Quality and Stability Equivalence of High Pressure and/or Thermal Treatments in Peach–Strawberry Puree. A Multicriteria Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Thermal Processing
2.1.2. Combined Thermal and/or High-Pressure Treatment
2.2. Microbial Enumeration
2.3. pH and Soluble Solids
2.4. Enzyme Extraction
2.4.1. PPO Activity Assay
2.4.2. POD Activity Assay
2.4.3. DPPH Radical Scavenging Activity
2.4.4. Total Phenolic Content (TPC)
2.5. Rheology
2.6. SMPE Gas Chromatography-Mass Spectrometric (GC-MS) Analysis
2.7. Color Attributes
2.8. Statistical Analysis
2.9. Principal Component Analysis (PCA)
2.10. Sensorial Analysis of Peach–Strawberry Puree
3. Results and Discussions
3.1. Comparative Effect of TT, HPP and HPMT on Microbial Load of Peach–Strawberry Puree
3.2. pH
3.3. Enzymatic Activity
3.3.1. PPO
3.3.2. POD
3.4. DPPH
3.5. Total Phenolic Content
3.6. Rheology
3.7. The Volatile Profile
3.8. Changes in Color Attributes
3.9. Sensory Profile of Peach–Strawberry Puree
4. Conclusions
- In the first day of storage TT and HPP samples had equivalent microbial stability, while after 21st day of refrigerated storage all treatments (TT, HPP and HPMT) could be considered equivalent.
- The rheology of the peach–strawberry puree after 21 days of refrigerated storage could be considered equivalent for the TT and HPP treatments.
- As expected, the HPP treated sample had the most appreciated sensorial profile compared to HPMT and TT samples.
- No equivalency could be considered regarding color for TT, HPP and HPMT samples during storage period.
- The volatile profile of peach–strawberry puree showed equivalence for the HPP and HPMT samples in the first day of storage, while after 21 days of refrigerated storage all the treated samples (TT, HPP and HPMT) could be considered equivalent.
- The PPO and POD enzymes inactivation indicated an equivalent effect for the TT and HPP samples in the 21st day of storage and the same conclusion applies to TPC content.
- The antiradical activity indicates an equivalence between HPP and HPMT samples after 21 days of storage.
- Further studies should be focused on safety criteria equivalence considering target pathogens (i.e., Salmonella) in the same processing conditions as identified in the present study.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Strategy on Diet, Physical Activity and Health: Promoting Fruit and Vegetable Consumption around the World; WHO: Geneva, Switzerland, 2015; pp. 3–5. Available online: http://www.who.int/dietphysicalactivity/fruit/en/ (accessed on 20 January 2019).
- Ragaert, P.; Jacxsens, L.; Vandekinderen, I.; Baert, L.; Devlieghere, F. Microbiological Safety Aspects of Fresh-Cut Fruits and Vegetables, 2nd ed.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2011; Chapter 3. [Google Scholar]
- Daher, D.; Pérez-Lamela, C.; Le Gourrierec, S. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture 2017, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Yeoh, W.K.; Forney, C.; Siddiqui, M.W. Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2017, 58, 2632–2649. [Google Scholar] [CrossRef]
- Préstamo, G.; Arabas, J.; Fonberg-Broczek, M.; Arroyo, G. Reaction of B. cereus bacteria and peroxidase enzymes under pressures >400 MPa. J. Agric. Food Chem. 2001, 49, 2830–2834. [Google Scholar] [CrossRef] [PubMed]
- Terefe, N.S.; Kleintschek, T.; Gamage, T.; Fanning, K.J.; Netzel, G.; Versteeg, C.; Netzel, M. Comparative effects of thermal and high pressure processing on phenolic phytochemicals in different strawberry cultivars. Innov. Food Sci. Emerg. Technol. 2013, 19, 57–65. [Google Scholar] [CrossRef]
- Terefe, N.S.; Tepper, P.; Ullman, A.; Knoerzer, K.; Juliano, P. High pressure thermal processing of pears: Effect on endogenous enzyme activity and related quality attributes. Innov. Food Sci. Emerg. Technol. 2016, 33, 56–66. [Google Scholar] [CrossRef]
- Bleoanca, I.; Neagu, C.; Turtoi, M.; Borda, D. Mild-thermal and high pressure processing inactivation kinetics of polyphenol oxidase from peach puree. J. Food Process. Eng. 2018, 41, e12871. [Google Scholar] [CrossRef]
- Hurtado, A.; Picouet, P.; Jofré, A.; Guàrdia, M.D.; Ros, J.M.; Bañón, S. Application of High Pressure Processing for Obtaining “Fresh-Like” Fruit Smoothies. Food Bioprocess Technol. 2015, 8, 2470–2482. [Google Scholar] [CrossRef]
- Buerman, E.C.; Worobo, R.W.; Padilla-Zakour, O.I. High pressure processing of spoilage fungi as affected by water activity in a diluted apple juice concentrate. Food Control 2019, 107, 106779. [Google Scholar] [CrossRef]
- Yildiz, S.; Pokhrel, P.R.; Unluturk, S.; Barbosa-Cánovas, G.V. Identification of equivalent processing conditions for pasteurization of strawberry juice by high pressure, ultrasound, and pulsed electric fields processing. Innov. Food Sci. Emerg. Technol. 2019, 57. [Google Scholar] [CrossRef]
- Vervoort, L.; Van der Plancken, I.; Grauwet, T.; Verlinde, P.; Matser, A.; Hendrickx, M.E.; Van Loey, A. Thermal versus high pressure processing of carrots: A comparative pilot-scale study on equivalent basis. Innov. Food Sci. Emerg. Technol. 2012, 15, 1–13. [Google Scholar] [CrossRef]
- Fernandez, M.V.; Denoya, G.; Agüero, M.; Jagus, R.; Vaudagna, S. Optimization of high pressure processing parameters to preserve quality attributes of a mixed fruit and vegetable smoothie. Innov. Food Sci. Emerg. Technol. 2018, 47, 170–179. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, W.; Terefe, N.S. The Inactivation Kinetics of Soluble and Membrane-Bound Polyphenol Oxidase in Pear during Thermal and High-Pressure Processing. Food Bioprocess Technol. 2018, 11, 1039–1049. [Google Scholar] [CrossRef]
- Bozkurt, F.; Tornuk, F.; Toker, O.; Karasu, S.; Arici, M.; Durak, M. Effect of vaporized ethyl pyruvate as a novel preservation agent for control of postharvest quality and fungal damage of strawberry and cherry fruits. LWT Food Sci. Technol. 2016, 65, 1044–1049. [Google Scholar] [CrossRef]
- Bleoanca, I.; Saje, K.; Mihalcea, L.; Oniciuc, E.A.; Smole-Mozina, S.; Nicolau, A.I.; Borda, D. Contribution of high pressure and thyme extract to control Listeria monocytogenes in fresh cheese—A hurdle approach. Innov. Food Sci. Emerg. Technol. 2016, 38, 7–14. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.L.; da Silva, P.M.C.; Medina, S.; Pereira, R.; Câmara, J.S. Untargeted fingerprinting of cider volatiles from different geographical regions by HS-SPME/GC-MS. Microchem. J. 2019, 148, 643–651. [Google Scholar] [CrossRef]
- Pathare, P.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2012, 6, 36–60. [Google Scholar] [CrossRef]
- Barba, F.J.; Esteve, M.J.; Frígola, A. High Pressure Treatment Effect on Physicochemical and Nutritional Properties of Fluid Foods during Storage: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 307–322. [Google Scholar] [CrossRef]
- Subhashree, S.N.; Sunoj, S.; Xue, J.; Bora, G.C. Quantification of browning in apples using colour and textural features by image analysis. Food Qual. Saf. 2017, 1, 221–226. [Google Scholar] [CrossRef]
- Mihalache, O.A.; Dumitraşcu, L.; Nicolau, A.I.; Borda, D. Food safety knowledge, food shopping attitude and safety kitchen practices among Romanian consumers: A structural modelling approach. Food Control 2020, 120, 107545. [Google Scholar] [CrossRef]
- Liu, F.; Li, R.; Wang, Y.; Bi, X.; Liao, X. Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: Changes in microorganisms, acid invertase, 5-hydroxymethylfurfural, sugars, viscosity, and cloud. Innov. Food Sci. Emerg. Technol. 2014, 22, 22–30. [Google Scholar] [CrossRef]
- Bull, M.K.; Zerdin, K.; Howe, E.; Goicoechea, D.; Paramanandhan, P.; Stockman, R.; Sellahewa, J.; Szabo, E.A.; Johnson, R.L.; Stewart, C.M. The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innov. Food Sci. Emerg. Technol. 2004, 5, 135–149. [Google Scholar] [CrossRef]
- Aaby, K.; Grimsbo, I.H.; Hovda, M.B.; Rode, T.M. Effect of high pressure and thermal processing on shelf life and quality of strawberry purée and juice. Food Chem. 2018, 260, 115–123. [Google Scholar] [CrossRef]
- Terefe, N.S.; Yang, Y.H.; Knoerzer, K.; Buckow, R.; Versteeg, C. High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innov. Food Sci. Emerg. Technol. 2010, 11, 52–60. [Google Scholar] [CrossRef]
- Denoya, G.I.; Vaudagna, S.R.; Polenta, G. Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT Food Sci. Technol. 2015, 62, 801–806. [Google Scholar] [CrossRef]
- Terefe, N.S.; Buckow, R.; Versteeg, C. Quality-Related Enzymes in Fruit and Vegetable Products: Effects of Novel Food Processing Technologies, Part 1: High-Pressure Processing. Crit. Rev. Food Sci. Nutr. 2013, 54, 24–63. [Google Scholar] [CrossRef]
- Terefe, N.S.; Delon, A.; Buckow, R.; Versteeg, C. Blueberry polyphenol oxidase: Characterization and the kinetics of thermal and high pressure activation and inactivation. Food Chem. 2015, 188, 193–200. [Google Scholar] [CrossRef]
- Marszałek, K.; Woźniak, Ł.; Kruszewski, B.; Skąpska, S. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables. Int. J. Mol. Sci. 2017, 18, 277. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Pang, X.; Xuewu, D.; Ji, Z.; Jiang, Y. Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chem. 2005, 90, 47–52. [Google Scholar] [CrossRef]
- Yuan, B.; Danao, M.-G.C.; Lu, M.; Weier, S.A.; Stratton, J.E.; Weller, C.L. High pressure processing (HPP) of aronia berry puree: Pilot scale processing and a shelf-life study. Innov. Food Sci. Emerg. Technol. 2018, 47, 241–248. [Google Scholar] [CrossRef]
- Marszałek, K.; Woźniak, Ł.; Skąpska, S.; Mitek, M. High pressure processing and thermal pasteurization of strawberry purée: Quality parameters and shelf life evaluation during cold storage. J. Food Sci. Technol. 2017, 54, 832–841. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, L.; Martínez-Ferri, E.; Soria, C.; Ariza, M.T. Bioavailability of phenolic compounds in strawberry, raspberry and blueberry: Insights for breeding programs. Food Biosci. 2020, 37, 100680. [Google Scholar] [CrossRef]
- Klopotek, Y.; Otto, K.; Böhm, V. Processing Strawberries to Different Products Alters Contents of Vitamin C, Total Phenolics, Total Anthocyanins, and Antioxidant Capacity. J. Agric. Food Chem. 2005, 53, 5640–5646. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Terefe, N.S.; Buckow, R.; Knorr, D.; Orlien, V. New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A review. Food Res. Int. 2015, 77, 725–742. [Google Scholar] [CrossRef]
- Gao, G.; Ren, P.; Cao, X.; Yan, B.; Liao, X.; Sun, Z.; Wang, Y. Comparing quality changes of cupped strawberry treated by high hydrostatic pressure and thermal processing during storage. Food Bioprod. Process. 2016, 100, 221–229. [Google Scholar] [CrossRef]
- Hartmann, A.; Patz, C.-D.; Andlauer, W.; Dietrich, H.; Ludwig, M. Influence of Processing on Quality Parameters of Strawberries. J. Agric. Food Chem. 2008, 56, 9484–9489. [Google Scholar] [CrossRef] [PubMed]
- Andrés, V.; Villanueva, M.J.; Tenorio, M.D. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chem. 2016, 192, 328–335. [Google Scholar] [CrossRef]
- Hendrickx, M.; Ludikhuyze, L.; Broeck, I.V.D.; Weemaes, C. Effects of high pressure on enzymes related to food quality. Trends Food Sci. Technol. 1998, 9, 197–203. [Google Scholar] [CrossRef]
- Cano, M.P.; Hernandez, A.; De Ancos, B. High Pressure and Temperature Effects on Enzyme Inactivation in Strawberry and Orange Products. J. Food Sci. 1997, 62, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Bermejo-Prada, A.; Van Buggenhout, S.; Otero, L.; Houben, K.; Van Loey, A.; Hendrickx, M.E. Kinetics of thermal and high-pressure inactivation of avocado polygalacturonase. Innov. Food Sci. Emerg. Technol. 2014, 26, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Jacobo-Velázquez, D.; Hernández-Brenes, C. Biochemical Changes during the Storage of High Hydrostatic Pressure Processed Avocado Paste. J. Food Sci. 2010, 75, S264–S270. [Google Scholar] [CrossRef] [PubMed]
- Buvé, C.; Neckebroeck, B.; Haenen, A.; Kebede, B.; Hendrickx, M.; Grauwet, T.; Van Loey, A. Combining untargeted, targeted and sensory data to investigate the impact of storage on food volatiles: A case study on strawberry juice. Food Res. Int. 2018, 113, 382–391. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Li, S.; Yang, L.; Wang, Y.; Zhao, J.; Jiang, Q. Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS. Food Chem. 2009, 116, 356–364. [Google Scholar] [CrossRef]
- Ceccarelli, A.; Farneti, B.; Khomenko, I.; Cellini, A.; Donati, I.; Aprea, E.; Biasioli, F.; Spinelli, F. Nectarine volatilome response to fresh-cutting and storage. Postharvest Biol. Technol. 2019, 159, 111020. [Google Scholar] [CrossRef]
- Montero-Prado, P.; Bentayeb, K.; Nerin, C. Pattern recognition of peach cultivars (Prunus persica L.) from their volatile components. Food Chem. 2013, 138, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Azodanlou, R.; Darbellay, C.; Luisier, J.-L.; Villettaz, J.-C.; Amadò, R. Development of a model for quality assessment of tomatoes and apricots. LWT Food Sci. Technol. 2003, 36, 223–233. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Oliu, G.O.; Soliva-Fortuny, R.; Martín-Belloso, O. Flavour retention and related enzyme activities during storage of strawberry juices processed by high-intensity pulsed electric fields or heat. Food Chem. 2009, 116, 59–65. [Google Scholar] [CrossRef]
- Zhang, B.; Xi, W.-P.; Wei, W.-W.; Shen, J.-Y.; Ferguson, I.; Chen, K.-S. Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit. Postharvest Biol. Technol. 2011, 60, 7–16. [Google Scholar] [CrossRef]
- Supriyadi, S.; Suzuki, M.; Wu, S.; Tomita, N.; Fujita, A.; Watanabe, N. Biogenesis of Volatile Methyl Esters in Snake Fruit (Salacca edulis, Reinw) cv. Pondoh. Biosci. Biotechnol. Biochem. 2003, 67, 1267–1271. [Google Scholar] [CrossRef] [Green Version]
- Lecourt, M.; Antoniotti, S. Chemistry, Sustainability and Naturality of Perfumery Biotech Ingredients. ChemSusChem 2020, 13, 5599. [Google Scholar] [CrossRef]
- Safari, M.; Amache, R.; Esmaeilishirazifard, E.; Keshavarz, T. Microbial metabolism of quorum-sensing molecules acyl-homoserine lactones, γ-heptalactone and other lactones. Appl. Microbiol. Biotechnol. 2014, 98, 3401–3412. [Google Scholar] [CrossRef]
- Teribia, N.; Buvé, C.; Bonerz, D.; Aschoff, J.; Goos, P.; Hendrickx, M.; Van Loey, A. The effect of thermal processing and storage on the color stability of strawberry puree originating from different cultivars. LWT Food Sci. Technol. 2021, 145, 111270. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.; Da Pieve, S.; Butler, F. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
Treatment | Storage Period (Days) | MAB (Log CFU g−1) | M&Y (Log CFU g−1) |
---|---|---|---|
Control (raw peach–strawberry puree) | 1 | 5.33 ± 0.05 *,a | 4.60 ± 0.01 a |
14 | 5.82 ± 0.03 a | 4.76 ± 0.01 a | |
21 | 6.32 ± 0.04 a | 5.06 ± 0.06 a | |
TT | 1 | 2.17 ± 0.06 b | <1.00 b |
(70 °C, 15 min) | 14 | 1.85 ± 0.02 c | <1.00 b |
21 | <1.00 d | <1.00 b | |
HPP (600 MPa, 20 °C, 10 min) | 1 | 2.07 ± 0.07 b,c | <1.00 b |
14 | <1.00 d | <1.00 b | |
21 | <1.00 d | <1.00 b | |
HPMT | 1 | <1.00 d | <1.00 b |
(600 MPa, 50 °C, 10 min) | 14 | <1.00 d | <1.00 b |
21 | <1.00 d | <1.00 b |
Control | TT (70 °C, 15 min) | HPP (600 MPa, 10 min) | HPMT (600 MPa, 50 °C, 10 min) | |
---|---|---|---|---|
Day 1 | 3.72 ± 0.01 a | 3.71 ± 0.01 a,b | 3.61 ± 0.01 a,b,c | 3.62 ± 0.01 a,b,c |
Day 14 | 3.66 ± 0.01 a,b,c | 3.42 ± 0.03 e,f | 3.57 ± 0.02 b,c,d | 3.37 ± 0.08 f |
Day 21 | 3.70 ± 0.10 a,b | 3.45 ± 0.02 d,e,f | 3.54 ± 0.06 c,d,e | 3.37 ± 0.02 f |
Components | KI | Ion Fragments | Class | Control D1 | HPP D1 | HPP D21 | HPMT D1 | HPMT D21 | TT D1 | TT D21 |
---|---|---|---|---|---|---|---|---|---|---|
2-Methyl-1-pentene | 886 | 55; 56; 67; 69 | AlHc | 00.00 ± 0.00 c | 0.56 ± 0.07 b | 0.00 ± 0.00 c | 1.25 ± 0.13 a | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c |
Cycloheptadiene | 887 | 102; 103; 104; 105 | AlHc | 2.13 ± 0.06 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
3,3-Dimethyl-1-hexene | 904 | 55; 56; 67; 69 | AlHc | 7.27 ± 0.09 b,c | 2.46 ± 0.22 d | 2.77 ± 0.31 c,d | 3.32 ± 0.21 c,d | 2.77 ± 0.19 c,d | 44.71 ± 5.71 a | 2.86 ± 0.22 c,d |
z,z,z-4,6,9-Nonadecatriene | 943 | 77; 79; 91; 93 | AlHc | 4.50 ± 0.05 a | 5.49 ± 0.39 b | 8.26 ± 0.55 b | 7.54 ± 0.59 b | 7.54 ± 0.77 b | 23.13 ± 1.54 a | 23.13 ± 2.21 b,c |
n-Dotriacontane | 953 | 57; 71; 73; 85 | AlHc | 1.39 ± 0.01 c | 0.55 ± 0.03 e | 0.85 ± 0.10 d,e | 1.99 ± 0.17 b | 1.23 ± 0.13 c,d | 3.49 ± 0.39 a | 1.67 ± 0.12 b,c |
2 Methyl cyclopentanol | 837 | 53; 55; 57; 67 | Alcohol | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 1.42 ± 0.12 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Tri(2-etilbutanol)glycerol | 874 | 55; 73; 87; 99 | Alcohol | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
4-Methyl-3-pentene-2-ol | 902 | 65; 66; 71; 82 | Alcohol | 0.00 ± 0.00 b | 1.43 ± 0.09 b | 2.35 ± 0.19 b | 2.63 ± 0.25 b | 3.57 ± 0.37 b | 76.63 ± 6.59 a | 1.89 ± 0.09 b |
10-Undecyne-1-ol | 926 | 55; 65; 67; 77 | Alcohol | 0.00 ± 0.00 b | 0.88 ± 0.07 a | 0.00 ± 0.00 b | 0.79 ± 0.08 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
1-Heptatriacotanol | 1080 | 85; 95; 110; 111 | Alcohol | 18.39 ± 1.22 b | 15.84 ± 1.72 b | 1.01 ± 0.01 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 16.33 ± 1.25 b | 0.00 ± 0.00 c |
Iso-heptatriacotanol | 1082 | 57; 67; 85; 95 | Alcohol | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 16.62 ± 1.85 a | 0.00 ± 0.00 c | 13.75 ± 1.55 b | 0.00 ± 0.00 c | 13.75 ± 1.33 b |
1,1 Dimethylethyl phenol | 1119 | 57; 67; 81; 91 | Alcohol | 2.29 ± 0.29 a | 1.46 ± 0.15 b | 2.66 ± 0.28 a | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c |
2 Methylene-(3 a,5 a) cholesten 3-ol | 1122 | 67; 79; 83; 95 | Alcohol | 1.56 ± 0.16 a | 0.43 ± 0.03 c | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 2.91 ± 0.31 a |
2-Hexenal | 876 | 55; 61; 69; 83 | Aldehydes | 9.49 ± 0.94 c | 22.50 ± 2.23 b | 0.00 ± 0.00 d | 21.94 ± 2.18 b | 0.00 ± 0.00 d | 78.78 ± 7.28 a | 0.00 ± 0.00 d |
1-Methylcycloheptane | 892 | 55; 57; 58; 59 | Aldehydes | 0.00 ± 0.00 b | 1.28 ± 0.13 b | 0.00 ± 0.00 b | 3.52 ± 0.34 b | 0.00 ± 0.00 b | 23.247 ± 7.77 a | 0.00 ± 0.00 b |
Dione | 922 | 69; 97; 113; 129 | Dione | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Methyl ester derivate | 1038 | 53; 55; 67; 79 | Ester | 8.66 ± 0.72 c | 3.31 ± 0.32 d | 10.32 ± 1.05 a | 0.00 ± 0.00 e | 11.52 ± 1.13 b | 2.51 ± 0.23 e | 14.85 ± 1.42 a |
Methyl decanoate | 1074 | 50; 51; 76; 77 | Ester | 0.00 ± 0.00 c | 1.13 ± 0.10 b,c | 2.47 ± 0.22 b | 0.00 ± 0.00 c | 0.00 ± 0.00 b | 0.00 ± 0.00 c | 1.29 ± 0.27 b,c |
Derivate of methyl arachidonate | 1094 | 55; 67; 81; 95 | Ester | 3.31 ± 0.41 b | 3.31 ± 0.34 b | 0.00 ± 0.00 a | 3.31 ± 0.31 b | 0.00 ± 0.00 a | 3.31 ± 0.35 b | 0.00 ± 0.00 a |
2 Luamin | 1020 | 51; 55; 57; 69 | Ether | 0.89 ± 0.07 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
1 Mono linolenin | 1103 | 55; 67; 81; 95 | Fatty acids | 0.44 ± 0.05 c | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 1.92 ± 0.15 b | 0.00 ± 0.00 d | 0.00 ± 0.00 d |
Oleic acid | 932 | 55; 57; 65; 67 | Fatty acids | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.92 ± 0.08 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Rutin | 1026 | 70; 81; 100; 101 | Flavonoides | 4.43 ± 0.42 a | 1.42 ± 0.16 b | 0.00 ± 0.00 c | 1.42 ± 0.11 b | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c |
Styrene | 885 | 56; 78; 79; 103 | ArHc | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Ethyl ketone derivate | 1014 | 57; 81; 91; 119 | Ketones | 24.64 ± 2.28 b | 5.19 ± 0.53 d | 10.09 ± 1.05 c,d | 5.70 ± 0.46 d | 8.12 ± 0.79 c,d | 5.39 ± 0.54 d | 8.93 ± 0.78 c,d |
PEG-Lactone | 1051 | 121; 135; 149; 150 | Lactone | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 8.65 ± 0.84 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
γ-Lactone | 1062 | 51; 55; 67; 81 | Lactone | 5.07 ± 0.52 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
δ-Heptalactone | 1066 | 55; 67; 79; 81 | Lactone | 2.27 ± 0.21 a | 0.40 ± 0.03 c | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d |
10-Methyl-8-tetradecen-1-ol acetate | 1077 | 55; 67; 81; 95 | Lactone | 15.15 ± 1.12 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
γ-Lactone | 1088 | 55; 57; 67; 81 | Lactone | 2.41 ± 0.22 a | 2.42 ± 0.41 a | 0.00 ± 0.00 b | 2.41 ± 0.41 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Campesterol | 1072 | 55; 67; 83; 97 | Sterols | 0.00 ± 0.00 a | 0.90 ± 0.07 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Oblongifoliol | 1059 | 51; 55; 67; 81 | Terpenoids | 4.76 ± 0.41 a | 0.30 ± 0.02 b,c | 0.79 ± 0.77 b,c | 0.00 ± 0.00 c | 0.93 ± 0.07 b,c | 0.00 ± 0.00 c | 1.09 ± 0.08 b |
6-Methyl-c-ionone | 1041 | 55; 77; 79; 91 | Terpenoids | 6.56 ± 0.54 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Curcumol | 986 | 55; 67; 83; 95 | Terpenoids | 1.33 ± 0.12 b | 1.62 ± 0.18 a | 0.00 ± 0.00 c | 1.28 ± 0.12 b | 0.00 ± 0.00 c | 1.28 ± 0.14 b | 0.00 ± 0.00 c |
Isochiapin B | 989 | 53; 55; 57; 71 | Terpenoids | 2.47 ± 0.25 b | 1.60 ± 0.19 c | 0.00 ± 0.00 d | 0.31 ± 0.02 d | 3.93 ± 0.04 a | 0.31 ± 0.03 d | 0.00 ± 0.00 d |
Coniferyl aldehyde | 1012 | 57; 76; 104; 121 | Terpenoids | 28.34 ± 2.26 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Ambroxide | 1022 | 55; 67; 69; 81 | Terpenoids | 0.00 ± 0.00 a | 1.37 ± 0.14 a | 0.00 ± 0.00 a | 1.41 ± 0.13 a | 0.00 ± 0.00 a | 88.83 ± 7.99 b | 0.00 ± 0.00 a |
Gemacrene derivate | 1071 | 53; 55; 57; 67 | Terpenoids | 5.62 ± 0.51 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
δ-Cadinol | 983 | 55; 57; 79; 91 | Terpenoids | 4.44 ± 0.50 d,e | 2.89 ± 0.21 c | 11.45 ± 0.14 e | 4.54 ± 0.48 d | 12.42 ± 0.13 b,c | 5.79 ± 0.59 d | 15.11 ± 0.18 a |
1-Methyl-3-(1-methylethyl)-benzene | 890 | 91; 92; 111; 115 | ArHc | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 1.19 ± 0.12 b | 0.00 ± 0.00 a | 1.45 ± 0.15 b |
Control | TT (70 °C, 15 min) | HPP (600 MPa, 20 °C,10 min) | HPMT (600 MPa, 50 °C,10 min) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | C* | h° | BI | L* | a* | b* | ΔE* | C* | h° | BI | L* | a* | b* | ΔE* | C* | h° | BI | L* | a* | b* | ΔE* | C* | h° | BI | |
Day 1 | 41.52 ± 0.85 b,A,* | 33.10 ± 0.63 b,B | 18.58 ± 0.48 a,A | 38.52 ± 0.32 b,B | 28.95 ± 1.05 a,A | 110.25 ± 3.54 a,B | 46.03 ± 0.07 a,B | 29.52 ± 0.17 b,A | 34.52 ± 0.22 a,C | 17.17 ± 0.67 a,C | 45.48 ± 0.06 b,C | 49.84 ± 0.36 a,C | 168.34 ± 1.43 a, C | 42.32 ± 0.11 b,A | 32.90 ± 0.15 b,B | 19.50 ± 0.15 a,B | 0.76 ± 0.18 a,A | 38.30 ± 0.05 a,B | 30.32 ± 0.22 a,A | 112.86 ± 0.09 a,B | 45.44 ± 0.20 a,B | 29.01 ± 0.26 a,A | 18.72 ± 0.04 a,A,B | 5.43 ± 0.25 a,B | 34.73 ± 0.20 a,A | 33.01 ± 0.01 b,B | 96.94 ± 0.68 a,A |
Day 14 | 38.61 ± 0.33 a,A | 31.78 ± 0.39 a,A | 18.99 ± 0.13 a,A | 36.68 ± 0.27 a,A | 31.17 ± 0.63 a,A | 121.80 ± 1.22 b,A | 41.43 ± 0.20 b,B | 20.66 ± 0.10 a,B | 34.04 ± 0.11 a,B | 19.13 ± 0.12 a,A | 39.89 ± 0.07 a,B | 59.29 ± 0.51 a,B | 178.04 ± 0.14 b,B | 40.42 ± 0.19 a,C | 32.41 ± 0.09 a,A | 19.48 ± 0.09 a,A | 2.25 ± 0.24 b,B | 37.19 ± 0.62 a,A | 30.98 ± 0.02 a,A | 115.96 ± 2.20 a,C | 45.21 ± 0.02 a,D | 31.19 ± 0.00 b,A | 18.79 ± 0.13 a,A | 7.27 ± 0.65 b,C | 36.33 ± 0.08 b,A | 31.18 ± 0.22 a,A | 99.09 ± 0.91 a,D |
Day 21 | 39.65 ± 0.11 a,A | 32.77 ± 0.31 a,b,A | 18.64 ± 0.34 a,A | 37.43 ± 0.10 a,A | 29.88 ± 0.63 a,A | 117.36 ± 1.46 b,A | 42.81 ± 0.17 b,B | 29.08 ± 0.11 a,b,B | 33.83 ± 0.43 a,B | 15.43 ± 0.84 a,A | 44.37 ± 0.23 a,b,B | 48.87 ± 0.37 a,B | 179.71 ± 0.25 b,B | 41.22 ± 0.09 a,b, C | 32.57 ± 0.16 a,b,A | 19.42 ± 0.18 a,A | 2.21 ± 0.27 b,B | 37.82 ± 0.10 a,A | 30.53 ± 0.43 a,A | 113.67 ± 1.87 a,C | 46.80 ± 0.29 b,D | 31.62 ± 0.04 b,C | 18.76 ± 0.25 a,A | 7.38 ± 0.12 b,C | 36.45 ± 0.32 b,C | 30.32 ± 0.22 a,A | 95.25 ± 1.43 a,D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bleoanca, I.; Patrașcu, L.; Borda, D. Quality and Stability Equivalence of High Pressure and/or Thermal Treatments in Peach–Strawberry Puree. A Multicriteria Study. Foods 2021, 10, 2580. https://doi.org/10.3390/foods10112580
Bleoanca I, Patrașcu L, Borda D. Quality and Stability Equivalence of High Pressure and/or Thermal Treatments in Peach–Strawberry Puree. A Multicriteria Study. Foods. 2021; 10(11):2580. https://doi.org/10.3390/foods10112580
Chicago/Turabian StyleBleoanca, Iulia, Livia Patrașcu, and Daniela Borda. 2021. "Quality and Stability Equivalence of High Pressure and/or Thermal Treatments in Peach–Strawberry Puree. A Multicriteria Study" Foods 10, no. 11: 2580. https://doi.org/10.3390/foods10112580
APA StyleBleoanca, I., Patrașcu, L., & Borda, D. (2021). Quality and Stability Equivalence of High Pressure and/or Thermal Treatments in Peach–Strawberry Puree. A Multicriteria Study. Foods, 10(11), 2580. https://doi.org/10.3390/foods10112580