The Impact of N2-Assisted High-Pressure Processing on the Microorganisms and Quality Indices of Fresh-Cut Bell Peppers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of FCBP
2.3. HPP Treatments
2.4. Storage Conditions
2.5. Microbiological Analysis
2.6. Physicochemical Characteristics Analysis
2.7. Color Assessment
2.8. Texture Profile Analysis
2.9. Determination of Total Phenols
2.10. HPLC Analysis of Ascorbic Acid
2.11. PPO Activity Assay
2.12. Determination of Antioxidant Capacity
2.12.1. DPPH Assay
2.12.2. FRAP Assay
2.13. Sensory Evaluation
2.14. Statistical Analysis
3. Results and Discussion
3.1. Microbiological Analysis
3.2. Chemical and Physical Analysis
3.3. Hardness Analysis
3.4. Color Analysis
3.5. PPO Activity
3.6. Total Phenols and Ascorbic Acid
3.7. Antioxidant Capacity Analysis
3.8. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bae, H.; Jayaprakasha, G.K.; Jifon, J.; Patil, B.S. Variation of antioxidant activity and the levels of bioactive compounds in lipophilic and hydrophilic extracts from hot pepper (Capsicum spp.) cultivars. Food Chem. 2012, 134, 1912–1918. [Google Scholar] [CrossRef]
- Hallmann, E.; Marszalek, K.; Lipowski, J.; Jasinska, U.; Kazimierczak, R.; Srednicka-Tober, D.; Rembialkowska, E. Polyphenols and carotenoids in pickled bell pepper from organic and conventional production. Food Chem. 2019, 278, 254–260. [Google Scholar] [CrossRef]
- Devgan, K.; Kaur, P.; Kumar, N.; Kaur, A. Active modified atmosphere packaging of yellow bell pepper for retention of physico-chemical quality attributes. J. Food Sci. Technol. Mys. 2019, 56, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Bahram-Parvar, M.; Lim, L.T. Fresh-Cut Onion: A Review on Processing, Health Benefits, and Shelf-Life. Compr. Rev. Food Sci. 2018, 17, 290–308. [Google Scholar] [CrossRef] [Green Version]
- Yousuf, B.; Qadri, O.S.; Srivastava, A.K. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT Food Sci. Technol. 2018, 89, 198–209. [Google Scholar] [CrossRef]
- Saenmuang, S.; Al-Haq, M.I.; Samarakoon, H.C.; Makino, Y.; Kawagoe, Y.; Oshita, S. Evaluation of Models for Spinach Respiratory Metabolism Under Low Oxygen Atmospheres. Food Bioprocess Technol. 2012, 5, 1950–1962. [Google Scholar] [CrossRef]
- Caleb, O.J.; Mahajan, P.V.; Al-Said, F.A.-J.; Opara, U.L. Modified Atmosphere Packaging Technology of Fresh and Fresh-cut Produce and the Microbial Consequences—A Review. Food Bioprocess Technol. 2013, 6, 303–329. [Google Scholar] [CrossRef] [PubMed]
- Aaby, K.; Grimsbo, I.H.; Hovda, M.B.; Rode, T.M. Effect of high pressure and thermal processing on shelf life and quality of strawberry purée and juice. Food Chem. 2018, 260, 115–123. [Google Scholar] [CrossRef]
- Pega, J.; Denoya, G.I.; Castells, M.L.; Sarquis, S.; Aranibar, G.F.; Vaudagna, S.R.; Nanni, M. Effect of High-Pressure Processing on Quality and Microbiological Properties of a Fermented Beverage Manufactured from Sweet Whey Throughout Refrigerated Storage. Food Bioprocess Technol. 2018, 11, 1101–1110. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Saxena, V.K.; Dutta, S. Novel thermal and non-thermal processing of watermelon juice. Trends Food Sci. Technol. 2019, 93, 234–243. [Google Scholar] [CrossRef]
- Cartagena, L.; Puertolas, E.; Martinez de Maranon, I. Application of High Pressure Processing After Freezing (Before Frozen Storage) or Before Thawing in Frozen Albacore Tuna (Thunnus alalunga). Food Bioprocess Technol. 2020, 13, 1791–1800. [Google Scholar] [CrossRef]
- Venzke Klug, T.; Benito Martinez-Hernandez, G.; Collado, E.; Artes, F.; Artes-Hernandez, F. Effect of Microwave and High-Pressure Processing on Quality of an Innovative Broccoli Hummus. Food Bioprocess Technol. 2018, 11, 1464–1477. [Google Scholar] [CrossRef]
- Picouet, P.A.; Hurtado, A.; Jofre, A.; Banon, S.; Ros, J.-M.; Dolors Guardia, M. Effects of Thermal and High-pressure Treatments on the Microbiological, Nutritional and Sensory Quality of a Multi-fruit Smoothie. Food Bioprocess Technol. 2016, 9, 1219–1232. [Google Scholar] [CrossRef]
- Kabir MS, N.; Chowdhury, M.; Lee, W.-H.; Hwang, Y.-S.; Cho, S.-I.; Chung, S.-O. Influence of delayed cooling on quality of bell pepper (Capsicum annuum L.) stored in a controlled chamber. Emir. J. Food. Agric. 2019, 31, 271–280. [Google Scholar]
- Rodoni, L.; Vicente, A.; Azevedo, S.; Concellon, A.; Cunha, L.M. Quality retention of fresh-cut pepper as affected by atmosphere gas composition and ripening stage. LWT Food Sci. Technol. 2015, 60, 109–114. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y.; Ren, P.; Ni, Y.; Liao, X. Quality of Banana Puree During Storage: A Comparison of High Pressure Processing and Thermal Pasteurization Methods. Food Bioprocess Technol. 2016, 9, 407–420. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.H.; Mujumdar, A.S.; Wang, D.; Zhao, J.H.; Fang, X.M.; Zhang, Q.; Xie, L.; Gao, Z.J.; Xiao, H.W. Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). LWT Food Sci. Technol. 2017, 77, 337–347. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.; Da Pieve, S.; Butler, F.; Downey, G. Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purees. Innov. Food Sci. Emerg. 2009, 10, 16–22. [Google Scholar] [CrossRef]
- Tangwongchai, R.; Ledward, D.A.; Ames, J.M. Effect of high-pressure treatment on the texture of cherry tomato. J. Agric. Food Chem. 2000, 48, 1434–1441. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.; Koh, E. Application of response surface methodology to acidified water extraction of black soybeans for improving anthocyanin content, total phenols content and antioxidant activity. Food Chem. 2018, 261, 260–266. [Google Scholar] [CrossRef]
- Cao, X.; Bi, X.; Huang, W.; Wu, J.; Hu, X.; Liao, X. Changes of quality of high hydrostatic pressure processed cloudy and clear strawberry juices during storage. Innov. Food Sci. Emerg. 2012, 16, 181–190. [Google Scholar] [CrossRef]
- Gao, G.; Ren, P.; Cao, X.; Yan, B.; Liao, X.; Sun, Z.; Wang, Y. Comparing quality changes of cupped strawberry treated by high hydrostatic pressure and thermal processing during storage. Food Bioprocess Technol. 2016, 100, 221–229. [Google Scholar] [CrossRef]
- Guo, Y.; Li, M.; Han, H.; Cai, J. Salmonella enterica serovar Choleraesuis on fresh-cut cucumber slices after reduction treatments. Food Control 2016, 70, 20–25. [Google Scholar] [CrossRef]
- Ou, Y.; Liu, Q.; Zhou, B.; Hu, X.; Zhang, Y. Influence of gas and High Hydrostatic Pressure on quality of prefabricated lettuce during shelf life. Food Res. Dev. 2017, 38, 203–207. [Google Scholar]
- Gallotta, A.; Allegra, A.; Inglese, P.; Sortino, G. Fresh-cut storage of fruit and fresh-cuts affects the behaviour of minimally processed Big Bang nectarines (Prunus persica L. Batsch) during shelf life. Food Packag. Shelf. 2017, 15, 62–68. [Google Scholar] [CrossRef]
- Arpaia, M.L.; Collin, S.; Sievert, J.; Obenland, D. Influence of cold storage prior to and after ripening on quality factors and sensory attributes of ‘Hass’ avocados. Postharvest Biol. Tec. 2015, 110, 149–157. [Google Scholar] [CrossRef]
- Liu, C.; Chen, C.; Jiang, A.; Sun, X.; Guan, Q.; Hu, W. Effects of plasma-activated water on microbial growth and storage quality of fresh-cut apple. Innov. Food Sci. Emerg. 2020, 59, 102256. [Google Scholar] [CrossRef]
- Gil, M.I.; Tudela, J.A. Fresh and fresh-cut fruit vegetables: Peppers. In D and Modified Atmospheres for Fresh and Fresh-Cut Produce; Gil, M.I., Beaudry, R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 521–525. [Google Scholar]
- De Oliveira, M.M.; Tribst, A.A.L.; Leite, B.R.D.; de Oliveira, R.A.; Cristianini, M. Effects of high pressure processing on cocoyam, Peruvian carrot, and sweet potato: Changes in microstructure, physical characteristics, starch, and drying rate. Innov. Food Sci. Emerg. 2015, 31, 45–53. [Google Scholar] [CrossRef]
- Sila, D.N.; Doungla, E.; Smout, C.; Van, L.A.; Hendrickx, M. Pectin fraction interconversions: Insight into understanding texture evolution of thermally processed carrots. J. Agric. Food Chem. 2006, 54, 8471–8479. [Google Scholar] [CrossRef] [PubMed]
- Duvetter, T.; Fraeye, I.; Hoang, T.V.; Buggenhout, S.V.; Verlent, I.; Smout, C.; Loey, A.V.; Hendrickx, M. Effect of Pectinmethylesterase Infusion Methods and Processing Techniques on Strawberry Firmness. J. Food Sci. 2005, 70, s383–s388. [Google Scholar] [CrossRef]
- Denoya, G.I.; Polenta, G.A.; Apóstolo, N.M.; Budde, C.O.; Sancho, A.M.; Vaudagna, S.R. Optimization of high hydrostatic pressure processing for the preservation of minimally processed peach pieces. Innov. Food Sci. Emerg. 2016, 33, 84–93. [Google Scholar] [CrossRef]
- Miguel-Pintado, C.; Nogales, S.; Fernández-León, A.M.; Delgado-Adámez, J.; Hernández, T.; Lozano, M.; Cañada-Cañada, F.; Ramírez, R. Effect of hydrostatic high pressure processing on nectarine halves pretreated with ascorbic acid and calcium during refrigerated storage. LWT Food Sci. Technol. 2013, 54, 278–284. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, S.; Brannan, R.G. Effect of high pressure processing, browning treatments, and refrigerated storage on sensory analysis, color, and polyphenol oxidase activity in pawpaw (Asimina triloba L.) pulp. LWT Food Sci. Technol. 2017, 86, 49–54. [Google Scholar] [CrossRef]
- Francis, F.J.; Clydesdale, F.M. Food Colorimetry: Theory and Applications; The AVI Publishing Co., Inc.: Westport, CT, USA, 1975; pp. 477–478. [Google Scholar]
- Amaral, R.D.A.; Benedetti, B.C.; Pujola, M.; Achaerandio, I.; Bachelli, M.L.B. Effect of Ultrasound on Quality of Fresh-Cut Potatoes During Refrigerated Storage. Food Eng. Rev. 2015, 7, 176–184. [Google Scholar] [CrossRef]
- Chang, Y.H.; Wu, S.J.; Chen, B.Y.; Huang, H.W.; Wang, C.Y. Effect of high pressure processing and thermal pasteurization on overall quality parameters of white grape juice. J. Sci. Food Agric. 2017, 97, 3166–3172. [Google Scholar] [CrossRef]
- Denoya, G.I.; Vaudagna, S.R.; Polenta, G. Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT Food Sci. Technol. 2015, 62, 801–806. [Google Scholar] [CrossRef]
- Isabel, O.S.; Robert, S.F.; Teresa, H.; Olga, M. Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chem. 2009, 112, 258–266. [Google Scholar]
- Vega-Gálvez, A.; López, J.; Galotto, M.J.; Puente-Díaz, L.; Quispe-Fuentes, I.; Scala, K.D. High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT Food Sci. Technol. 2014, 58, 519–526. [Google Scholar] [CrossRef]
- Tewari, S.; Sehrawat, R.; Nema, P.K.; Kaur, B.P. Preservation effect of high pressure processing on ascorbic acid of fruits and vegetables: A review. J. Food Biochem. 2017, 41, e12319. [Google Scholar] [CrossRef]
- Moura, T.; Gaudy, D.; Jacob, M.; Cassanas, G. PH influence on the stability of ascorbic acid spray-drying solutions. Pharm. Acta Helv. 1994, 69, 77–80. [Google Scholar] [CrossRef]
- Clariana, M.; Valverde, J.; Wijngaard, H.; Mullen, A.M.; Marcos, B. High pressure processing of swede (Brassica napus): Impact on quality properties. Innov. Food Sci. Emerg. 2011, 12, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Evrendilek, G.A.; Ozdemir, P. Effect of various forms of non-thermal treatment of the quality and safety in carrots. LWT Food Sci. Technol. 2019, 105, 344–354. [Google Scholar] [CrossRef]
HPP Process | Color | Flavor | Texture | Appearance | Overall Acceptability | |
---|---|---|---|---|---|---|
Pressure (MPa) | Holding Time (min) | |||||
Untreated | - | 4.20 ± 0.62a | 3.90 ± 0.99a | 4.20 ± 0.63d | 4.40 ± 0.52d | 4.50 ± 0.53c |
300 | 1 | 3.78 ± 0.67a | 4.11 ± 1.17a | 3.44 ± 0.73cd | 4.33 ± 0.71d | 3.67 ± 0.71b |
2.5 | 3.78 ± 0.83a | 3.22 ± 1.39 | 3.78 ± 0.67abc | 3.56 ± 1.24abcd | 3.22 ± 0.67ab | |
5 | 3.44 ± 1.33a | 3.00 ± 1.00a | 2.56 ± 0.53ab | 2.78 ± 1.20a | 3.11 ± 0.78ab | |
7.5 | 3.78 ± 0.67a | 3.44 ± 0.88a | 3.78 ± 0.67cd | 4.00 ± 1.12bcd | 3.50 ± 0.50ab | |
400 | 1 | 3.78 ± 0.83a | 3. 33 ± 1.00a | 3.22 ± 0.67bcd | 4.11 ± 0.78cd | 3.50 ± 0.50ab |
2.5 | 3.33 ± 1.12a | 3.11 ± 1.17a | 2.56 ± 0.53ab | 3.11 ± 1.17abc | 3.00 ± 0.50ab | |
5 | 3.33 ± 1.23a | 3.00 ± 1.32a | 2.33 ± 0.50a | 3.11 ± 1.17abc | 2.78 ± 0.97a | |
7.5 | 4.22 ± 0.67a | 3.44 ± 0.88a | 3.78 ± 0.97cd | 4.33 ± 0.87d | 3.72 ± 0.67b | |
500 | 1 | 4.11 ± 1.05a | 3.22 ± 1.20a | 3.33 ± 0.71cd | 4.33 ± 0.87d | 3.67 ± 0.50b |
2.5 | 3.33 ± 1.12a | 3.00 ± 1.58a | 2.33 ± 0.50a | 3.00 ± 1.12ab | 3.00 ± 0.71ab | |
5 | 3.56 ± 1.10a | 2.89 ± 1.05a | 2.33 ± 0.87a | 2.89 ± 1.17a | 2.78 ± 0.67a | |
7.5 | 3.44 ± 0.88a | 2.89 ± 1.17a | 3.00 ± 1.00abc | 4.11 ± 0.78cd | 2.83 ± 1.00a |
Score | Taste | Flavor | Texture | Appearance | Overall Acceptability |
---|---|---|---|---|---|
5 | Refreshing, juicy and sweet; appropriate brittleness | Special pepper aroma; favorable soft and comfortable | Complete fruit tissue; stiff and springy | Full flesh; no drip loss | Excellent |
4 | Less sweet or juicy; a certain degree of brittleness | Special pepper aroma; relatively soft and comfortable | Certain springy | Full flesh; a little drip loss | Good |
3 | Lighter sweetness; general brittleness | Special pepper aroma | Slightly soft | Partly wrinkled; a little drip loss | General |
2 | No sweetness; tender | A little special pepper aroma | Soft | Partly wrinkled; serious drip loss | Bad |
1 | No sweetness; soft rotten | Pungent odor | Rotten | Sever wrinkled; serious drip loss | Unacceptable |
Treatment | Storage Time (Days) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 4 | 8 | 12 | 16 | 20 | 25 | ||
TAB (log10 CFU/g) | Untreated | 4.18 ± 0.36Ca | 5.21 ± 0.11b | 6.91 ± 0.37c | --- | --- | --- | --- |
HPP-400 | 2.69 ± 0.07Ba | 4.05 ± 0.17c | 2.84 ± 0.50a | 2.79 ± 0.13a | 3.64 ± 0.18b | 3.85 ± 0.35b | 3.92 ± 0.11b | |
HPP-500 | 2.15 ± 0.07Aa | 2.35 ± 0.12a | 3.80 ± 0.28b | 1.69 ± 0.21c | 2.73 ± 0.15c | 3.61 ± 0.20b | 3.83 ± 0.13b | |
Y&M (log10 CFU/g) | Untreated | 2.33 ± 0.14a | 2.52 ± 0.13a | 3.18 ± 0.22b | --- | --- | --- | --- |
HPP-400 | ND | ND | ND | ND | ND | ND | ND | |
HPP-500 | ND | ND | ND | ND | ND | ND | ND | |
pH | Untreated | 5.09 ± 0.01Ba | 5.08 ± 0.03b | 5.05 ± 0.03b | --- | --- | --- | --- |
HPP-400 | 4.97 ± 0.02Aa | 4.99 ± 0.01a | 4.99 ± 0.03a | 5.04 ± 0.27b | 4.53 ± 0.33c | 4.18± 0.03d | 4.17± 0.04d | |
HPP-500 | 4.99 ± 0.02Aa | 4.99 ± 0.01a | 4.98 ± 0.01a | 5.00 ± 0.01a | 5.03 ± 0.02b | 4.99 ± 0.02a | 4.45 ± 0.02c | |
TSS (oBrix) | Untreated | 6.80 ± 0.17Aa | 6.50 ± 0.17a | 6.60 ± 0.10a | --- | --- | --- | --- |
HPP-400 | 7.27 ± 0.12ABab | 7.83 ± 0.12c | 7.70± 0.10bc | 7.73± 0.15bc | 7.80 ± 0.26c | 7.77 ± 0.25c | 7.00 ± 0.17a | |
HPP-500 | 7.33 ± 0.12Babc | 7.83 ± 0.21c | 7.47± 0.12abc | 7.73± 0.31bc | 7.27 ± 0.15ab | 7.60 ± 0.20bc | 7.07 ± 0.12a | |
Weight loss ratio (%) | Untreated | 0 | 1.1 | 4.3 | --- | --- | --- | --- |
HPP-400 | 21.9 | 22.7 | 22.8 | 25.7 | 25.9 | 26.3 | 27.2 | |
HPP-500 | 18.7 | 23.1 | 23.5 | 24.4 | 24.2 | 24.4 | 24.5 | |
Hardness (N) | Untreated | 28.92 ± 1.22Ba | 28.05 ± 1.28ab | 21.31± 1.17b | --- | --- | --- | --- |
HPP-400 | 13.44 ± 1.45ABa | 10.59 ± 0.80bc | 11.09 ± 0.37bc | 11.76 ± 0.22bc | 10.88 ± 0.57bc | 10.51 ± 0.33bc | 9.65 ± 0.26c | |
HPP-500 | 11.54 ± 0.93Aa | 10.99 ± 0.45a | 10.58 ± 0.78a | 11.11 ± 0.28a | 9.79 ± 0.24a | 10.18 ± 0.29a | 10.72 ± 1.95a |
Process | Storage (Days) | L* | a* | b* | |
---|---|---|---|---|---|
Untreated | 0 | 32.90 ± 2.53Aa | 28.84 ± 4.47Aa | 17.45 ± 3.89Aa | 0 |
4 | 30.93 ± 3.79a | 28.67 ± 3.99a | 20.04 ± 3.57ab | 3.26 | |
8 | 31.52 ± 3.65a | 33.67 ± 5.41b | 26.56 ± 10.93b | 10.40 | |
HPP-400 | 0 | 31.06 ± 2.31Aa | 36.38 ± 4.27Ba | 27.94 ± 7.85Ba | 13.05 |
4 | 29.04 ± 3.13a | 35.49 ± 6.52ab | 30.30 ± 11.63a | 14.97 | |
8 | 29.68 ± 2.01a | 30.10 ± 4.33cd | 22.15 ± 5.05ab | 5.83 | |
12 | 32.00 ± 1.90a | 27.70 ± 2.15cd | 15.26 ± 2.35b | 2.63 | |
16 | 30.01 ± 4.50a | 30.50 ± 5.05bc | 20.50 ± 6.36ab | 4.52 | |
20 | 30.65 ± 8.613a | 31.22 ± 8.79abc | 21.78 ± 12.18ab | 5.43 | |
25 | 30.94 ± 2.90a | 25.13 ± 3.33d | 14.53 ± 3.03ab | 5.11 | |
HPP-500 | 0 | 33.49 ± 1.37ABa | 34.18 ± 6.54Ba | 28.31 ± 14.93Bab | 12.12 |
4 | 30.08 ± 2.53ab | 36.31 ± 6.69a | 30.89 ± 8.42a | 15.63 | |
8 | 27.83 ± 3.45b | 30.75 ± 5.36b | 24.16 ± 10.26bc | 8.62 | |
12 | 28.01 ± 6.70b | 26.82 ± 3.80b | 16.76 ± 2.21c | 5.34 | |
16 | 27.52 ± 3.57b | 29.61 ± 4.12b | 21.71 ± 5.19bc | 6.91 | |
20 | 27.90 ± 3.76b | 26.33 ± 2.06b | 17.29 ± 3.85c | 5.60 | |
25 | 31.62 ± 3.52ab | 25.91 ± 4.31b | 16.91 ± 6.15c | 3.24 |
Process | Storage (Days) | Taste | Flavor | Texture | Appearance | Overall Acceptability |
---|---|---|---|---|---|---|
Untreated | 0 | 3.78 ± 0.67Aa | 4.33 ± 0.86Aa | 3.44 ± 0.73Aa | 4.33 ± 0.50Aa | 3.67 ± 0.61Aa |
4 | 3.78 ± 0.83a | 3.67 ± 1.22a | 3.33 ± 0.56a | 3.55 ± 1.24a | 3.22 ± 0.64ab | |
8 | 2.00 ± 0.71b | 1.67 ± 0.71b | 3.40 ± 0.73a | 3.44 ± 0.72a | 2.78 ± 0.76b | |
HPP-400 | 0 | 3.75 ± 0.89Aa | 3.50 ± 1.20BCa | 2.75 ± 0.70Bab | 3.88 ± 0.83Ba | 3.38 ± 0.52Ba |
4 | 3.67 ± 1.12ab | 3.22 ± 0.83a | 3.03 ± 0.86ab | 3.33 ± 0.70a | 3.11 ± 0.78a | |
8 | 3.78 ± 0.67a | 3.44 ± 0.88a | 2.77 ± 0.66a | 4.00 ± 1.11a | 3.50 ± 0.56a | |
12 | 3.33 ± 1.12ab | 3.11 ± 1.17a | 2.55 ± 0.53ab | 3.11 ± 1.17a | 3.00 ± 0.51a | |
16 | 2.78 ± 0.97ab | 2.44 ± 0.73a | 2.30 ± 0.50a | 3.10 ± 1.17a | 2.78 ± 0.97a | |
20 | 2.78 ± 0.67ab | 2.33 ± 0.50a | 2.33 ± 0.50a | 3.00 ± 1.12a | 3.00 ± 0.71a | |
25 | 2.33 ± 1.00b | 2.44 ± 0.73a | 2.33 ± 0.50a | 3.11 ± 1.17a | 2.78 ± 0.91a | |
HPP-500 | 0 | 4.20 ± 0.63Ba | 3.90 ± 0.99ABa | 3.40 ± 0.97Aab | 4.40 ± 0.51Aa | 3.50 ± 0.53Aab |
4 | 4.22 ± 0.83a | 3.22 ± 1.20a | 3.30 ± 0.70ab | 4.33 ± 0.85a | 3.67 ± 0.40ab | |
8 | 4.22 ± 0.67a | 3.40 ± 0.88a | 3.70 ± 0.90a | 4.33 ± 0.87a | 3.72 ± 0.70ab | |
12 | 3.56 ± 0.73abc | 3.33 ± 1.00a | 3.22 ± 0.67abc | 4.11 ± 0.78ab | 3.50 ± 0.50bc | |
16 | 3.78 ± 0.67ab | 3.22 ± 0.97a | 3.50 ± 0.52ab | 4.00 ± 1.12ab | 3.50 ± 0.53bc | |
20 | 2.78 ± 0.83bc | 2.56 ± 0.88a | 2.56 ± 0.50bc | 3.00 ± 1.00b | 3.11 ± 0.78bc | |
25 | 2.63 ± 0.74c | 2.50 ± 0.93a | 2.25 ± 0.88c | 3.00 ± 1.20b | 2.75 ± 0.71c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Chai, J.; Zhao, L.; Wang, Y.; Liao, X. The Impact of N2-Assisted High-Pressure Processing on the Microorganisms and Quality Indices of Fresh-Cut Bell Peppers. Foods 2021, 10, 508. https://doi.org/10.3390/foods10030508
Zhang F, Chai J, Zhao L, Wang Y, Liao X. The Impact of N2-Assisted High-Pressure Processing on the Microorganisms and Quality Indices of Fresh-Cut Bell Peppers. Foods. 2021; 10(3):508. https://doi.org/10.3390/foods10030508
Chicago/Turabian StyleZhang, Fan, Jingjing Chai, Liang Zhao, Yongtao Wang, and Xiaojun Liao. 2021. "The Impact of N2-Assisted High-Pressure Processing on the Microorganisms and Quality Indices of Fresh-Cut Bell Peppers" Foods 10, no. 3: 508. https://doi.org/10.3390/foods10030508
APA StyleZhang, F., Chai, J., Zhao, L., Wang, Y., & Liao, X. (2021). The Impact of N2-Assisted High-Pressure Processing on the Microorganisms and Quality Indices of Fresh-Cut Bell Peppers. Foods, 10(3), 508. https://doi.org/10.3390/foods10030508