The Use of a Thermal Process to Produce Black Garlic: Differences in the Physicochemical and Sensory Characteristics Using Seven Varieties of Fresh Garlic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Black Garlic Processing
2.4. Chemical Analyses
2.4.1. Moisture-Content Analysis
2.4.2. pH Measurement
2.4.3. Determination of Total Soluble Solids
2.4.4. Determination of Antioxidant Activity
2.4.5. Determination of Total Polyphenol Content
2.4.6. HPLC-MS/MS Non-Targeted Analysis of Fresh and Black Garlic
2.5. Physical Properties Analysis
2.5.1. Color Analysis
2.5.2. Texture Analysis
2.6. Sensory Analysis of Black Garlic Samples
2.7. Statistical Analysis
3. Results and Discussion
3.1. The Effects of the Ageing Process and Variety on Moisture, pH, and Total Soluble Solid Content of Fresh and Aged Garlic Samples
3.2. The Effects of the Ageing Process and Variety on Antioxidant Activity and Total Polyphenol Content of Fresh and Aged Garlic Samples
3.3. HPLC-MS/MS Non-Targeted Analysis of Low Molecular Weight Compounds in Fresh and Black Garlic Samples
3.4. Color and Texture Analysis of Black and Fresh Garlic and Sensory Analysis of Black Garlic
3.5. The Relationships between Properties of Fresh and Black Garlic
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, Z.; Zheng, Z.; Zhang, B.; Sun-Waterhouse, D.; Qiao, X. Formation, nutritional value, and enhancement of characteristic components in black garlic: A review for maximizing the goodness to humans. Compr. Rev. Food Sci. Food Saf. 2020, 19, 801–834. [Google Scholar] [CrossRef] [Green Version]
- Botas, J.; Fernandes, Â.; Barros, L.; Alves, M.J.; Carvalho, A.M.; Ferreira, I.C.F.R. A comparative study of black and white Allium sativum L.: Nutritional composition and bioactive properties. Molecules 2019, 24, 2194. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, N.; Lu, X.; Liu, P.; Qiao, X. Effects of temperature on the quality of black garlic. J. Sci. Food Agric. 2016, 96, 2366–2372. [Google Scholar] [CrossRef]
- Ryu, J.H.; Kang, D. Physicochemical properties, biological activity, health benefits, and general limitations of aged black garlic: A review. Molecules 2017, 22, 919. [Google Scholar] [CrossRef] [Green Version]
- Ríos-Ríos, K.L.; Montilla, A.; Olano, A.; Villamiel, M. Physicochemical changes and sensorial properties during black garlic elaboration: A review. Trends Food Sci. Tech. 2019, 88, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.S.; Cha, H.S.; Lee, Y.S. Physicochemical and antioxidant properties of black garlic. Molecules 2014, 19, 16811–16823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Ortega, A.; Pereira-Caro, G.; Ordóñez, J.L.; Moreno-Rojas, R.; Ortíz-Somovilla, V.; Moreno-Rojas, J.M. Bioaccessibility of bioactive compounds of ‘fresh garlic’ and ‘black garlic’ through in vitro gastrointestinal digestion. Foods 2020, 9, 1582. [Google Scholar] [CrossRef] [PubMed]
- Toledano Medina, M.A.; Merinas-Amo, T.; Fernández-Bedmar, Z.; Font, R.; del Río-Celestino, M.; Pérez-Aparicio, J.; Moreno-Ortega, A.; Alonso-Moraga, A.; Moreno-Rojas, R. Physicochemical characterization and biological activities of black and white garlic: In vivo and in vitro assays. Foods 2019, 8, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.Y.; Lu, X.M.; Pei, H.B.; Qiao, X.G. Effect of freezing pretreatment on the processing time and quality of black garlic. J. Food Process Eng. 2015, 38, 329–335. [Google Scholar] [CrossRef]
- Karnjanapratum, S.; Supapvanich, S.; Kaewthong, P.; Takeungwongtrakul, S. Impact of steaming pretreatment process on characteristics and antioxidant activities of black garlic (Allium sativum L.). J. Food Sci. Technol. 2021, 58, 1869–1876. [Google Scholar] [CrossRef]
- Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grégrová, A.; Čížková, H.; Bulantová, I.; Rajchl, A.; Voldřich, M. Characteristics of garlic of the Czech origin. Czech J. Food Sci. 2013, 31, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Najman, K.; Sadowska, A.; Hallmann, E. Evaluation of bioactive and physicochemical properties of white and black garlic (Allium sativum L.) from conventional and organic cultivation. Appl. Sci. Basel 2021, 11, 874. [Google Scholar] [CrossRef]
- Sunanta, P.; Chung, H.H.; Kunasakdakul, K.; Ruksiriwanich, W.; Jantrawut, P.; Hongsibsong, S.; Sommano, S.R. Genomic relationship and physiochemical properties among raw materials used for Thai black garlic processing. Food Sci. Nutr. 2020, 8, 4534–4545. [Google Scholar] [CrossRef] [PubMed]
- Toledano Medina, M.A.; Pérez-Aparicio, J.; Moreno-Ortega, A.; Moreno-Rojas, R. Influence of variety and storage time of fresh garlic on the physicochemical and antioxidant properties of black garlic. Foods 2019, 8, 314. [Google Scholar] [CrossRef] [Green Version]
- Vácha, F.; Bedrníček, J.; Smetana, P.; Samková, E.; Kadlec, J.; Jirotková, D.; Tůma, K. Method of Preparing Black Garlic with Antioxidant Activity and Black Garlic Prepared in This Way. CZ PV 2020-44 No. 308653. 17 December 2020. Available online: https://isdv.upv.cz/webapp/!resdb.pta.frm (accessed on 20 August 2021).
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free-radical method to evaluate antioxidant activity. Food Sci. Technol.-Lebensm.-Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Lachman, J.; Hosnedl, V.; Pivec, V. Polyphenols in cereals and their positive and negative role in human and animal nutrition. In Cereals for Human Health and Preventive Nutrition; Vaculová, K., Ehrenbergerová, J., Eds.; MZLU: Brno, Czech Republic, 1998; pp. 118–124. [Google Scholar]
- Zhang, X.; Shi, Y.; Wang, L.; Li, X.; Zhang, S.; Wang, X.; Jin, M.; Hsiao, C.D.; Lin, H.; Han, L.; et al. Metabolomics for biomarker discovery in fermented black garlic and potential bioprotective responses against cardiovascular diseases. J. Agric. Food Chem. 2019, 67, 12191–12198. [Google Scholar] [CrossRef]
- Ahn, S.J.; Lee, A.; Min, S.S.; In, S.; Kim, E.; Kim, H.J. Comparison of physicochemical characteristics of garlic produced from South Korea and China. J. Food Sci. 2019, 84, 1806–1811. [Google Scholar] [CrossRef]
- Shin, J.-H.; Lee, S.-J.; Jung, W.-J.; Kang, M.-J.; Sung, N.-J. Physicochemical characteristics of garlic (Allium sativum L.) on collected from the different regions. J. Agric. Life Sci. 2011, 45, 103–114. [Google Scholar]
- Xiong, F.; Dai, C.H.; Hou, F.R.; Zhu, P.P.; He, R.H.; Ma, H.L. Study on the ageing method and antioxidant activity of black garlic residues. Czech. J. Food Sci. 2018, 36, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.; Wei, F.; Lu, Y.; Kodani, Y.; Nakada, M.; Miyakawa, T.; Tanokura, M. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. J. Agric. Food Chem. 2015, 63, 683–691. [Google Scholar] [CrossRef]
- Toledano-Medina, M.A.; Pérez-Aparicio, J.; Moreno-Rojas, R.; Merinas-Amo, T. Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. Food Chem. 2016, 199, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Tung, Y.C.; Pan, M.H.; Su, N.W.; Lai, Y.J.; Cheng, K.C. Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal. 2017, 25, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, F.J.; Corzo-Martínez, M.; del Castillo, M.D.; Villamiel, M. Changes in antioxidant activity of dehydrated onion and garlic during storage. Food Res. Int. 2006, 39, 891–897. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm. Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.J.; Ou, B.X.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Kim, J.S.; Kang, O.J.; Gweon, O.C. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J. Funct. Foods 2013, 5, 80–86. [Google Scholar] [CrossRef]
- Chang, W.C.; Chen, Y.T.; Chen, H.J.; Hsieh, C.W.; Liao, P.C. Comparative UHPLC-Q-Orbitrap HRMS-based metabolomics unveils biochemical changes of black garlic during aging process. J. Agric. Food Chem. 2020, 68, 14049–14058. [Google Scholar] [CrossRef]
- Chi, M.-C.; Lo, H.-F.; Lin, M.-G.; Chen, Y.-Y.; Lin, L.-L.; Wang, T.-F. Application of Bacillus licheniformis γ-glutamyltranspeptidase to the biocatalytic synthesis of γ-glutamyl-phenylalanine. Biocatal. Agric. Biotechnol. 2017, 10, 278–284. [Google Scholar] [CrossRef]
- Matsutomo, T.; Stark, T.D.; Hofmann, T. In vitro activity-guided identification of antioxidants in aged garlic extract. J. Agric. Food Chem. 2013, 61, 3059–3067. [Google Scholar] [CrossRef] [PubMed]
- Molina-Calle, M.; de Medina, V.S.; Priego-Capote, F.; de Castro, M.D.L. Establishing compositional differences between fresh and black garlic by a metabolomics approach based on LC-QTOF MS/MS analysis. J. Food Compos. Anal. 2017, 62, 155–163. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Liu, R.; Zhou, Z.; Zhang, M. Identification of antioxidants in aged garlic extract by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Int. J. Food Prop. 2016, 19, 474–483. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.; Chen, H.W. Direct molecular analysis of garlic using internal extractive electrospray ionization mass spectrometry. Chin. J. Anal. Chem. 2014, 42, 1634–1638. [Google Scholar] [CrossRef]
- Metlin. Available online: http://metlin.scripps.edu (accessed on 20 August 2021).
- MassBank. Available online: http://massbank.eu (accessed on 20 August 2021).
- Zhang, N.; Huang, X.; Zeng, Y.; Wu, X.; Peng, X. Study on prebiotic effectiveness of neutral garlic fructan in vitro. Food Sci. Human Wellness 2013, 2, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Kodera, Y.; Kurita, M.; Nakamoto, M.; Matsutomo, T. Chemistry of aged garlic: Diversity of constituents in aged garlic extract and their production mechanisms via the combination of chemical and enzymatic reactions. Exp. Ther. Med. 2020, 19, 1574–1584. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.H.; Shan, Y.; Li, S.; Zhang, L.F. Potential contribution of Amadori compounds to antioxidant and angiotensin I converting enzyme inhibitory activities of raw and black garlic. LWT-Food Sci. Technol. 2020, 129. [Google Scholar] [CrossRef]
- Ho, S.C.; Su, M.S. Evaluating the anti-neuroinflammatory capacity of raw and steamed garlic as well as five organosulfur compounds. Molecules 2014, 19, 17697–17714. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Park, S.L.; Lee, S.; Lee, S.Y.; Ko, S.; Yoo, M. UPLC/ESI-MS/MS analysis of compositional changes for organosulfur compounds in garlic (Allium sativum L.) during fermentation. Food Chem. 2016, 211, 555–559. [Google Scholar] [CrossRef]
- Corzo-Martínez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Tech. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Yang, J.; Bai, W.D.; Zeng, X.F.; Cui, C. Gamma glutamyl peptides: The food source, enzymatic synthesis, kokumi-active and the potential functional properties—A review. Trends Food Sci. Tech. 2019, 91, 339–346. [Google Scholar] [CrossRef]
- Chung, L.Y. The antioxidant properties of garlic compounds: Allyl cysteine, alliin, allicin, and allyl disulfide. J. Med. Food 2006, 9, 205–213. [Google Scholar] [CrossRef]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in phenolic compounds in garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant. Food Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Casas, L.; Lage-Yusty, M.; López-Hernández, J. Changes in the aromatic profile, sugars, and bioactive compounds when purple garlic is transformed into black garlic. J. Agric. Food Chem. 2017, 65, 10804–10811. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R. Antioxidant activity of water-soluble Maillard reaction products. Food Chem. 2005, 93, 273–278. [Google Scholar] [CrossRef]
Variety | Moisture Content (%) | pH | Total Soluble Solids (°Brix) | |||
---|---|---|---|---|---|---|
Fresh | Black | Fresh | Black | Fresh | Black | |
Bjetin | 60.18 ± 0.64 abA | 36.95 ± 0.93 cdB | 6.06 ± 0.02 abA | 4.45 ± 0.03 aB | 39.67 ± 0.06 aB | 52.00 ± 0.00 bA |
Vekan | 58.62 ± 1.60 bcA | 34.28 ± 1.26 dB | 6.05 ± 0.01 abA | 4.48 ± 0.05 aB | 39.00 ± 0.10 aB | 50.33 ± 0.58 bA |
Havel | 57.04 ± 0.46 cA | 35.50 ± 1.09 dB | 6.11 ± 0.02 aA | 4.39 ± 0.02 abB | 37.67 ± 0.12 abB | 60.00 ± 0.00 bA |
Ivan | 59.17 ± 2.18 bcA | 39.52 ± 1.16 bcB | 6.01 ± 0.03 abA | 4.32 ± 0.09 bcB | 36.67 ± 0.12 bB | 50.00 ± 1.00 bA |
Rusák | 57.12 ± 1.20 cA | 33.52 ± 0.40 dB | 6.05 ± 0.01 abA | 4.24 ± 0.05 cB | 39.67± 0.06 aB | 61.00 ± 0.00 aA |
Havran | 65.34 ± 2.46 aA | 42.52 ± 0.87 abB | 6.00 ± 0.00 abA | 4.38 ± 0.02 abB | 30.00± 0.00 cB | 51.67 ± 1.15 bA |
Lukan | 62.25 ± 0.59 abA | 45.55 ± 0.91 aB | 5.99 ± 0.01 bA | 4.48 ± 0.05 aB | 32.00 ± 0.00 cB | 50.67 ± 0.58 bA |
Average | 59.57 ± 2.44 B | 38.26 ± 4.48 A | 6.04 ± 0.04 A | 4.39 ± 0.61 B | 36.38 ± 3.68 B | 53.67 ± 9.53 A |
Variety | DPPH (g TE/kg DM) | FRAP (g TE/kg DM) | TPC (g GAE/kg DM) | |||
---|---|---|---|---|---|---|
Fresh | Black | Fresh | Black | Fresh | Black | |
Bjetin | 1.62 ± 0.02 bB | 13.12 ± 0.18 bA | 0.38 ± 0.01 B | 13.19 ± 0.29 cA | 3.62 ± 0.08 B | 16.01 ± 0.28 aA |
Vekan | 1.32 ± 0.02 bB | 12.80 ± 0.53 bcA | 0.66 ± 0.02 B | 12.51 ± 0.35 dA | 3.82 ± 0.16 B | 11.60 ± 0.17 cA |
Havel | 2.52 ± 0.09 aB | 14.00 ± 0.10 aA | 0.56 ± 0.02 B | 13.54 ± 0.20 bcA | 3.61 ± 0.15 B | 15.48 ± 0.25 aA |
Ivan | 1.89 ± 0.08 abB | 12.28 ± 0.13 cA | 0.47 ± 0.01 B | 12.15 ± 0.17 dA | 3.89 ± 0.22 B | 14.90 ± 1.08 aA |
Rusák | 1.52 ± 0.07 bB | 12.67 ± 0.18 bcA | 0.38 ± 0.01 B | 12.47 ± 0.49 dA | 3.76 ± 0.08 B | 15.59 ± 0.15 aA |
Havran | 2.53 ± 0.10 aB | 14.25 ± 0.57 aA | 0.62 ± 0.03 B | 14.24 ± 0.36 aA | 4.61 ± 0.11 B | 13.42 ± 0.27 bA |
Lukan | 1.89 ± 0.06 abB | 11.41 ± 0.49 dA | 0.48 ± 0.01 B | 12.16 ± 0.53 dA | 3.47 ± 1.01 B | 11.23 ± 0.22 cA |
Average | 1.90 ± 0.52 B | 12.93 ± 4.33 A | 0.50 ± 0.12 B | 12.89 ± 4.79 A | 3.82 ± 0.37 B | 14.03 ± 4.44 A |
Compound | RT * (min) | Molecular Ion [M + H]+ (m/z) | Fragments (m/z) | Presence in Samples | Change after Ageing ⁑ |
---|---|---|---|---|---|
Arginine | 1.56 | 175 | 158, 130 | FG, BG | ↑ |
Fructosyl-arginine | 1.57 | 337 | 319, 175, 158, 130 | BG | ↑ |
Fructooligosaccharide (Degree of polymerization = 9) | 1.61 | 1515 [M + K]+ | 1353, 1191, 1029, 867, 705, 543, 381 [M + K]+ | FG, BG | ↑ |
Fructofuranosyl nystose (4× fructose, 1× glucose) | 1.62 | 867 [M + K]+ | 705, 543, 381 [M + K]+ | FG, BG | ↑ |
Nystose (3× fructose, 1× glucose) | 1.63 | 705 [M + K]+ | 543, 381 [M + K]+ | FG, BG | ↑ |
Kestose (2× fructose, 1× glucose) | 1.63 | 543 [M + K]+ | 381 [M + K]+ | FG, BG | ↑ |
γ-l-glutamyl-S-allyl-l-cysteine | 3.24 | 291 | 162, 145 | FG, BG | ↓ |
γ-l-glutamyl-S-(trans-1-propenyl)-l-cysteine | 4.00 | 291 | 274, 162, 145 | FG | ↓ |
γ-l-glutamyl-phenylalanine | 4.88 | 295 | 166, 120 | FG, BG | ↓ |
(1R, 3S)-1-methyl-1,2,3,4-tetrahydro-β-carbolin-3-carboxylic acid (MTCA) | 6.91 | 231 | 158 | BG | ↑ |
(1S, 3S)-1-methyl-1,2,3,4-tetrahydro-β-carbolin-3-carboxylic acid (MTCA) | 7.88 | 231 | 158 | BG | ↑ |
Diallyl thiosulfinate (allicin) | 29.59 | 163 | 73 | FG, BG | ↓ |
Variety | L* (Lightness) | a* (Redness) | b* (Yellowness) | |||
---|---|---|---|---|---|---|
Fresh | Black | Fresh | Black | Fresh | Black | |
Bjetin | 82.67 ± 0.50 A | 10.64 ± 2.97 dB | 1.14 ± 0.16 B | 7.38 ± 2.86 abA | 22.43 ± 1.45 A | 7.36 ± 2.12 abB |
Vekan | 83.13 ± 1.68 A | 11.35 ± 1.98 cdB | 1.74 ± 0.09 B | 9.50 ± 1.66 aA | 21.04 ± 0.71 A | 10.82 ± 2.20 aB |
Havel | 82.75 ± 1.47 A | 13.35 ± 4.93 cdB | 1.56 ± 0.24 B | 3.99 ± 1.10 cA | 22.10 ± 0.79 A | 3.50 ± 1.49 bcB |
Ivan | 83.77 ± 1.52 A | 23.90 ± 2.30 aB | 0.83 ± 0.33 B | 2.17 ± 1.43 cA | 22.27 ± 1.88 A | 1.66 ± 1.50 cB |
Rusák | 82.73 ± 0.58 A | 17.70 ± 1.01 bcB | 2.02 ± 0.20 A | 1.26 ± 0.21 cB | 23.18 ± 0.94 A | 1.55 ± 0.46 cB |
Havran | 85.18 ± 1.54 A | 23.32 ± 2.75 aB | 0.58 ± 0.28 B | 3.74 ± 1.69 cA | 20.92 ± 1.10 A | 3.17 ± 2.19 bcB |
Lukan | 87.44 ± 0.83 A | 26.51 ± 1.71 aB | 2.09 ± 0.28 B | 4.40 ± 0.25 bcA | 22.27 ± 1.03 A | 4.76 ± 1.29 bcB |
Average | 83.95 ± 1.78 A | 18.11 ± 6.53 B | 1.42 ± 0.56 B | 4.63 ± 3.04 A | 22.03 ± 0.87 A | 4.69 ± 7.45 B |
Parameter | FG × BG (r) |
---|---|
Moisture | 0.814 †† |
pH | −0.102 |
Total soluble solids | 0.390 |
DPPH assay | 0.588 |
FRAP assay | 0.355 |
TPC | −0.051 |
Hardness | 0.774 † |
L* | 0.804 †† |
a* | 0.071 |
b* | −0.481 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedrníček, J.; Laknerová, I.; Lorenc, F.; Moraes, P.P.d.; Jarošová, M.; Samková, E.; Tříska, J.; Vrchotová, N.; Kadlec, J.; Smetana, P. The Use of a Thermal Process to Produce Black Garlic: Differences in the Physicochemical and Sensory Characteristics Using Seven Varieties of Fresh Garlic. Foods 2021, 10, 2703. https://doi.org/10.3390/foods10112703
Bedrníček J, Laknerová I, Lorenc F, Moraes PPd, Jarošová M, Samková E, Tříska J, Vrchotová N, Kadlec J, Smetana P. The Use of a Thermal Process to Produce Black Garlic: Differences in the Physicochemical and Sensory Characteristics Using Seven Varieties of Fresh Garlic. Foods. 2021; 10(11):2703. https://doi.org/10.3390/foods10112703
Chicago/Turabian StyleBedrníček, Jan, Ivana Laknerová, František Lorenc, Priscila Probio de Moraes, Markéta Jarošová, Eva Samková, Jan Tříska, Naděžda Vrchotová, Jaromír Kadlec, and Pavel Smetana. 2021. "The Use of a Thermal Process to Produce Black Garlic: Differences in the Physicochemical and Sensory Characteristics Using Seven Varieties of Fresh Garlic" Foods 10, no. 11: 2703. https://doi.org/10.3390/foods10112703
APA StyleBedrníček, J., Laknerová, I., Lorenc, F., Moraes, P. P. d., Jarošová, M., Samková, E., Tříska, J., Vrchotová, N., Kadlec, J., & Smetana, P. (2021). The Use of a Thermal Process to Produce Black Garlic: Differences in the Physicochemical and Sensory Characteristics Using Seven Varieties of Fresh Garlic. Foods, 10(11), 2703. https://doi.org/10.3390/foods10112703