Assessing Suitability of Sorghum to Alleviate Sub-Saharan Nutritional Deficiencies through the Nutritional Water Productivity Index in Semi-Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Site Description
2.3. Experimental Design
2.4. Agronomic Practices
2.5. Atmospheric Data and Soil Characterization
2.6. Grain Yield, Water Use and Crop Water Productivity
2.7. Nutritional Composition of Sorghum Grain
2.8. Nutritional Water Productivity
2.9. Data Analyses
3. Results
4. Discussion
4.1. Protein NWP
4.2. Iron NWP
4.3. Zinc NWP
4.4. Discussion Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nyathi, M.K.; Van Halsema, G.E.; Beletse, Y.G.; Annandale, J.G.; Struik, P.C. Nutritional water productivity of selected leafy vegetables. Agric. Water Manag. 2018, 209, 111–122. [Google Scholar] [CrossRef]
- Byerlee, D. Agriculture, Rural Development, and Pro-Poor Growth: Country Experiences in the Post Reform Era. Agriculture 2005, 21, 1–15. [Google Scholar]
- FAO Statistical Yearbook 2013; World Food and Agriculture Organization: Rome, Italy, 2013.
- The State of Food and Agriculture. Biofuels: Prospects, Risks and Opportunities; World Food and Agriculture Organization: Rome, Italy, 2008.
- Hadebe, S.T.; Modi, A.T.; Mabhaudhi, T. Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in Sub-Saharan Africa. J. Agron. Crop Sci. 2016, 203, 177–191. [Google Scholar] [CrossRef]
- Fanzo, J. The Nutrition Challenge in Sub-Saharan Africa; Regional Bureau of Africa: New York, NY, USA, 2012. [Google Scholar]
- De Valençaa, A.W.; Bakeb, A.; Brouwerb, I.D.; Gillera, K.E. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob. Food Sec. 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Hadebe, S.T.; Mabhaudhi, T.; Modi, A.T. Water Productivity of Selected Sorghum Genotypes Under Rainfed Conditions. Int. J. Plant Prod. 2019. [Google Scholar] [CrossRef]
- Govender, L.; Pillay, K.; Siwela, M.; Modi, A.; Mabhaudhi, T. Food and nutrition insecurity in selected rural communities of KwaZulu-Natal, South Africa—Linking human nutrition and agriculture. Int. J. Environ. Res. Public Health 2017, 14, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renault, D.; Wallender, W.W. Nutritional water productivity and diets. Agric. Water Manag. 2000, 45, 275–296. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Chibarabada, T.; Modi, A. Water-Food-Nutrition-Health Nexus: Linking water to improving food, nutrition and health in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2016, 13, 107. [Google Scholar] [CrossRef] [Green Version]
- Nyathi, M.K.; Mabhaudhi, T.; Van Halsema, G.E.; Annandale, J.G.; Struik, P.C. Benchmarking nutritional water productivity of twenty vegetables—A review. Agric. Water Manag. 2019, 221, 248–259. [Google Scholar] [CrossRef]
- Chibarabada, T.P.; Modi, A.T.; Mabhaudhi, T. Nutrient content and nutritional water productivity of selected grain legumes in response to production environment. Int. J. Environ. Res. Public Health 2017, 14, 1300. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.P.; Birthal, P.S.; Reddy, B.V.S.; Rai, K.N.; Ramesh, S. Socioeconomics Diagnostics of Sorghum and Pearl Millet Grains-based Nutrition in India. ISMN 2006, 2, 93–96. [Google Scholar]
- Nyoni, N.; Dube, M.; Bhebhe, S.; Maphosa, M.; Bombom, A. Review Understanding biodiversity in sorghums to support the development of high value bio-based products in Sub-Saharan Africa. J. Cereals Oilseeds 2020, 11, 37–43. [Google Scholar] [CrossRef]
- Abdelhalim, T.S.; Kamal, N.M.; Hassan, A.B. Nutritional potential of wild sorghum: Grain quality of Sudanese wild sorghum genotypes (Sorghum bicolor L. Moench). Food Sci. Nutr. 2019, 7, 1529–1539. [Google Scholar] [CrossRef] [Green Version]
- Tasie, M.M.; Gebreyes, B.G. Characterization of nutritional, antinutritional, and mineral contents of thirty-five sorghum varieties grown in Ethiopia. Int. J. Food Sci. 2020, 2020. [Google Scholar] [CrossRef]
- Soil Classification Working Group (SCWG). Soil Classification: A Taxonomic System for South Africa; Soil and Irrigation Research Institute: Pretoria, South Africa, 1991. [Google Scholar]
- Hadebe, S.T.; Mabhaudhi, T.; Modi, A.T. Water use of sorghum (Sorghum bicolor L. Moench) in response to varying planting dates evaluated under rainfed conditions. Water SA 2017, 43. [Google Scholar] [CrossRef] [Green Version]
- Sorghum Production Guidelines; Department of Agriculture Forestry and Fisheries (DAFF): Pretoria, South Africa, 2010.
- Smith, B. The Farming Handbook; University of KwaZulu-Natal Press: Durban, South Africa, 2006. [Google Scholar]
- Richter, M.; Baerlocher, K.; Bauer, J.M.; Elmadfa, I.; Heseker, H.; Leschik-Bonnet, E.; Stangl, G.; Volkert, D.; Stehle, P. Revised Reference Values for the Intake of Protein. Ann. Nutr. Metab. 2019, 74, 242–250. [Google Scholar] [CrossRef]
- Santos, H.O.; Teixeira, F.J.; Schoenfeld, B.J. Dietary vs. pharmacological doses of zinc: A clinical review. Clin. Nutr. 2020, 39, 1345–1353. [Google Scholar] [CrossRef]
- McDermid, J.; Lonnerdal, B. Nutrient information: Iron. Adv. Nutr. 2012, 3, 532–533. [Google Scholar] [CrossRef] [Green Version]
- Jewitt, G.W.P.; Wen, H.W.; Kunz, R.P.; van Rooyen, A.M. Scoping Study on Water Use of Crops/Trees for Biofuels in South Africa. Water Research Commission (WRC); Report no. 1772/1/09; Water Research Commission: Pretoria, South Africa, 2009. [Google Scholar]
- Zhu, G.; Ye, N.; Yang, J.; Peng, X.; Zhang, J. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. J. Exp. Bot. 2011, 62, 3907–3916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bista, D.R.; Heckathorn, S.A.; Jayawardena, D.M.; Mishra, S.; Boldt, J.K. Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and -tolerant grasses. Plants 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mofokeng, A.M.; Shimelis, H.; Laing, M. Breeding strategies to improve sorghum quality. Aust. J. Crop Sci. 2017, 11, 142–148. [Google Scholar] [CrossRef]
- Liu, L.; Maier, A.; Klocke, N.; Yan, S.; Rogers, D.; Tesso, T.; Wang, D. Impact of deficit irrigation on sorghum physical and chemical properties and ethanol yield. Trans. ASABE 2013, 56, 1541–1549. [Google Scholar] [CrossRef] [Green Version]
- Azeez, A.; Adubi, A.O. Landraces and Crop Genetic Improvement. In Rediscovery of Landraces as a Resource for the Future; Grillo, O., Ed.; InTechOpen: London, UK, 2018; pp. 1–20. [Google Scholar]
- Tadayyon, A.; Nikneshan, P.; Pessarakli, M. Effects of drought stress on concentration of macro- and micro-nutrients in Castor (Ricinus communis L.) plant. J. Plant Nutr. 2018, 41, 304–310. [Google Scholar] [CrossRef]
- Hummel, M.; Hallahan, B.F.; Brychkova, G.; Ramirez-Villegas, J.; Guwela, V.; Chataika, B.; Curley, E.; McKeown, P.C.; Morrison, L.; Talsma, E.F.; et al. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists (AOAC): Rockville, MD, USA, 1990.
- Ullah, A.; Romdhane, L.; Rehman, A.; Farooq, M. Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. Plant Physiol. Biochem. 2019, 143, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Pirzad, A.; Shokrani, F. Effects of iron application on growth characters and flower yield of Calendula officinalis L. under water stress. World Appl. Sci. J. 2012, 18, 1203–1208. [Google Scholar] [CrossRef]
- Faran, M.; Farooq, M.; Rehman, A.; Nawaz, A.; Saleem, M.K.; Ali, N.; Siddique, K.H.M. High intrinsic seed Zn concentration improves abiotic stress tolerance in wheat. Plant Soil 2019, 437, 195–213. [Google Scholar] [CrossRef]
- Bantilan, M.; Deb, U.; Gowda, C.; Reddy, B.; Obilana, A.; Evenson, R. Sorghum Genetic Enhancement: Research Process, Dissemination and Impacts; Bantilan, M., Deb, U., Gowda, C., Reddy, B., Obilana, A., Evenson, R., Eds.; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 2004; ISBN 92-9066-470-3. [Google Scholar]
- Determining Water Use of Indigenous Grain and Legume Food Crops; WRC Knowledge Review 2013/14, Project No. K5/2274//4; Water Research Commission (WRC): Pretoria, South Africa, 2014.
- Water Use and Nutritional Water Productivity for Improved Health and Nutrition in Poor Rural Households; WRC Knowledge Review 2015/16, WRC Project No. K5/2493//4; Water Research Commission (WRC): Pretoria, South Africa, 2016.
Season | Total Rainfall (mm) | Rainfall Received during Each Stage | Comments | ||
---|---|---|---|---|---|
Initial | Development | Midseason | |||
First (early planting) | 418 | 80 | 151 | 187 | Low soil moisture during crop emergence and early vegetative stage. Rainfall distribution regular afterward. |
Second (optimal planting) | 401 | 79 | 173 | 179 | Low soil moisture at sowing, thereafter regular recharge of soil moisture from rainfall. Sorghum was planted at recommended planting date. |
Third (late planting) | 267 | 204 | 41 | 22 | Irregular rainfall distribution, increasingly low soil moisture and low, irregular rainfall after flowering. |
Crop coefficient (Kc) | 0.45 | 0.83 | 1.18 |
Soil Taxonomy | Textural Class | Clay Content (%) | Bulk Density (g·m−3) | Field Capacity (mm·m−1) | Permanent Wilting Point (mm·m−1) | Saturation (mm·m−1) | Soil Profile Depth (m) | Saturated Hydraulic Conductivity (mm·day−1) |
---|---|---|---|---|---|---|---|---|
Vertisols | Clay loam | ±29 | 1.2 | 406 | 230 | 481 | 0.6 | 25 |
Season | Genotype | WP | Starch | Protein | Ca | Mg | K | Na | P | Zn | Cu | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg·m−3 | –––––––––––––––––––––––––g·kg−1––––––––––––––––––––––––––––– | –––––––––––––––mg·kg−1––––––––––––––– | |||||||||||
First | PAN8816 | 0.98 abc | 420 | 118 | 0.07 | 0.13 | 0.35 | 0.002 | 41 | 270 | 16 | 136 | 243 |
Macia | 1.10 bc | 340 | 128 | 0.11 | 0.14 | 0.44 | 0.002 | 57 | 322 | 38 | 193 | 354 | |
Ujiba | 0.68 ab | 320 | 115 | 0.09 | 0.19 | 0.41 | 0.002 | 39 | 287 | 10 | 164 | 349 | |
IsiZulu | 0.53 a | 320 | 92 | 0.09 | 0.16 | 0.37 | 0.002 | 26 | 162 | 16 | 113 | 194 | |
Mean | 0.83 | 350 | 114 | 0.09 | 0.16 | 0.39 | 0.002 | 41 | 260 | 20 | 152 | 285 | |
Second | PAN8816 | 0.94 abc | 380 | 138 | 0.09 | 0.13 | 0.35 | 0.002 | 42 | 271 | 16 | 163 | 297 |
Macia | 1.16 c | 350 | 126 | 0.11 | 0.14 | 0.42 | 0.002 | 60 | 346 | 52 | 209 | 346 | |
Ujiba | 0.73 ab | 400 | 118 | 0.09 | 0.18 | 0.55 | 0.002 | 47 | 294 | 14 | 158 | 340 | |
IsiZulu | 0.71 ab | 350 | 117 | 0.09 | 0.16 | 0.39 | 0.002 | 37 | 223 | 24 | 156 | 425 | |
Mean | 0.92 | 370 | 125 | 0.10 | 0.15 | 0.43 | 0.002 | 46 | 284 | 27 | 172 | 352 | |
Third | PAN8816 | 0.76 abc | 450 | 126 | 0.13 | 0.15 | 0.42 | 0.002 | 40 | 250 | 25 | 159 | 294 |
Macia | 0.93 abc | 360 | 147 | 0.17 | 0.17 | 0.42 | 0.002 | 51 | 271 | 32 | 190 | 325 | |
Ujiba | 0.97 abc | 420 | 104 | 0.18 | 0.17 | 0.39 | 0.002 | 51 | 325 | 24 | 206 | 707 | |
IsiZulu | 0.84 abc | 410 | 113 | 0.15 | 0.18 | 0.47 | 0.002 | 45 | 267 | 24 | 171 | 462 | |
Mean | 0.87 | 410 | 122 | 0.16 | 0.17 | 0.43 | 0.002 | 47 | 278 | 26 | 181 | 447 | |
Coefficient of variation (%) | 14.4 | ||||||||||||
p-value (S × G) | 0.009 | ||||||||||||
p-value (genotype (G)) | <0.001 | ||||||||||||
p-value (season (S)) | 0.710 |
Season | Genotype | Protein | Zn | Fe | ||||||
---|---|---|---|---|---|---|---|---|---|---|
g·100 g−1 | 1 RDA (g·day−1) | % RDA | mg·100 g−1 | 2 RDA (mg·day−1) | % RDA | mg·100 g−1 | 3 RDA (mg·day−1) | % RDA | ||
First | PAN8816 | 12 | 19 | 27 | 285 | 24 | 256 | |||
Macia | 13 | 21 | 32 | 339 | 35 | 272 | ||||
Ujiba | 12 | 19 | 29 | 302 | 35 | 268 | ||||
IsiZulu | 9 | 15 | 16 | 171 | 19 | 150 | ||||
Mean | 11 | 62 | 18 | 26 | 10 | 274 | 29 | 13 | 219 | |
Second | PAN8816 | 14 | 22 | 27 | 285 | 30 | 228 | |||
Macia | 13 | 20 | 35 | 365 | 35 | 266 | ||||
Ujiba | 12 | 19 | 29 | 309 | 34 | 261 | ||||
IsiZulu | 12 | 19 | 22 | 235 | 43 | 327 | ||||
Mean | 13 | 62 | 20 | 28 | 10 | 298 | 35 | 13 | 271 | |
Third | PAN8816 | 13 | 20 | 25 | 263 | 29 | 226 | |||
Macia | 15 | 24 | 27 | 286 | 33 | 250 | ||||
Ujiba | 10 | 17 | 32 | 342 | 71 | 543 | ||||
IsiZulu | 11 | 18 | 26 | 281 | 46 | 355 | ||||
Mean | 12 | 62 | 20 | 28 | 10 | 293 | 45 | 13 | 344 |
Season | Genotype | Starch | Protein | Ca | Mg | K | Na | P | Zn | Mn | Fe | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
––––––kg·m−3––––– | –––––––––––––––––––––––––––––––––––––g·m−3–––––––––––––––––––––––––––––––––– | –mg·m−3– | ||||||||||
First | PAN8816 | 41.0 c | 11.6 bcd | 6.8 ab | 12.7 ab | 34.2 abcd | 0.20 bc | 32.2 abc | 2.1 abc | 1.1 ab | 1.9 ab | 127.0 ab |
Macia | 37.2 bc | 14.0 cd | 11.9 cd | 15.7 b | 48.1 cd | 0.22 bc | 43.0 c | 2.5 bc | 1.4 b | 2.7 abc | 276.4 cd | |
Ujiba | 21.8 ab | 7.9 ab | 6.2 ab | 13.0 ab | 28.0 ab | 0.14 ab | 28.7 abc | 2.1 abc | 1.2 ab | 2.6 abc | 75.3 a | |
IsiZulu | 17.2 a | 4.9 a | 4.8 a | 8.5 a | 19.7 a | 0.11 a | 18.6 a | 1.2 a | 0.8 a | 1.4 a | 117.0 a | |
Mean | 30.1 | 9.9 | 7.7 | 12.4 | 33.4 | 0.17 | 31.4 | 2.0 | 1.2 | 2.2 | 155.6 | |
Second | PAN8816 | 35.7 bc | 13.0 bcd | 8.5 abc | 12.2 ab | 32.9 abcd | 0.19 abc | 32.0 abc | 2.1 abc | 1.2 ab | 2.3 abc | 122.2 ab |
Macia | 41.0 c | 14.6 d | 12.7 cde | 16.5 b | 49.6 d | 0.23 c | 46.6 c | 2.6 c | 1.6 b | 2.6 abc | 372.1 d | |
Ujiba | 29.1 abc | 8.6 abc | 6.6 ab | 13.1 ab | 40.0 bcd | 0.15 ab | 32.8 abc | 2.1 abc | 1.1 ab | 2.4 abc | 94.8 a | |
IsiZulu | 24.9 ab | 8.3 ab | 6.4 ab | 11.4 ab | 27.8 ab | 0.14 ab | 25.7 ab | 1.6 ab | 1.1 ab | 3.0 bc | 170.7 abc | |
Mean | 32.8 | 11.2 | 8.6 | 13.6 | 37.6 | 0.18 | 33.9 | 2.1 | 1.3 | 2.6 | 196.9 | |
Third | PAN8816 | 34.2 bc | 9.6 abcd | 9.9 bc | 11.4 ab | 31.9 abc | 0.15 abc | 29.6 abc | 1.8 abc | 1.2 ab | 2.2 abc | 182.4 abc |
Macia | 33.9 bc | 13.2 bcd | 15.8 de | 15.7 b | 38.6 bcd | 0.19 abc | 37.7 bc | 2.0 abc | 1.4 ab | 2.7 abc | 233.0 bc | |
Ujiba | 40.8 c | 10.1 abcd | 17.5 e | 16.5 b | 37.9 abcd | 0.19 abc | 36.9 bc | 2.4 bc | 1.5 b | 5.1 d | 174.9 abc | |
IsiZulu | 34.3 bc | 9.4 abcd | 12.6 cde | 15.1 ab | 39.4 bcd | 0.17 abc | 34.3 abc | 2.0 abc | 1.3 ab | 3.5 c | 184.2 abc | |
Mean | 35.2 | 10.7 | 13.9 | 14.7 | 37.0 | 0.18 | 34.7 | 2.1 | 1.3 | 3.3 | 195.2 | |
CV (%) | 1.7 | 1.9 | 2.3 | 1.1 | 1.4 | 1.6 | 1.6 | 0.8 | 1.3 | 0.5 | 3.9 | |
p-value (S × G) | <0.001 | 0.057 | <0.001 | 0.07 | 0.002 | 0.009 | 0.034 | 0.019 | 0.191 | <0.001 | <0.001 | |
p-value (genotype (G)) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
p-value (season (S)) | 0.056 | 0.235 | <0.001 | 0.093 | 0.219 | 0.710 | 0.345 | 0.876 | 0.117 | <0.001 | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadebe, S.T.; Modi, A.T.; Mabhaudhi, T. Assessing Suitability of Sorghum to Alleviate Sub-Saharan Nutritional Deficiencies through the Nutritional Water Productivity Index in Semi-Arid Regions. Foods 2021, 10, 385. https://doi.org/10.3390/foods10020385
Hadebe ST, Modi AT, Mabhaudhi T. Assessing Suitability of Sorghum to Alleviate Sub-Saharan Nutritional Deficiencies through the Nutritional Water Productivity Index in Semi-Arid Regions. Foods. 2021; 10(2):385. https://doi.org/10.3390/foods10020385
Chicago/Turabian StyleHadebe, Sandile T., Albert T. Modi, and Tafadzwanashe Mabhaudhi. 2021. "Assessing Suitability of Sorghum to Alleviate Sub-Saharan Nutritional Deficiencies through the Nutritional Water Productivity Index in Semi-Arid Regions" Foods 10, no. 2: 385. https://doi.org/10.3390/foods10020385
APA StyleHadebe, S. T., Modi, A. T., & Mabhaudhi, T. (2021). Assessing Suitability of Sorghum to Alleviate Sub-Saharan Nutritional Deficiencies through the Nutritional Water Productivity Index in Semi-Arid Regions. Foods, 10(2), 385. https://doi.org/10.3390/foods10020385