Biological Evaluation of Oral Care Products Using 3D Tissue-Engineered In Vitro Models of Plaque-Induced Gingivitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Source
2.2. Cell Culture
2.3. 3D Oral Mucosa Models
2.4. Saliva Bacteria Culture and Addition to 3D Oral Mucosa Model
2.5. Test Materials and Groups
- 1-
- A high-molecular-weight hyaluronic-acid-containing toothpaste (non-commercial) diluted in PBS at a 20% (v/v) concentration;
- 2-
- A fluoride-containing toothpaste (Aquafresh, GSK, Weybridge, UK) diluted in PBS at a 20% (v/v) concentration;
- 3-
- A 67% sodium-bicarbonate-containing toothpaste (Corsodyl, GSK, Weybridge, UK) diluted in PBS at a 20% (v/v) concentration;
- 4-
- The antibiotics penicillin and streptomycin (100 IU:100 mg/mL) (Sigma, Dorset, UK);
- 5-
- A 0.2% w/v chlorhexidine digluconate mouthwash (Corsodyl, GSK, Weybridge, UK);
- 6-
- Mechanical rinsing with phosphate-buffered saline (PBS) using a pipette;
- 7-
- No bacterial removal;
- 8-
- Oral mucosal models without bacteria.
2.6. Exposure Protocol
2.7. Biological Evaluation
2.7.1. PrestoBlue Tissue Viability Test
2.7.2. Histological Processing
2.7.3. Optical Coherence Tomography (OCT)
2.7.4. Confocal Microscopy
2.7.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.8. Anti-Bacterial Testing
2.9. Statistical Analysis
2.10. Pilot Study
3. Results
3.1. Tissue Viability Assay
3.2. Histology
3.3. Optical Coherence Tomography (OCT)
3.4. Confocal Microscopy
3.5. Inflammatory Cytokine Release
3.6. Anti-Bacterial Testing
3.6.1. PrestoBlue Assay
3.6.2. Confocal Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kosten, I.J.; Spiekstra, S.W.; de Gruijl, T.D.; Gibbs, S. MUTZ-3 Langerhans cell maturation and CXCL12 independent migration in reconstructed human gingiva. ALTEX-Altern. Anim. Exp. 2016, 33, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Janke, V.; Von Neuhoff, N.; Schlegelberger, B.; Leyhausen, G.; Geurtsen, W. TEGDMA causes apoptosis in primary human gingival fibroblasts. J. Dent. Res. 2003, 82, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Rumpf, D.; Schricker, S.R.; Mariotti, A.; Culbertson, B.M. Influence of hyperbranched multi-methacrylates for dental neat resins on proliferation of human gingival fibroblasts. Biomacromolecules 2001, 2, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Willershausen, B.; Schäfer, D.; Pistorius, A.; Schulze, R.; Mann, W. Influence of resin-based restoration materials on cytotoxicity in gingival fibroblasts. Eur. J. Med. Res. 1999, 4, 149–155. [Google Scholar] [PubMed]
- Cvikl, B.; Lussi, A.; Moritz, A.; Gruber, R. Dentifrices for children differentially affect cell viability in vitro. Clin. Oral. Investig. 2017, 21, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Kim, Y.; Salipante, P.; Kotula, A.P.; Lipshutz, S.; Graves, D.T.; Alimperti, S. Mechanical Regulation of Oral Epithelial Barrier Function. Bioengineering 2023, 10, 517. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Gidvall, S.; Prgomet, Z.; Hernandez, A.R.; Ruzgas, T.; Nilsson, E.J.; Davies, J.; Valetti, S. Three-Dimensional Oral Mucosal Equivalents as Models for Transmucosal Drug Permeation Studies. Pharmaceutics 2023, 15, 1513. [Google Scholar] [CrossRef] [PubMed]
- Ly, K.L.; Luo, X.; Raub, C.B. Oral mucositis on a chip: Modeling induction by chemo- and radiation treatments and recovery. Biofabrication 2022, 15, 015007. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.J.; Foey, A.D.; Salih, V.M. An organotypic oral mucosal infection model to study host-pathogen interactions. J. Tissue Eng. 2023, 14, 20417314231197310. [Google Scholar] [CrossRef]
- Almela, T.; Al-Sahaf, S.; Brook, I.M.; Khoshroo, K.; Rasoulianboroujeni, M.; Fahimipour, F.; Tahriri, M.; Dashtimoghadam, E.; Bolt, R.; Tayebi, L.; et al. 3D printed tissue engineered model for bone invasion of oral cancer. Tissue Cell 2018, 52, 71–77. [Google Scholar] [CrossRef]
- Masson-Meyers, D.S.; Bertassoni, L.E.; Tayebi, L. Oral mucosa equivalents, prevascularization approaches, and potential applications. Connect. Tissue Res. 2022, 63, 514–529. [Google Scholar] [CrossRef] [PubMed]
- Alamo, L.; Cassiano, F.B.; Bordini, E.A.F.; Stuani, V.T.; Pacheco, L.E.; Gallinari, M.O.; Souza Costa, C.A.; Mondelli, R.F.L.; Soares, D.G. An organotypic model of oral mucosa cells for the biological assessment of 3D-printed resins for interim restorations. J. Prosthet. Dent. 2022, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Barker, E.; AlQobaly, L.; Shaikh, Z.; Franklin, K.; Moharamzadeh, K. Implant Soft-Tissue Attachment Using 3D Oral Mucosal Models-A Pilot Study. Dent. J. 2020, 8, 72. [Google Scholar] [CrossRef]
- Sakulpaptong, W.; Clairmonte, I.A.; Blackstone, B.N.; Leblebicioglu, B.; Powell, H.M. 3D engineered human gingiva fabricated with electrospun collagen scaffolds provides a platform for in vitro analysis of gingival seal to abutment materials. PLoS ONE 2022, 17, e0263083. [Google Scholar] [CrossRef]
- Shaikh, Z.; Alqahtani, A.; Almela, T.; Franklin, K.L.; Tayebi, L.; Moharamzadeh, K. Effects of electronic cigarette liquid on monolayer and 3D tissue-engineered models of human gingival mucosa. J. Adv. Periodontol. Implant. Dent. 2019, 11, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Moharamzadeh, K. Biocompatibility of Oral Care Products, Biocompatibility of Dental Biomaterials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 113–129. [Google Scholar]
- Adelfio, M.; Martin-Moldes, Z.; Erndt-Marino, J.; Tozzi, L.; Duncan, M.J.; Hasturk, H.; Kaplan, D.L.; Ghezzi, C.E. Three-Dimensional Humanized Model of the Periodontal Gingival Pocket to Study Oral Microbiome. Adv. Sci. 2023, 10, e2205473. [Google Scholar] [CrossRef]
- Tsuchiya, S.; Yamabe, M.; Yamaguchi, Y.; Kobayashi, Y.; Konno, T.; Tada, K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer 1980, 26, 171–176. [Google Scholar] [CrossRef]
- Noda, M.; Wataha, J.C.; Lockwood, P.E.; Volkmann, K.R.; Kaga, M.; Sano, H. Sublethal, 2-week exposures of dental material components alter TNF-alpha secretion of THP-1 monocytes. Dent. Mater. 2003, 19, 101–105. [Google Scholar] [CrossRef]
- Samuelsen, J.T.; Michelsen, V.B.; Bruun, J.A.; Dahl, J.E.; Jensen, E.; Ortengren, U. The dental monomer HEMA causes proteome changes in human THP-1 monocytes. J. Biomed. Mater. Res. A 2019, 107, 851–859. [Google Scholar] [CrossRef]
- Smith, L.E.; Hearnden, V.; Lu, Z.; Smallwood, R.; Hunter, K.D.; Matcher, S.J.; Thornhill, M.H.; Murdoch, C.; MacNeil, S. Evaluating the use of optical coherence tomography for the detection of epithelial cancers in vitro. J. Biomed. Opt. 2011, 16, 116015. [Google Scholar] [CrossRef]
- Lall, N.; Henley-Smith, C.J.; De Canha, M.N.; Oosthuizen, C.B.; Berrington, D. Viability Reagent, PrestoBlue, in Comparison with Other Available Reagents, Utilized in Cytotoxicity and Antimicrobial Assays. Int. J. Microbiol. 2013, 2013, 420601. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef]
- Harada, A.; Sekido, N.; Akahoshi, T.; Wada, T.; Mukaida, N.; Matsushima, K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 1994, 56, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F.; Finotto, S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor. Rev. 2011, 22, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Boronat-Catala, M.; Catala-Pizarro, M.; Bagan Sebastian, J.V. Salivary and crevicular fluid interleukins in gingivitis. J. Clin. Exp. Dent. 2014, 6, e175–e179. [Google Scholar] [CrossRef] [PubMed]
- Pinnock, A.; Murdoch, C.; Moharamzadeh, K.; Whawell, S.; Douglas, C.W. Characterisation and optimisation of organotypic oral mucosal models to study Porphyromonas gingivalis invasion. Microbes Infect. 2014, 16, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Mostefaoui, Y.; Claveau, I.; Rouabhia, M. In vitro analyses of tissue structure and interleukin-1β expression and production by human oral mucosa in response to Candida albicans infections. Cytokine 2004, 25, 162–171. [Google Scholar] [CrossRef]
- Tardif, F.; Goulet, J.P.; Zakrzewski, A.; Chauvin, P.; Rouabhia, M. Involvement of interleukin-18 in the inflammatory response against oropharyngeal candidiasis. Med. Sci. Monit. 2004, 10, BR239–BR249. [Google Scholar] [PubMed]
- Thornhill, M. In vitro modeling of oral candidiasis. J. Dent. Res. 2005, 84, 318. [Google Scholar]
- Boyce, S.T.; Warden, G.D.; Holder, I.A. Cytotoxicity testing of topical antimicrobial agents on human keratinocytes and fibroblasts for cultured skin grafts. J. Burn. Care Rehabil. 1995, 16, 97–103. [Google Scholar] [CrossRef]
- Balloni, S.; Locci, P.; Lumare, A.; Marinucci, L. Cytotoxicity of three commercial mouthrinses on extracellular matrix metabolism and human gingival cell behaviour. Toxicol. Vitr. 2016, 34, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.S.; Laranjo, M.; Goncalves, A.C.; Paula, A.; Paulo, S.; Abrantes, A.M.; Caramelo, F.; Ferreira, M.M.; Silva, M.J.; Carrilho, E.; et al. Cytotoxic effects of a chlorhexidine mouthwash and of an enzymatic mouthwash on human gingival fibroblasts. Odontol. Soc. Nippon. Dent. Univ. 2020, 108, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Cvikl, B.; Lussi, A.; Gruber, R. The in vitro impact of toothpaste extracts on cell viability. Eur. J. Oral. Sci. 2015, 123, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Camargo, S.E.A.; Milhan, N.V.M.; Saraiva, F.O.; Oliveira, J.R.; Oliveira, L.D.; Camargo, C.H.R. Are Desensitizing Toothpastes Equally Biocompatible and Effective Against Microorganisms? Braz. Dent. J. 2017, 28, 604–611. [Google Scholar] [CrossRef]
- Mostefaoui, Y.; Claveau, I.; Ross, G.; Rouabhia, M. Tissue structure, and IL-1beta, IL-8, and TNF-alpha secretions after contact by engineered human oral mucosa with dentifrices. J. Clin. Periodontol. 2002, 29, 1035–1041. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barker, E.; AlQobaly, L.; Shaikh, Z.; Franklin, K.; Thurlow, J.; Moghaddam, B.; Pratten, J.; Moharamzadeh, K. Biological Evaluation of Oral Care Products Using 3D Tissue-Engineered In Vitro Models of Plaque-Induced Gingivitis. Dent. J. 2024, 12, 126. https://doi.org/10.3390/dj12050126
Barker E, AlQobaly L, Shaikh Z, Franklin K, Thurlow J, Moghaddam B, Pratten J, Moharamzadeh K. Biological Evaluation of Oral Care Products Using 3D Tissue-Engineered In Vitro Models of Plaque-Induced Gingivitis. Dentistry Journal. 2024; 12(5):126. https://doi.org/10.3390/dj12050126
Chicago/Turabian StyleBarker, Emilia, Lina AlQobaly, Zahab Shaikh, Kirsty Franklin, Johanna Thurlow, Behfar Moghaddam, Jonathan Pratten, and Keyvan Moharamzadeh. 2024. "Biological Evaluation of Oral Care Products Using 3D Tissue-Engineered In Vitro Models of Plaque-Induced Gingivitis" Dentistry Journal 12, no. 5: 126. https://doi.org/10.3390/dj12050126
APA StyleBarker, E., AlQobaly, L., Shaikh, Z., Franklin, K., Thurlow, J., Moghaddam, B., Pratten, J., & Moharamzadeh, K. (2024). Biological Evaluation of Oral Care Products Using 3D Tissue-Engineered In Vitro Models of Plaque-Induced Gingivitis. Dentistry Journal, 12(5), 126. https://doi.org/10.3390/dj12050126