod. Laser Med. 2023, 12, 101–118. [Google Scholar]
- Manni, A.; Pellegrini, G.; Perinetti, G. Photobiomodulation and its impact on tissue regeneration in dentistry. J. Laser Dent. 2020, 18, 113–128. [Google Scholar]
- Marques, M.M.; de Cara, S.P.H.M.; Abe, G.L.; Pedroni, A.C.F.; Diniz, I.M.A.; Moreira, M.S. Effects of photobiomodulation therapy in dentoalveolar-derived mesenchymal stem cells: A review of literature. Lasers Dent. Sci. 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Vashisht, R.; Sharma, A.; Kiran, T.; Jolly, S.S.; Brar, P.K.; Puri, J.V. Artificial Intelligence in Dentistry—A Scoping Review. J. Oral Maxillofac. Surg. Med. Pathol. 2024, 36, 579–592. [Google Scholar] [CrossRef]
- Linden, E. Laser Treatment. J. Am. Dent. Assoc. 2011, 142, 795–796. [Google Scholar] [CrossRef] [PubMed]
- Mills, M.P.; Rosen, P.S.; Chambrone, L.; Greenwell, H.; Kao, R.T.; Klokkevold, P.R.; McAllister, B.S.; Reynolds, M.A.; Romanos, G.E.; Wang, H.-L. American Academy of Periodontology Best Evidence Consensus Statement on the Efficacy of Laser Therapy Used Alone or as an Adjunct to Non-Surgical and Surgical Treatment of Periodontitis and Peri-Implant Diseases. J. Periodontol. 2018, 89, 737–742. [Google Scholar] [CrossRef]
Database | Keywords | Combinations |
---|---|---|
PubMed | laser, dentistry | “laser technology” and “dental treatments” or “photobiomodulation” and “dentistry” |
Scopus | dental laser, PBM | “dental laser applications” and “clinical outcomes” or “PBM” and “dental health” |
Web of Science | laser therapy, dental procedures | “laser therapy” and “dental care” or “laser” and “dental procedures” |
Application | Description | Bibliography |
---|---|---|
Soft Tissue Surgery | Using lasers for soft tissue procedures like gingivectomy reduces inflammation and promotes rapid healing. | Romanos, G.E.; Nentwig, G.H. (1999) [4] |
Hard Tissue Surgery | Lasers are used to remove caries and reshape bone; they are effective on hard tissues like enamel and dentin. | Parker, S. (2007) [3] |
Root Canal Therapy | Sterilizing root canals with the laser to eliminate bacteria, improving endodontic treatment. | Pham et al. (2021) [5] |
Teeth Whitening | Speeding up the whitening process by activating bleaching agents with the laser. | Walsh, L.J. (2003) [7] |
Pain Management and Biostimulation | Low-level laser therapy (LLLT) reduces pain and stimulates tissue after procedures. | Goharkhay, K. et al. (1999) [6] |
Periodontal Treatments | Laser periodontal treatment to reduce periodontal pockets and stimulate tissue regeneration. | Parker, S. (2007) [8] |
Oral Lesions and Precancerous Conditions Treatment | Laser removal of oral lesions and treating precancerous conditions with minimal scarring. | Myers, T.D. (1991) [2] |
Aspect | Description | Clinical Relevance | Bibliography |
---|---|---|---|
Advantages | Reduced bleeding due to the laser’s ability to coagulate blood vessels during surgery, leading to less intraoperative and postoperative bleeding [1]. | In gingivectomy, laser reduces bleeding and eliminates the need for sutures. | Asnaashari, M.; Zadsirjan, S., 2014 [11] |
Advantages | Minimized damage to surrounding tissues due to the laser’s precision, resulting in faster recovery and reduced swelling [2]. | In frenectomy, minimal damage allows for faster healing and less patient discomfort. | Abu-Ta’a, M.; Karameh, R., 2022 [12] |
Advantages | Lower risk of infection as the laser sterilizes the area during the procedure, reducing bacterial contamination [1]. | Laser use in excising lesions or treating periodontitis reduces the risk of secondary infection. | Asnaashari, M.; Zadsirjan, S., 2014 [11] |
Disadvantages | The high cost of laser equipment makes it less accessible for smaller dental practices and increases treatment costs for patients [3]. | Smaller clinics may not afford laser technology, impacting the availability of laser treatments. | Tzanakakis et al., 2021 [13] |
Disadvantages | Limited penetration depth in soft tissue surgeries can restrict the laser’s effectiveness in certain procedures [4]. | Procedures requiring deep-tissue work may still necessitate conventional methods. | Naidoo, S.; Mulder, R., 2015 [14] |
Disadvantages | Requires specialized training for dental practitioners, which may limit its widespread use in some clinics [2]. | Clinics with insufficient training may face challenges in adopting laser technology. | Abu-Ta’a, M.; Karameh, R., 2022 [12] |
Advantages | Disadvantages |
---|---|
Minimally invasive technique leading to less pain and discomfort. | The high initial cost of laser equipment [15,16]. |
Reduced need for anesthesia in certain procedures. | Requires specialized training for proper usage [15]. |
Decreased bleeding due to laser coagulation effect. | Limited application in certain dental procedures [17]. |
Reduced risk of infection due to laser’s antimicrobial properties. | Possible thermal damage to surrounding tissues if not used correctly [16]. |
Improved precision in tissue removal compared with traditional methods. | Not every time is suitable for deep caries removal [15,17]. |
Faster recovery time for patients. | The procedure took longer in some cases than traditional methods [17]. |
Application | Description | Clinical Relevance and References |
---|---|---|
Postoperative Healing | PBM accelerates tissue healing and reduces inflammation after surgeries such as gingivectomy or frenectomy. | It improves recovery time and reduces postoperative complications [44,45]. |
Bone Remodeling | PBM promotes osteoblast activity and supports bone regeneration in implantology. | Enhances implant stability and bone integration [46]. |
Pain Management | PBM alleviates postoperative pain by modulating inflammatory responses and neural pathways. | Improves patient comfort and reduces reliance on analgesics [47,48,49]. |
Periodontal Therapy | PBM aids in reducing pocket depth and regenerating periodontal tissues during LANAP procedures. | Supports minimally invasive management of periodontitis [47]. |
Root Canal Disinfection | PBM complements laser-assisted canal sterilization by improving tissue healing around treated roots. | Increases success rates of endodontic treatments [48]. |
Aesthetic Applications | PBM minimizes sensitivity during teeth whitening and supports enamel repair. | Improves patient satisfaction in aesthetic dentistry [49,50,51]. |
Aspect | Details |
---|---|
Types of Lasers | Er:YAG [45], Nd:YAG [44,45,46,47], Diode [50,52] |
Applications | Periodontal surgery, implant treatments, management of peri-implantitis [45,53,54], minimally invasive surgery [51,54] |
Benefits | Precision in treatment, reduced bleeding, minimal discomfort, and faster healing [55,56,57,58] |
Effects | Decontamination, coagulation, stimulation of healing, reduction in bacterial biofilm [55,59,60,61,62] |
Technological Integration | 3D imaging, AI for personalized treatment [62,63,64,65,66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachelarie, L.; Cristea, R.; Burlui, E.; Hurjui, L.L. Laser Technology in Dentistry: From Clinical Applications to Future Innovations. Dent. J. 2024, 12, 420. https://doi.org/10.3390/dj12120420
Sachelarie L, Cristea R, Burlui E, Hurjui LL. Laser Technology in Dentistry: From Clinical Applications to Future Innovations. Dentistry Journal. 2024; 12(12):420. https://doi.org/10.3390/dj12120420
Chicago/Turabian StyleSachelarie, Liliana, Roxana Cristea, Ecaterina Burlui, and Loredana Liliana Hurjui. 2024. "Laser Technology in Dentistry: From Clinical Applications to Future Innovations" Dentistry Journal 12, no. 12: 420. https://doi.org/10.3390/dj12120420
APA StyleSachelarie, L., Cristea, R., Burlui, E., & Hurjui, L. L. (2024). Laser Technology in Dentistry: From Clinical Applications to Future Innovations. Dentistry Journal, 12(12), 420. https://doi.org/10.3390/dj12120420