Milk Production and Quality of Lactating Yak Fed Oat Silage Prepared with a Low-Temperature-Tolerant Lactic Acid Bacteria Inoculant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Production
2.2. Animals and Feeds
2.3. Chemical Analysis of Rumen Fluids
2.4. Chemical Analysis of Milk
2.5. Statistical Analysis
3. Results and Discussion
3.1. Intake and Ruminal Fermentation
3.2. Milk Yield and Basic Chemical Composition of Yaks
3.3. Amino Acid Composition of Yak Individual Milk
3.4. Fatty Acid Composition of Yak Individual Milk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Q.; Wanapat, M.; Hou, F. Chemical composition of milk and rumen microbiome diversity of yak, impacting by herbage grown at different phenological periods on the Qinghai-Tibet Plateau. Animals 2020, 10, 1030. [Google Scholar] [CrossRef]
- Xia, W.; Osorio, J.S.; Yang, Y.; Liu, D.; Jiang, M.F. Short communication: Characterization of gene expression profiles related to yak milk protein synthesis during the lactation cycle. J. Dairy Sci. 2018, 101, 11150–11158. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, S.; Fang, Y.; Nawaz, Z. Integrated assessment on the vulnerability of animal husbandry to snow disasters under climate change in the Qinghai-Tibetan Plateau. Glob. Planet. Chang. 2017, 2017, 139–152. [Google Scholar] [CrossRef]
- Liu, H.N.; Ren, F.Z.; Jiang, L.; Ma, Z.L.; Qiao, H.J.; Zeng, S.S.; Gan, B.Z.; Gou, H.Y. Short communication: Fatty acid profile of yak milk from the Qinghai-Tibetan Plateau in different seasons and for different parities. J. Dairy Sci. 2011, 94, 1724–1731. [Google Scholar] [CrossRef]
- Shi, B.; Jiang, Y.; Chen, Y.; Zhao, Z.; Zhou, H.; Luo, Y.; Hu, J.; Hickford, J. Variation in the fatty acid synthase gene (FASN) and its association with milk traits in Gannan yaks. Animals 2019, 9, 613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardes, T.F.; Daniel, J.L.P.; Adesogan, A.T.; Mcallister, T.A.; Drouin, P.; Nussio, L.G.; Huhtanen, P.; Ttremblay, G.F.; Bélanger, G.; Cai, Y. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 2018, 101, 4001–4019. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bai, S.; You, M.; Xiao, B.; Li, P.; Cai, Y. Effect of a low temperature tolerant lactic acid bacteria inoculant on the fermentation quality and bacterial community of oat round bale silage. Anim. Feed Sci. Tech. 2020, 269, 114669. [Google Scholar] [CrossRef]
- Ali, G.; Liu, Q.; Yuan, X.; Dong, Z.; Desta, S.T.; Li, J.; Bai, X.; Shah, A.A.; Shao, T. Characteristics of lactic acid bacteria isolates and their effects on the fermentation quality of acacia (Sophora japonica L.) leaf silage at low temperatures. Grassl. Sci. 2017, 63, 141–149. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, X.; Dong, Z.; Li, J.; Shao, T. Isolating and evaluating lactic acid bacteria strains for effectiveness on silage quality at low temperatures on the Tibetan Plateau. Anim. Sci. J. 2017, 88, 1722–1729. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, H.; Tan, Z.; Li, Y.; Wang, Y.; Pang, H.; Li, Z.; Jiao, Z.; Jin, Q. Improving the fermentation quality of wheat straw silage stored at low temperature by psychrotrophic lactic acid bacteria. Anim. Sci. J. 2017, 88, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, C.H.S.C.J.; Härter, C.J.; Reis, R.A. A meta-analysis: Effects of heterofermentative inoculants applied at different dry matter contents on the fermentation patterns and aerobic stabilityof sugar cane silages. In Proceedings of the 17th International Symposium Forage Conservation, Horný-Smokovec, Slovak Republic, 27–29 September 2016; pp. 141–142. [Google Scholar]
- Muck, R.E.; Nadeau, E.M.G.; Mcallister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.P.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Gonçalves, M.C.M.; Vyas, D.; et al. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 2017, 100, 4587–4603. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.L.; Hindrichsen, I.K.; Klop, G.; Kinley, R.D.; Milora, N.; Bannink, A.; Dijkstra, J. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle. J. Dairy Sci. 2016, 99, 7159–7174. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, Z.G.; Muck, R.E.; Weimer, P.J. The survival of silage inoculant lactic acid bacteria in rumen fluid. J. Appl. Microbiol. 2003, 94, 1066–1071. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, P.; Gou, W.; You, M.; Cheng, Q.; Bai, S.; Cai, Y. Effects of inoculants on the fermentation characteristics and in vitro digestibility of reed canary grass (Phalarisarundinacea L.) silage on the Qinghai-Tibetan Plateau. Anim. Sci. J. 2020, 91, e13364. [Google Scholar] [CrossRef]
- Shen, J.; Chai, Z.; Song, L.; Liu, J.; Wu, Y. Effect of insertion depth of oral stomach tubes on fermentation parameters of ruminal fluid collected in dairy cows. J. Dairy Sci. 2012, 95, 5978–5984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Tang, H.; Feng, T.; Zhang, Y.; Qu, H.; Bai, S.; Shen, Y. Effects of UV radiation on the process of wilting and application of additives at ensiling on the fermentation quality of Siberian wildrye silage on the Qinghai-Tibetan plateau. Grassl. Sci. 2018, 6, 61–68. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Wehr, H.M.; Frank, J.F. Standard Methods for the Examination of Dairy Products, 17th ed.; American Public Health Association: Washington, DC, USA, 2004; pp. 363–537. [Google Scholar]
- National Food Safety Standard of China. Determination of Lactose and Sucrose in Foods for Infants and Young Children Milk and Milk Products: GB 5413.21-2010; Ministry of Health of China: Beijing, China, 2010.
- FIL-IDF (International Dairy Federation). Milk Fat: Preparationof Fatty Acid Methyl Esters; Standard 182; International Dairy Federation: Brussels, Belgium, 1999. [Google Scholar]
- Monteiro, H.F.; Paula, E.M.; Muck, R.E.; Broderick, G.A.; Faciola, A.P. Effects of lactic acid bacteria in a silage inoculant on ruminal nutrient digestibility, nitrogen metabolism, and lactation performance of high-producing dairy cows. J. Dairy Sci. 2021, 104, 8826–8834. [Google Scholar] [CrossRef] [PubMed]
- Kleinschmit, D.H.; Kung, L. The Effects of Lactobacillus buchneri 40788 and Pediococcuspentosaceus R1094 on the fermentation of corn silage. J. Dairy Sci. 2006, 89, 3999–4004. [Google Scholar] [CrossRef] [Green Version]
- Arriola, K.; Oliveira, A.S.; Jiang, Y.; Kim, D.; Silva, H.; Kim, S.C.; Amaro, F.X.; Qgunade, I.M.; Sultana, H.; Cervantes, A.A.P.; et al. Meta-analysis of effects of inoculation with Lactobacillus buchneri, with or without other bacteria, on silage fermentation, aerobic stability, and performance of dairy cows. J. Dairy Sci. 2021, 104, 7653–7670. [Google Scholar] [CrossRef]
- Krizsan, S.J.; Westad, F.; Ådnøy, T.; Odden, E.; Aakre, S.E.; Randby, Å.T. Effect of volatile compounds in grass silage on voluntary intake by growing cattle. Animal 2007, 1, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Haselmann, A.; Wenter, M.; Fuerst-Waltl, B.; Zollitsch, W.; Zebeli, Q.; Knaus, W. Comparing the effects of silage and hay from similar parent grass forages on organic dairy cows’feeding behavior, feed intake and performance. Anim. Feed Sci. Tech. 2020, 267, 114560. [Google Scholar] [CrossRef]
- Hall, M.B.; Mertens, D.R. A 100-Year Review: Carbohydrates-Characterization, digestion, and utilization. J. Dairy Sci. 2017, 100, 10078–10093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decuypere, J.A.; Dierick, N.A. The combined use of triacylglycerols containing medium-chain fatty acidsand exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: Concept, possibilities andlimitations. Overv. Nutr. Res. Rev. 2003, 16, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; O’Connor, J.D.; Fox, D.G.; Van Soest, P.J.; Snien, C.J. A net carbohydrate and protein system forevaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef] [PubMed]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A. Animal Nutrition, 4th ed.; Longman Scientific & Technical: Harlow, UK, 1987. [Google Scholar]
- Contreras-Govea, F.E.; Muck, R.E.; Mertens, D.R.; Weimer, P.J. Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silages. Anim. Feed Sci. Technol. 2011, 163, 2–10. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Shatz, O.; Chen, Y.; Yosef, E.; Nikbahat, M.; Ben-Ghedalia, D.; Miron, J. Effect of lactic acid bacteria inoculants on in vitro digestibility of wheat and corn silages. J. Dairy Sci. 2007, 90, 4754–4762. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.M.; Wang, Y.P.; Kreuzer, M.; Guo, X.S.; Mi, J.D.; Gou, Y.J.; Shang, Z.; Zhang, Y.; Zhou, J.; Wang, H.; et al. Seasonal variations in the fatty acid profile of milk from yaks grazing on the Qinghai-Tibetan plateau. J. Dairy Res. 2013, 80, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Zong, C.; Wu, Q.; Wu, A.; Chen, S.; Dong, D.; Zhao, J.; Shao, T.; Liu, Q. Exploring the diversity mechanism of fatty acids and the loss mechanisms of polyunsaturated fatty acids and fat-soluble vitamins in alfalfa silage using different additives. Anim. Feed Sci. Tech. 2021, 280, 115044. [Google Scholar] [CrossRef]
- Harvatine, K.J.; Boisclair, Y.R.; Bauman, D.E. Recent advances in the regulation of milk fat synthesis. Animal 2009, 3, 40–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Oever, S.P.; Haselmann, A.; Schreiner, M.; Fuerst-Waltl, B.; Zebeli, Q.; Mayer, H.K.; Knaus, W. Hay versus silage: Does hay feeding positively affect milk composition? Int. Dairy J. 2021, 118, 105204. [Google Scholar] [CrossRef]
- Haque, M.N.; Rulquin, H.; Andrade, A.; Faverdin, P.; Peyraud, J.L.; Lemosquet, S. Milk protein synthesis in response to the provision of an “ideal” amino acid profile at 2 levels of metabolizable protein supply in dairy cows. J. Dairy Sci. 2012, 95, 5876–5887. [Google Scholar] [CrossRef]
- Whiting, F.M.; Stull, J.W.; Brown, W.H.; Reid, B.L. Free amino acid ratios in rumen fluid, blood plasma, milk, and feces during methionine and methionine hydroxy analog supplementary feeding. J. Dairy Sci. 1972, 55, 983–988. [Google Scholar] [CrossRef]
- Nichols, K.; Bannink, A.; Dijkstra, J. Energy and nitrogen balance of dairy cattle as affected by provision of different essential amino acid profiles at the same metabolizable protein supply. J. Dairy Sci. 2019, 102, 8963–8976. [Google Scholar] [CrossRef]
- Guo, X.S.; Ding, W.R.; Han, J.G.; Zhou, H. Characterization of protein fractions and amino acids in ensiled alfalfa treated with different chemical additives. Anim. Feed Sci. Tech. 2008, 142, 89–98. [Google Scholar] [CrossRef]
- Cui, G.X.; Yuan, F.; Degen, A.A.; Liu, S.M.; Zhou, J.W.; Shang, Z.H.; Ding, L.M.; Mi, J.D.; Wei, X.H.; Long, R.J. Composition of the milk of yaks raised at different altitudes on the Qinghai-Tibetan Plateau. Int. Dairy J. 2016, 59, 29–35. [Google Scholar] [CrossRef]
- Nikkah, A. Science of camel and yak milks: Human nutrition and health perspectives. Food Nutr. Sci. 2011, 2, 667–673. [Google Scholar] [CrossRef] [Green Version]
Item | Control | LAB Inoculation | p-Value |
---|---|---|---|
DM, %FM | 27.59 ± 049 | 28.18 ± 0.58 | 0.098 |
WSC, %DM | 2.16 ± 0.21 | 3.05 ± 0.44 | 0.043 |
CP, %DM | 6.83 ± 0.31 | 7.52 ± 0,25 | <0.001 |
NDF, %DM | 52.4 ± 1.36 | 53.1 ± 1.44 | 0.141 |
ADF, %DM | 31.2 ± 0.94 | 32.8 ± 0.85 | 0.165 |
pH | 4.56 ± 0.18 | 4.18 ± 0.06 | 0.007 |
Lactate, %DM | 1.63 ± 0.23 | 2.44 ± 0.34 | 0.019 |
Acetate, %DM | 0.41 ± 0.21 | 1.35 ± 0.42 | <0.001 |
Butyrate, %DM | 0.13 ± 0.04 | 0.05 ± 0.02 | <0.001 |
Ammonia-N, %TN | 14.6 ± 1.39 | 9.11 ± 2.44 | <0.001 |
LAB, log10 cfu/g FM | 8.97 ± 0.05 | 9.10 ± 0.04 | 0.146 |
Yeasts, log10 cfu/g FM | 4.28 ± 0.43 | 3.35 ± 0.25 | 0.103 |
Item | Control | LAB Inoculation | p-Value |
---|---|---|---|
DM intake, kg/d | 4.49 ± 0.18 | 4.71 ± 0.05 | 0.106 |
pH | 7.24 ± 0.04 | 7.11 ± 0.05 | 0.037 |
Ammonia-N mg/dL | 13.51 ± 0.02 | 24.26 ± 0.02 | <0.001 |
Total VAF, mmol/L | 52.93 ± 2.78 | 60.31 ± 2.44 | <0.001 |
Acetate, mmol/L | 38.36 ± 1.52 | 43.17 ± 1.89 | <0.001 |
Propionate, mmol/L | 8.25 ± 1.01 | 10.29 ± 0.43 | <0.001 |
Butyrate, mmol/L | 5.19 ± 0.22 | 5.73 ± 0.16 | <0.001 |
Isobutyrate, mmol/L | 0.32 ± 0.03 | 0.38 ± 0.01 | 0.432 |
Valerate, mmol/L | 0.27 ± 0.01 | 0.30 ± 0.01 | 0.195 |
Isovalerate, mmol/L | 0.54 ± 0.04 | 0.44 ± 0.03 | 0.143 |
Acetate/Propionate | 4.64 ± 0.14 | 4.19 ± 0.12 | 0.012 |
Item | Control | LAB Inoculation | p-Value |
---|---|---|---|
Milk yield (kg/d) | 1.46 ± 0.11 | 1.73 ± 0.07 | 0.021 |
Total protein (g/100 mL of milk) | 4.84 ± 0.11 | 5.16 ± 0.12 | 0.027 |
NPN/TN (%) | 4.43 ± 0.06 | 4.06 ± 0.05 | <0.01 |
WPN/TN (%) | 23.06 ± 0.93 | 24.11 ± 0.82 | 0.169 |
α-lactalbumin | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.379 |
β-lactoglobulin | 0.58 ± 0.08 | 0.66 ± 0.05 | 0.065 |
CN/TN (%) | 72.51 ± 1.19 | 71.83 ± 0.93 | 0.080 |
WPN/CN (%) | 31.80 ± 1.51 | 33.57 ± 1.49 | 0.051 |
Fat (g/100 mL of milk) | 7.45 ± 0.27 | 8.05 ± 0.21 | 0.032 |
Saturated FA | 69.34 ± 0.49 | 70.67 ± 0.53 | <0.001 |
Monounsaturated FA | 62.79 ± 1.21 | 59.63 ± 1.02 | <0.001 |
Polyunsaturated FA | 28.9 ± 3.11 | 35.82 ± 2.08 | <0.001 |
Short-chain FA | 11.25 ± 0.42 | 12.83 ± 0.81 | 0.321 |
Medium-chain FA | 35.74 ± 0.53 | 34.47 ± 0.39 | 0.114 |
Long-chain FA | 47.96 ± 1.44 | 50.98 ± 0.75 | <0.001 |
Lactose (g/100 mL of milk) | 4.91 ± 0.25 | 5.46 ± 0.12 | 0.010 |
Total soilds (g/100 mL of milk) | 15.31 ± 0.39 | 16.89 ± 0.73 | 0.094 |
Item | Control | LAB Inoculation | p-Value |
---|---|---|---|
Essential Amino-Acid (EAA) | |||
Thr | 0.16 ± 0.03 | 0.21 ± 0.01 | <0.001 |
Val | 0.27 ± 0.02 | 0.33 ± 0.02 | 0.061 |
Met | 0.08 ± 0.01 | 0.10 ± 0.01 | 0.084 |
Ile | 0.19 ± 0.03 | 0.25 ± 0.02 | 0.072 |
Leu | 0.61 ± 0.02 | 0.77 ± 0.04 | <0.001 |
Phe | 0.24 ± 0.02 | 0.35 ± 0.02 | <0.001 |
Lys | 0.48 ± 0.02 | 0.51 ± 0.03 | 0.106 |
His | 0.15 ± 0.01 | 0.16 ± 0.01 | 0.129 |
Trp | <0.01 | <0.01 | 0.087 |
Total EAA (TEAA) | 2.18 ± 0.13 | 2.68 ± 0.22 | <0.001 |
Non-essential amino acid (NEAA) | |||
Cys | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.126 |
Arg | 0.14 ± 0.01 | 0.15 ± 0.01 | 0.091 |
Pro | 0.51 ± 0.02 | 0.46 ± 0.03 | 0.054 |
Asp | 0.27 ± 0.01 | 0.29 ± 0.02 | 0.077 |
Ser | 0.32 ± 0.04 | 0.25 ± 0.05 | 0.152 |
Glu | 1.27 ± 0.09 | 1.51 ± 0.03 | 0.033 |
Gly | 0.18 ± 0.02 | 0.22 ± 0.02 | 0.065 |
Ala | 0.10 ± 0.01 | 0.11 ± 0.01 | 0.179 |
Tyr | 0.2 ± 0.03 | 0.15 ± 0.02 | 0.145 |
Total NEAA (TNEAA) | 3.01 ± 0.07 | 3.17 ± 0.09 | 0.059 |
Total ammo acid (TAA) | 5.19 ± 0.16 | 5.85 ± 0.23 | <0.001 |
TEAA/TAA | 0.42 ± 0.02 | 0.46 ± 0.03 | 0.073 |
TNEAA/TAA | 0.58 ± 0.03 | 0.54 ± 0.03 | 0.085 |
TEAA/TNEAA | 0.72 ± 0.05 | 0.85 ± 0.04 | 0.018 |
Item | Control | LAB Inoculation | p-Value |
---|---|---|---|
C4:0 | 4.33 ± 0.10 | 4.65 ± 0.13 | 0.078 |
C6:0 | 3.58 ± 0.23 | 3.92 ± 0.21 | 0.143 |
C8:0 | 1.08 ± 0.18 | 1.31 ± 0.12 | 0.053 |
C10:0 | 2.01 ± 0.22 | 2.64 ± 0.23 | 0.002 |
C11:0 | 0.25 ± 0.04 | 0.31 ± 0.06 | 0.065 |
C12:0 | 1.49 ± 0.16 | 1.20 ± 0.15 | 0.051 |
C13:0 | 0.05 ± 0.05 | 0.18 ± 0.04 | 0.022 |
C14:0 | 7.06 ± 0.07 | 5.44 ± 0.08 | <0.001 |
C14:1 | 0.42 ± 0.04 | 0.38 ± 0.02 | 0.094 |
C15:0 | 0.87 ± 0.26 | 1.23 ± 0.29 | 0.139 |
C15:1 | 1.25 ± 0.33 | 1.64 ± 0.27 | 0.103 |
C16:0 | 23.29 ± 0.68 | 22.42 ± 0.70 | 0.261 |
C16:1 | 1.31 ± 0.14 | 1.98 ± 0.13 | <0.001 |
C17:0 | 0.45 ± 0.25 | 0.76 ± 0.18 | 0.066 |
C17:1 | 0.88 ± 0.38 | 1.43 ± 0.52 | 0.073 |
C18:0 | 16.73 ± 2.14 | 14.17 ± 2.43 | 0.119 |
Trans-11 C18:1 | 3.03 ± 0.08 | 4.15 ± 0.11 | <0.001 |
cis-9 C18:1 | 20.72 ± 0.91 | 24.54 ± 0.79 | <0.001 |
cis-11 C18:1 | 0.79 ± 0.22 | 1.32 ± 0.15 | <0.001 |
18:2 n-6 | 1.48 ± 0.03 | 1.51 ± 0.02 | 0.069 |
C18:3 n-3 | 0.13 ± 0.01 | 0.15 ± 0.01 | 0.054 |
cis-9,trans-11 CLA | 1.12 ± 0.12 | 0.74 ± 0.15 | <0.001 |
C20:0 | 0.43 ± 0.06 | 0.31 ± 0.09 | 0.092 |
C20:1 n-9 | 0.59 ± 0.08 | 0.44 ± 0.03 | 0.037 |
C20:2 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.054 |
C21:0 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.088 |
C20:3 n-6 | 0.09 ± 0.01 | 0.08 ± 0.01 | 0.081 |
C20:4 | 0.17 ± 0.03 | 0.11 ± 0.03 | 0.105 |
C20:3 n-3 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.143 |
C22:0 | 0.47 ± 0.09 | 0.31 ± 0.07 | 0.051 |
C20:5 EPA | 0.07 ± 0.01 | 0.04 ± 0.01 | <0.001 |
C22:1 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.273 |
C23:0 | 0.21 ± 0.02 | 0.14 ± 0.01 | <0.001 |
C24:0 | 0.23 ± 0.07 | 0.46 ± 0.04 | <0.001 |
C24:1 | 0.15 ± 0.03 | 0.09 ± 0.01 | <0.001 |
C22:6 DHA | 0.08 ± 0.02 | 0.12 ± 0.01 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Xie, R.; Chen, L.; You, M.; Gou, W.; Chen, C.; Li, P.; Cai, Y. Milk Production and Quality of Lactating Yak Fed Oat Silage Prepared with a Low-Temperature-Tolerant Lactic Acid Bacteria Inoculant. Foods 2021, 10, 2437. https://doi.org/10.3390/foods10102437
Zhu M, Xie R, Chen L, You M, Gou W, Chen C, Li P, Cai Y. Milk Production and Quality of Lactating Yak Fed Oat Silage Prepared with a Low-Temperature-Tolerant Lactic Acid Bacteria Inoculant. Foods. 2021; 10(10):2437. https://doi.org/10.3390/foods10102437
Chicago/Turabian StyleZhu, Mingming, Rongqing Xie, Liangyin Chen, Minghong You, Wenlong Gou, Chao Chen, Ping Li, and Yimin Cai. 2021. "Milk Production and Quality of Lactating Yak Fed Oat Silage Prepared with a Low-Temperature-Tolerant Lactic Acid Bacteria Inoculant" Foods 10, no. 10: 2437. https://doi.org/10.3390/foods10102437
APA StyleZhu, M., Xie, R., Chen, L., You, M., Gou, W., Chen, C., Li, P., & Cai, Y. (2021). Milk Production and Quality of Lactating Yak Fed Oat Silage Prepared with a Low-Temperature-Tolerant Lactic Acid Bacteria Inoculant. Foods, 10(10), 2437. https://doi.org/10.3390/foods10102437