Multi-Way Analysis Coupled with Near-Infrared Spectroscopy in Food Industry: Models and Applications
Abstract
:1. Introduction
2. Notation and Abbreviations
3. Multi-Way Models
3.1. N-PLS
3.2. PARAFAC (Parallel Factor Analysis)
3.3. PARAFAC2 (Parallel Factor Analysis 2)
3.4. Other Multi-Way Models
4. Preprocessing Techniques
5. Applications of Multi-Way Analysis and NIRS in Food Industry
5.1. Process Analysis and Control
5.2. Fraud and Quality Evaluation
5.3. Identification and Classification
5.4. Prediction and Quantification
5.5. Hyperspectral Image Analysis
6. Software and Algorithms
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Huck-Pezzei, V.A.; Seitz, I.; Karer, R.; Schmutzler, M.; De Benedictis, L.; Wild, B.; Huck, C.W. Alps food authentication, typicality and intrinsic quality by near infrared spectroscopy. Food Res. Int. 2014, 62, 984–990. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhao, S.; Feng, X.; He, Y. Transfer learning method for plastic pollution evaluation in soil using NIR sensor. Sci. Total Environ. 2020, 740, 140118. [Google Scholar] [CrossRef]
- Naethe, P.; Delaney, M.; Julitta, T. Changes of NOx in urban air detected with monitoring VIS-NIR field spectrometer during the coronavirus pandemic: A case study in Germany. Sci. Total Environ. 2020, 748, 141286. [Google Scholar] [CrossRef] [PubMed]
- Rego, G.; Ferrero, F.; Valledor, M.; Campo, J.C.; Forcada, S.; Royo, L.J.; Soldado, A. A portable IoT NIR spectroscopic system to analyze the quality of dairy farm forage. Comput. Electron. Agric. 2020, 175, 105578. [Google Scholar] [CrossRef]
- Liu, J.; Han, J.; Xie, J.; Wang, H.; Tong, W.; Ba, Y. Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2020, 226, 117639. [Google Scholar] [CrossRef] [PubMed]
- Wold, J.P.; O’Farrell, M.; Tschudi, J.; Eskildsen, C.E.; Andersen, P.V.; Ottestad, S. In-line and non-destructive monitoring of core temperature in sausages during industrial heat treatment by NIR interaction spectroscopy. J. Food Eng. 2020, 277, 109921. [Google Scholar] [CrossRef]
- Rambo, M.K.D.; Ferreira, M.M.C.; MELO, P.M.D.; Santana Junior, C.C.; Bertuol, D.A.; Rambo, M.C.D. Prediction of quality parameters of food residues using NIR spectroscopy and PLS models based on proximate analysis. Food Sci. Technol. 2020, 40, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Desai, P.M.; Acharya, S.; Armstrong, C.; Wu, E.L.; Zaidi, S.A. Underpinning mechanistic understanding of the segregation phenomena of pharmaceutical blends using a near-infrared (NIR) spectrometer embedded segregation tester. Eur. J. Pharm. Sci. 2020, 154, 105516. [Google Scholar] [CrossRef]
- Zhao, J.; Tian, G.; Qiu, Y.; Qu, H. Rapid quantification of active pharmaceutical ingredient for sugar-free Yangwei granules in commercial production using FT-NIR spectroscopy based on machine learning techniques. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2021, 245, 118878. [Google Scholar] [CrossRef]
- Chen, J.; Qi, J.; Chen, C.; Chen, J.; Liu, L.; Gao, R.; Zhang, T.; Song, L.; Ding, D.; Zhang, P. Tocilizumab–Conjugated Polymer Nanoparticles for NIR-II Photoacoustic-Imaging-Guided Therapy of Rheumatoid Arthritis. Adv. Mater. 2020, 32, 2003399. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Shinde, P.S.; Sreedharan, S.; Dey, A.K.; Vallis, K.; Mhaske, S.B.; Pramanik, S.K.; Das, A. Photoactivable Prodrug for Simultaneous Release of Mertansine, and CO along with a BODIPY Derivative as a Luminescent Marker in Mitochondria: A Proof of Concept for NIR Image-Guided Cancer Therapy. Chem. Sci. 2021, 12, 2667–2673. [Google Scholar] [CrossRef]
- Seifi, M.; Ahmadi, A.; Neyshabouri, M.-R.; Taghizadeh-Mehrjardi, R.; Bahrami, H.-A. Remote and Vis-NIR spectra sensing potential for soil salinization estimation in the eastern coast of Urmia hyper saline lake, Iran. Remote Sens. Appl. Soc. Environ. 2020, 20, 100398. [Google Scholar] [CrossRef]
- Hill, A.C.; Laugier, E.J.; Casana, J. Archaeological remote sensing using multi-temporal, drone-acquired thermal and Near Infrared (NIR) Imagery: A case study at the Enfield Shaker Village, New Hampshire. Remote Sens. 2020, 12, 690. [Google Scholar] [CrossRef] [Green Version]
- Grassi, S.; Alamprese, C. Advances in NIR spectroscopy applied to process analytical technology in food industries. Curr. Opin. Food Sci. 2018, 22, 17–21. [Google Scholar] [CrossRef]
- Marini, F. Chemometrics in Food Chemistry; Newnes: Oxford, UK, 2013. [Google Scholar]
- Truong, V.K.; Dupont, M.; Elbourne, A.; Gangadoo, S.; Pathirannahalage, P.R.; Cheeseman, S.; Chapman, J.; Cozzolino, D. From academia to reality check: A theoretical framework on the use of chemometric in food sciences. Foods 2019, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Stordrange, L.; Rajalahti, T.; Libnau, F.O. Multiway methods to explore and model NIR data from a batch process. Chemom. Intell. Lab. Syst. 2004, 70, 137–145. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Smilde, A.; Bro, R.; Geladi, P. Multi-Way Analysis: Applications in the Chemical Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- McConnell, A.J. Applications of Tensor Analysis; Courier Corporation: Chelmsford, MA, USA, 2014. [Google Scholar]
- Tucker, L.R. Some mathematical notes on three-mode factor analysis. Psychometrika 1966, 31, 279–311. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.R. The extension of factor analysis to three-dimensional matrices. In Contributions to Mathematical Psychology; Gulliksen, H., Frederiksen, N., Eds.; Holt, Rinehart and Winston: New York, NY, USA, 1964; pp. 110–127. [Google Scholar]
- Bro, R. Review on multiway analysis in chemistry—2000–2005. Crit. Rev. Anal. Chem. 2006, 36, 279–293. [Google Scholar] [CrossRef]
- Wold, S.; Geladi, P.; Esbensen, K.; Öhman, J. Multi-way principal components-and PLS-analysis. J. Chemom. 1987, 1, 41–56. [Google Scholar] [CrossRef]
- Bro, R. Multiway calibration. multilinear pls. J. Chemom. 1996, 10, 47–61. [Google Scholar] [CrossRef]
- Brasca, R.; Goicoechea, H.C.; Culzoni, M.J. Multiway Calibration Approaches for Quality Control of Food Samples. In Food Safety and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 143–165. [Google Scholar]
- Rinnan, Å.; Amigo, J.M.; Skov, T. Multiway methods in food science. Math. Stat. Methods Food Sci. Technol. 2014, 143–174. [Google Scholar]
- Bro, R. Multi-way Analysis in the Food Industry-Models, Algorithms, and Applications. Available online: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=265CD588FD4E914A42427F027A7F5D0D?doi=10.1.1.24.5344&rep=rep1&type=pdf (accessed on 8 April 2021).
- Booksh, K.S.; Kowalski, B.R. Theory of analytical chemistry. Anal. Chem. 1994, 66, 782A–791A. [Google Scholar] [CrossRef]
- Escandar, G.M.; Olivieri, A.C.; Faber, N.K.M.; Goicoechea, H.C.; de la Peña, A.M.; Poppi, R.J. Second-and third-order multivariate calibration: Data, algorithms and applications. Trac-Trends Anal. Chem. 2007, 26, 752–765. [Google Scholar] [CrossRef]
- Gourvénec, S.; Tomasi, G.; Durville, C.; Di Crescenzo, E.; Saby, C.; Massart, D.; Bro, R.; Oppenheim, G. CuBatch, a MATLAB® interface for n-mode data analysis. Chemom. Intell. Lab. Syst. 2005, 77, 122–130. [Google Scholar] [CrossRef]
- Wu, H.-L.; Wang, T.; Yu, R.-Q. Recent advances in chemical multi-way calibration with second-order or higher-order advantages: Multilinear models, algorithms, related issues and applications. Trac-Trends Anal. Chem. 2020, 130, 115954. [Google Scholar] [CrossRef]
- Kiers, H.A. Towards a standardized notation and terminology in multiway analysis. J. Chemom. 2000, 14, 105–122. [Google Scholar] [CrossRef]
- Liu, S.; Trenkler, G. Hadamard, Khatri-Rao, Kronecker and other matrix products. Int. J. Inf. Syst. Sci. 2008, 4, 160–177. [Google Scholar]
- Bro, R.; Smilde, A.K.; de Jong, S. On the difference between low-rank and subspace approximation: Improved model for multi-linear PLS regression. Chemom. Intell. Lab. Syst. 2001, 58, 3–13. [Google Scholar] [CrossRef]
- Luo, L.; Bao, S.; Mao, J.; Tang, D. Quality prediction and quality-relevant monitoring with multilinear PLS for batch processes. Chemom. Intell. Lab. Syst. 2016, 150, 9–22. [Google Scholar] [CrossRef]
- Faber, N.K.M.; Bro, R. Standard error of prediction for multiway PLS: 1. Background and a simulation study. Chemom. Intell. Lab. Syst. 2002, 61, 133–149. [Google Scholar] [CrossRef]
- Favilla, S.; Durante, C.; Vigni, M.L.; Cocchi, M. Assessing feature relevance in NPLS models by VIP. Chemom. Intell. Lab. Syst. 2013, 129, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Biancolillo, A.; Næs, T.; Bro, R.; Måge, I. Extension of SO-PLS to multi-way arrays: SO-N-PLS. Chemom. Intell. Lab. Syst. 2017, 164, 113–126. [Google Scholar] [CrossRef]
- Harshman, R.A. Foundations of the PARAFAC Procedure: Models and Conditions for an “Explanatory” Multimodal Factor Analysis. Available online: https://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf (accessed on 8 April 2021).
- Carroll, J.D.; Chang, J.-J. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 1970, 35, 283–319. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Ten Berge, J.M.; Sidiropoulos, N.D. On uniqueness in CANDECOMP/PARAFAC. Psychometrika 2002, 67, 399–409. [Google Scholar] [CrossRef]
- Kruskal, J.B. Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Its Appl. 1977, 18, 95–138. [Google Scholar] [CrossRef] [Green Version]
- Bro, R.; Kiers, H.A. A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 2003, 17, 274–286. [Google Scholar] [CrossRef]
- Tomasi, G.; Bro, R. PARAFAC and missing values. Chemom. Intell. Lab. Syst. 2005, 75, 163–180. [Google Scholar] [CrossRef]
- Salvatore, E.; Bevilacqua, M.; Bro, R.; Marini, F.; Cocchi, M. Classification Methods of Multiway Arrays as a Basic Tool for Food PDO Authentication. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2013; Volumen 60, pp. 339–382. [Google Scholar]
- Tomasi, G.; Bro, R. A comparison of algorithms for fitting the PARAFAC model. Comput. Stat. Data Anal. 2006, 50, 1700–1734. [Google Scholar] [CrossRef]
- Rajih, M.; Comon, P.; Harshman, R.A. Enhanced line search: A novel method to accelerate PARAFAC. Siam J. Matrix Anal. Appl. 2008, 30, 1128–1147. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Han, D.; Qi, L. New ALS methods with extrapolating search directions and optimal step size for complex-valued tensor decompositions. IEEE Trans. Signal Process. 2011, 59, 5888–5898. [Google Scholar] [CrossRef]
- Acar, E.; Dunlavy, D.M.; Kolda, T.G. A scalable optimization approach for fitting canonical tensor decompositions. J. Chemom. 2011, 25, 67–86. [Google Scholar] [CrossRef]
- Liu, L.; Wang, L.; Xie, J.; Wang, Y.; Zhang, Z. Signal parameter estimation through hierarchical conjugate gradient least squares applied to tensor decomposition. Etri J. 2020, 42, 922–931. [Google Scholar] [CrossRef] [Green Version]
- Erichson, N.B.; Manohar, K.; Brunton, S.L.; Kutz, J.N. Randomized CP tensor decomposition. Mach. Learn. Sci. Technol. 2020, 1, 025012. [Google Scholar] [CrossRef]
- Fu, X.; Ibrahim, S.; Wai, H.-T.; Gao, C.; Huang, K. Block-randomized stochastic proximal gradient for low-rank tensor factorization. IEEE Trans. Signal Process. 2020, 68, 2170–2185. [Google Scholar] [CrossRef]
- Lorenzo-Seva, U.; Ten Berge, J.M. Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology 2006, 2, 57–64. [Google Scholar] [CrossRef]
- Bro, R.; Workman, J.J., Jr.; Mobley, P.R.; Kowalski, B.R. Review of chemometrics applied to spectroscopy: 1985-95, Part 3—Multi-way analysis. Appl. Spectrosc. Rev. 1997, 32, 237–261. [Google Scholar] [CrossRef]
- Harshman, R.A. PARAFAC2: Mathematical and technical notes. In Proceedings of the UCLA Working Papers in Phonetics, Los Angeles, CA, USA; 1972; pp. 30–44. [Google Scholar]
- Kiers, H.A.; Ten Berge, J.M.; Bro, R. PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model. J. Chemom. 1999, 13, 275–294. [Google Scholar] [CrossRef]
- Ten Berge, J.M.; Kiers, H.A. Some uniqueness results for PARAFAC2. Psychometrika 1996, 61, 123–132. [Google Scholar] [CrossRef]
- Bro, R.; Andersson, C.A.; Kiers, H.A. PARAFAC2—Part II. Modeling chromatographic data with retention time shifts. J. Chemom. 1999, 13, 295–309. [Google Scholar] [CrossRef]
- Cohen, J.E.; Bro, R. Nonnegative PARAFAC2: A flexible coupling approach. In Proceedings of the International Conference on Latent Variable Analysis and Signal Separation, Guildford, UK, 2–5 July 2018; pp. 89–98. [Google Scholar]
- Van Benthem, M.H.; Keller, T.J.; Gillispie, G.D.; DeJong, S.A. Getting to the core of PARAFAC2, a nonnegative approach. Chemom. Intell. Lab. Syst. 2020, 206, 104127. [Google Scholar] [CrossRef]
- Mehanna, O.; Huang, K.; Gopalakrishnan, B.; Konar, A.; Sidiropoulos, N.D. Feasible point pursuit and successive approximation of non-convex QCQPs. IEEE Signal Process. Lett. 2014, 22, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Tian, K.; Wu, L.; Min, S.; Bro, R. Geometric search: A new approach for fitting PARAFAC2 models on GC-MS data. Talanta 2018, 185, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Kroonenberg, P.M. Three-Mode Principal Component Analysis: Theory and Applications; DSWO Press: Leiden, The Netherlands, 1983; Volume 2. [Google Scholar]
- Xu, Y.; Wu, Z.; Chanussot, J.; Wei, Z. Hyperspectral computational imaging via collaborative tucker3 tensor decomposition. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 98–111. [Google Scholar] [CrossRef]
- Wu, H.L.; Shibukawa, M.; Oguma, K. An alternating trilinear decomposition algorithm with application to calibration of HPLC–DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons. J. Chemom. 1998, 12, 1–26. [Google Scholar] [CrossRef]
- Kroonenberg, P.M. Applied Multiway Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 702. [Google Scholar]
- Bro, R.; Smilde, A.K. Centering and scaling in component analysis. J. Chemom. 2003, 17, 16–33. [Google Scholar] [CrossRef]
- Gurden, S.P.; Westerhuis, J.A.; Bro, R.; Smilde, A.K. A comparison of multiway regression and scaling methods. Chemom. Intell. Lab. Syst. 2001, 59, 121–136. [Google Scholar] [CrossRef]
- Mishra, P.; Lohumi, S. Improved prediction of protein content in wheat kernels with a fusion of scatter correction methods in NIR data modelling. Biosyst. Eng. 2021, 203, 93–97. [Google Scholar] [CrossRef]
- Hernández-Sánchez, N.; Gómez-del-Campo, M. From NIR spectra to singular wavelengths for the estimation of the oil and water contents in olive fruits. Grasas Y Aceites 2018, 69, 278. [Google Scholar] [CrossRef] [Green Version]
- Andasuryani, Y.; Purwanto, I.; Budiastra, K.S.; Syamsu, K. Non destructive and rapid analysis of catechin content in Gambir (Uncaria gambir Roxb.) using NIR spectroscopy. IJSER 2013, 4, 383–389. [Google Scholar]
- Basile, T.; Marsico, A.D.; Perniola, R. NIR Analysis of Intact Grape Berries: Chemical and Physical Properties Prediction Using Multivariate Analysis. Foods 2021, 10, 113. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Tang, G.; Xiong, Y.; Min, S. A new concept based on ensemble strategy and derivative for the quantitative analysis of infrared data. J. Chemom. 2021, e3323. [Google Scholar]
- Jiao, Y.; Li, Z.; Chen, X.; Fei, S. Preprocessing methods for near-infrared spectrum calibration. J. Chemom. 2020, 34, e3306. [Google Scholar] [CrossRef]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. Trac-Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Hu, K.; Yuan, J. Multivariate statistical process control based on multiway locality preserving projections. J. Process Control 2008, 18, 797–807. [Google Scholar] [CrossRef]
- Mori, J.; Yu, J. Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach. J. Process Control 2014, 24, 57–71. [Google Scholar] [CrossRef]
- Peres, F.A.P.; Peres, T.N.; Fogliatto, F.S.; Anzanello, M.J. Fault detection in batch processes through variable selection integrated to multiway principal component analysis. J. Process Control 2019, 80, 223–234. [Google Scholar] [CrossRef]
- Lele, S.S.; Chakraborty, S. Multiway Statistical Methods for Food Engineering and Technology. Math. Stat. Appl. Food Eng. 2020. [Google Scholar]
- Allosio-Ouarnier, N.; Boivin, P.; Courcoux, P.; Bertrand, D. Application of the parallel factor analysis to visible near infrared data for the control of the malting process. In Near Infrared Spectroscopy, Proceedings of the 9th International Conference, Verona, Italy, June 1999; NIR Publications: Chichester, UK; pp. 273–280.
- Liu, J.; Ma, X.; Wen, Y.; Wang, Y.; Cai, W.; Shao, X. Online near-infrared spectroscopy combined with alternating trilinear decomposition for process analysis of industrial production and quality assurance. Ind. Eng. Chem. Res. 2011, 50, 7677–7681. [Google Scholar] [CrossRef]
- Nielsen, J.P.; Bertrand, D.; Micklander, E.; Courcoux, P.; Munck, L. Study of NIR spectra, particle size distributions and chemical parameters of wheat flours: A multi-way approach. J. Near Infrared Spectrosc. 2001, 9, 275–285. [Google Scholar] [CrossRef]
- Qannari, E.M.; Wakeling, I.; Courcoux, P.; MacFie, H.J. Defining the underlying sensory dimensions. Food Qual. Prefer. 2000, 11, 151–154. [Google Scholar] [CrossRef]
- Peinado, A.; Van Den Berg, F.; Blanco, M.; Bro, R. Temperature-induced variation for NIR tensor-based calibration. Chemom. Intell. Lab. Syst. 2006, 83, 75–82. [Google Scholar] [CrossRef]
- Lillhonga, T.; Geladi, P. Three-way analysis of a designed compost experiment using near-infrared spectroscopy and laboratory measurements. J. Chemom. 2011, 25, 193–200. [Google Scholar] [CrossRef]
- Vigni, M.L.; Cocchi, M. Near infrared spectroscopy and multivariate analysis to evaluate wheat flour doughs leavening and bread properties. Anal. Chim. Acta 2013, 764, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Wilde, A.S.; Haughey, S.A.; Galvin-King, P.; Elliott, C.T. The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control 2019, 100, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Puertas, G.; Vázquez, M. Fraud detection in hen housing system declared on the eggs’ label: An accuracy method based on UV-VIS-NIR spectroscopy and chemometrics. Food Chem. 2019, 288, 8–14. [Google Scholar] [CrossRef]
- López-Maestresalas, A.; Insausti, K.; Jarén, C.; Pérez-Roncal, C.; Urrutia, O.; Beriain, M.J.; Arazuri, S. Detection of minced lamb and beef fraud using NIR spectroscopy. Food Control 2019, 98, 465–473. [Google Scholar] [CrossRef]
- Yang, R.; Liu, R.; Xu, K.; Yang, Y. Quantitative Analysis of Melamine by Multi-Way Partial Least Squares Model with Two-Dimensional Near-Infrared Correlation Spectroscopy. In Proceedings of the Biomedical Vibrational Spectroscopy VI: Advances in Research and Industry, San Francisco, CA, USA, 1–2 February 2014. [Google Scholar]
- Rosa, L.N.; Gonçalves, T.R.; Gomes, S.; Matsushita, M.; Gonçalves, R.P.; Março, P.H.; Valderrama, P. N-Way NIR data treatment through PARAFAC in the evaluation of protective effect of antioxidants in soybean oil. Molecules 2020, 25, 4366. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.N.; Coqueiro, A.; Março, P.H.; Valderrama, P. Thermal rice oil degradation evaluated by UV–Vis-NIR and PARAFAC. Food Chem. 2019, 273, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Kharbach, M.; Yu, H.; Kamal, R.; Barra, I.; Marmouzi, I.; Cherrah, Y.; Alaoui, K.; Bouklouze, A.; Heyden, Y.V. New insights into the Argan oil categories characterization: Chemical descriptors, FTIR fingerprints, and chemometric approaches. Talanta 2021, 225, 122073. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zhang, J.; Cai, W.; Shao, X. Chemometric algorithms for analyzing high dimensional temperature dependent near infrared spectra. Chemom. Intell. Lab. Syst. 2017, 170, 109–117. [Google Scholar] [CrossRef]
- Geladi, P.; Manley, M. Three-way data analysis of a wheat growing experiment using near infrared spectral data. J. Chemom. 2008, 22, 247–251. [Google Scholar] [CrossRef]
- Allosio, N.; Boivin, P.; Bertrand, D.; Courcoux, P. Characterisation of barley transformation into malt by three-way factor analysis of near infrared spectra. J. Near Infrared Spectrosc. 1997, 5, 157–166. [Google Scholar] [CrossRef]
- Yang, R.; Liu, R.; Dong, G.; Xu, K.; Yang, Y.; Zhang, W. Two-dimensional hetero-spectral mid-infrared and near-infrared correlation spectroscopy for discrimination adulterated milk. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2016, 157, 50–54. [Google Scholar] [CrossRef]
- Rinnan, Å.; Riu, J.; Bro, R. Multi-way prediction in the presence of uncalibrated interferents. J. Chemom. 2007, 21, 76–86. [Google Scholar] [CrossRef]
- Alcalà, M.; Ropero, J.; Vázquez, R.; Romañach, R.J. Deconvolution of chemical and physical information from intact tablets NIR spectra: Two-and three-way multivariate calibration strategies for drug quantitation. J. Pharm. Sci. 2009, 98, 2747–2758. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Shi, D.; Li, G.; Yang, S.; Tian, H.; Feng, X.; Lin, L. Non-destructive analysis for the in-flexible-containers liquid composition based on WTFE-NPLS method. Infrared Phys. Technol. 2019, 99, 277–283. [Google Scholar] [CrossRef]
- Letíci, A.; Farhat, I.A.; Aeberhardt, K.; Bro, R.; Engelsen, S.B. Modeling of temperature-induced near-infrared and low-field time-domain nuclear magnetic resonance spectral variation: Chemometric prediction of limonene and water content in spray-dried delivery systems. Appl. Spectrosc. 2009, 63, 141–152. [Google Scholar] [CrossRef]
- Peng, D.; Dong, K.; Li, X.; Xu, K. Multidimensional calibration of near infrared spectra for component concentration measurement in milk at different temperatures. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Zhang, X.-Z.; Ma, A.-J.; Feng, N.; Li, B.Q. N-way partial least squares combined with new self-construction strategy—A promising approach of using near infrared spectral data for quantitative determination of multiple compounds. J. Near Infrared Spectrosc. 2020, 28, 113–121. [Google Scholar] [CrossRef]
- Folch-Fortuny, A.; Prats-Montalbán, J.M.; Cubero, S.; Blasco, J.; Ferrer, A. VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits. Chemom. Intell. Lab. Syst. 2016, 156, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Lu, A.; Ren, D.; Wang, J. Detection of total viable count in spiced beef using hyperspectral imaging combined with wavelet transform and multiway partial least squares algorithm. J. Food Saf. 2018, 38, e12390. [Google Scholar] [CrossRef] [Green Version]
- Alexandrino, G.L.; Amigo, J.M.; Khorasani, M.R.; Rantanen, J.; Friderichsen, A.V.; Poppi, R.J. Unveiling multiple solid-state transitions in pharmaceutical solid dosage forms using multi-series hyperspectral imaging and different curve resolution approaches. Chemom. Intell. Lab. Syst. 2017, 161, 136–146. [Google Scholar] [CrossRef]
- Wu, L.; He, J.; Liu, G.; Wang, S.; He, X. Detection of common defects on jujube using Vis-NIR and NIR hyperspectral imaging. Postharvest Biol. Technol. 2016, 112, 134–142. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, H.; Sun, D.-W. Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications. Trends Food Sci. Technol. 2017, 69, 25–35. [Google Scholar] [CrossRef]
- Burger, J.; Gowen, A. Data handling in hyperspectral image analysis. Chemom. Intell. Lab. Syst. 2011, 108, 13–22. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, S.; Liu, F.; He, Y.; Bao, Y.; Zhang, C. Hyperspectral imaging for seed quality and safety inspection: A review. Plant Methods 2019, 15, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koljonen, J.; Nordling, T.E.; Alander, J.T. A review of genetic algorithms in near infrared spectroscopy and chemometrics: Past and future. J. Near Infrared Spectrosc. 2008, 16, 189–197. [Google Scholar] [CrossRef]
- Mobaraki, N.; Amigo, J.M. HYPER-Tools. A graphical user-friendly interface for hyperspectral image analysis. Chemom. Intell. Lab. Syst. 2018, 172, 174–187. [Google Scholar] [CrossRef]
- Andersson, C.A.; Bro, R. The N-way toolbox for MATLAB. Chemom. Intell. Lab. Syst. 2000, 52, 1–4. [Google Scholar] [CrossRef]
- Kolda, T.G.; Bader, B.W. MATLAB Tensor Toolbox; Sandia National Laboratories: Albuquerque, NM, USA, 2006.
- Phan, A.-H.; Tichavský, P.; Cichocki, A. Tensorbox: A Matlab Package for Tensor Decomposition; LABSP RIKEN: Saitama, Japan, 2012. [Google Scholar]
- Phan, A.-H.; Tichavsky, P.; Cichocki, A. Low complexity damped Gauss--Newton algorithms for CANDECOMP/PARAFAC. Siam J. Matrix Anal. Appl. 2013, 34, 126–147. [Google Scholar] [CrossRef]
- Wise, B.M.; Gallagher, N.; Bro, R.; Shaver, J.; Windig, W.; Koch, R.S. PLS Toolbox 4.0; Eigenvector Research: Wenatchee, WA, USA, 2007. [Google Scholar]
- Giordani, P.; Kiers, H.A.; Del Ferraro, M.A. Three-way component analysis using the R package ThreeWay. J. Stat. Softw. 2014, 57, 1–23. [Google Scholar] [CrossRef]
- Helwig, N.E. Multiway: Component Models for Multi-Way Data. R Package Version 1.0-5. Available online: https://CRAN.R-project.org/package=multiway (accessed on 8 April 2021).
- Kossaifi, J.; Panagakis, Y.; Anandkumar, A.; Pantic, M. Tensorly: Tensor learning in python. J Mach. Learn Res. 2019, 20, 1–6. [Google Scholar]
- Hao, L.; Liang, S.; Ye, J.; Xu, Z. TensorD: A tensor decomposition library in TensorFlow. Neurocomputing 2018, 318, 196–200. [Google Scholar] [CrossRef]
Abbreviations | Explanations | Abbreviations | Explanations |
---|---|---|---|
NIRS | Near-infrared spectroscopy | N-PLS-DA | N-way partial least square regression-discriminant analysis |
N-PLS | N-way partial least square regression | ATLD | Alternating tri-linear decomposition |
PARAFAC | Parallel factor analysis | M-PCA | Multiway principal component analysis |
PARAFAC2 | Parallel factor analysis 2 | PAT | Process analytical technology |
Tucker3 | A tensor decomposition method proposed by Tucker | MLR | Multiple linear regression |
CP | The combination name of canonical decomposition and PARAFAC | COMDIM | Analysis of common dimensions and specific weights |
SNV | Standard normal variate | MSC | Multiplicative scatter correction |
PCA | Principal component analysis | PLS | Partial least square |
DTLD | Direct trilinear decomposition | VIS/NIR | Visible-near-infrared spectroscopy |
FT-NIR | Fourier transform near-infrared spectroscopy | FT-IR | Fourier-transform infrared spectroscopy |
Applications | Analyte | Data Arrangement | Preprocessing | Variable Selection | Multi-Way Analysis Algorithm | Spectral Range (Wavenumber or Wavelength) | Analytical Technique | Reference |
---|---|---|---|---|---|---|---|---|
Process analysis and control | Malt | Wavelengths × batches × time | Centering | Manual | PARAFAC | 400–2500 nm | NIR | [86] |
Tobacco | Samples × variables × batches | Continuous wavelet transform | Not specified | ATLD | 4000–12,000 cm−1 | NIR | [87] | |
Wheat flour | Samples × wavelengths/laser particle size/chemical × number of data matrices | SNV | Not specified | COMDIM | 1100–2500 nm | NIR | [88] | |
Food waste | Batches × time × wavelengths | Derivatives | Manual | PARAFAC, Tucker3 and PARAFAC2 | 905–1682 nm | NIR | [91] | |
Water and ethanol mixture | Batches × wavelengths × temperature | Centering | Manual | PARAFAC | 580–1090 nm | NIR | [90] | |
Wheat flour | Mixtures × wavelengths × leavening times | Savitsky–Golay and SNV | Not specified | PARAFAC and N-PLS | 1380–2250 nm | NIR | [92] | |
Fraud and quality evaluation | Milk | Samples × wavelengths × wavelengths | Fourier transformation | Manual | N-PLS | 4000–10,000 cm−1 | FT-IR | [96] |
Soybean oil | Samples × temperature × wavenumbers | Savitzky–Golay derivatives | Not specified | PARAFAC | 900–1680 nm | NIR | [97] | |
Rice oil | Samples × temperature × spectra | Baseline correction and Savitzky–Golay derivatives | Not specified | PARAFAC | 900–1680 nm | NIR | [98] | |
Bread | Leavening times × flour formulations × wavelengths | Savitsky–Golay derivatives and SNV | Variable importance in Projection | N-PLS | 1380–2250 nm | NIR | [42] | |
Identification and classification | Ethanol | Temperature × wavelengths × samples | Continuous wavelet transform with a vanishing moment 2 | Not specified | PARAFAC and ATLD | 5500–12,000 cm−1 | NIR | [100] |
Wheat flour | Locality × cultivar × wavelengths | Savitzy–Golay derivatives | Manual | PARAFAC | 4000–10,000 cm−1 | FT-NIR | [101] | |
Milk | Samples × wavelengths × wavelengths | Mean-center | Manual | NPLS-DA | 4000–10,000 cm−1 | FT-IR | [103] | |
Barley | Wavelengths × batches × time | Centering | Not specified | PARAFAC | 1100–2500 nm | NIR | [102] | |
Prediction and quantification | Microcrystalline cellulose mixture | Concentration levels × wavelengths × compaction pressure levels | Centering, SNV, and Savitzky–Golay derivatives | Not specified | PARAFAC | 1097–2200 nm | NIR | [105] |
Limonene and water | Samples × temperatures × wavelengths | Extended inverted signal correction, and direct orthogonalization | Interval-PLS | N-PLS | 1100–2498 nm | NIR | [107] | |
Milk | Samples × temperatures × wavelengths | Discrete wavelet packet transform and 3D orthogonal signal correction | Not specified | WPNOSC N-PLS | 1100–2300 nm | FT-IR | [108] | |
Corn | Spectral number × wavelengths × samples | Not specified | Not specified | N-PLS | 1100–2498 nm | NIR | [109] | |
NIR image analysis | Citrus fruits | Fruit variety × features ×wavelengths | MSC and SNV | Permutation testing | NPLS-DA | 650–1080 nm | VIS/NIR hyperspectral imaging | [110] |
Spiced beef | Spiced beef sample × wavelength variables × wavelet detail coefficient | Wavelet transform | Manual | N-PLS | 400–1000 nm | VIS/NIR hyperspectral imaging | [111] | |
Lactose | Pixels × spectra × time/temperature | Logarithmization, SNV and Savitzky–Golay derivatives | Hypertools [118] | PARAFAC and PARAFAC2 | 1000–1700 nm | NIR hyperspectral imaging | [112] |
Software | Running Environment | Multi-Way Analysis Algorithms | Website for Installation |
---|---|---|---|
N-way toolbox | Matlab | PARAFAC, PARAFAC2, N-PLS, Tucker models, GRAM, DTLD, etc. | http://www.models.life.ku.dk/nwaytoolbox (7 April 2021) |
CuBatch | Matlab | PARAFAC, PARAFAC2, N-PLS, Tucker models, etc. | http://www.models.life.ku.dk/cubatch (accessed on 7 April 2021) |
Tensor toolbox | Matlab | PARAFAC, Tucker models, Poisson tensor factorization, Generalized CP tensor factorization, Symmetric CP tensor factorization, etc. | https://www.tensortoolbox.org/ (accessed on 7 April 2021) |
Tensorbox | Matlab | PARAFAC, Tucker models, Generalized Kronecker tensor decomposition, Tensor deconvolution, Tensor train decomposition, etc. | https://github.com/phananhhuy/TensorBox (accessed on 7 April 2021) |
PLS_Toolbox | Matlab | MPCA, PARAFAC, PARAFAC2, N-PLS, etc. | https://eigenvector.com/ (accessed on 7 April 2021) |
ThreeWay | R | PARAFAC, Tucker models, etc. | https://cran.r-project.org/web/packages/ThreeWay/index.html (accessed on 7 April 2021) |
multiway | R | PARAFAC, PARAFAC2, Tucker models, etc. | https://cran.r-project.org/web/packages/multiway/index.html (accessed on 7 April 2021) |
Tensorly | Python | PARAFAC, Tucker models, Tensor train decomposition, etc. | http://tensorly.org/dev/index.html (accessed on 7 April 2021) |
TensorD | Python | PARAFAC, Tucker models, Pairwise interaction tensor decomposition, etc. | https://github.com/Large-Scale-Tensor-Decomposition/tensorD (accessed on 7 April 2021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Guo, L.; Kharbach, M.; Han, W. Multi-Way Analysis Coupled with Near-Infrared Spectroscopy in Food Industry: Models and Applications. Foods 2021, 10, 802. https://doi.org/10.3390/foods10040802
Yu H, Guo L, Kharbach M, Han W. Multi-Way Analysis Coupled with Near-Infrared Spectroscopy in Food Industry: Models and Applications. Foods. 2021; 10(4):802. https://doi.org/10.3390/foods10040802
Chicago/Turabian StyleYu, Huiwen, Lili Guo, Mourad Kharbach, and Wenjie Han. 2021. "Multi-Way Analysis Coupled with Near-Infrared Spectroscopy in Food Industry: Models and Applications" Foods 10, no. 4: 802. https://doi.org/10.3390/foods10040802
APA StyleYu, H., Guo, L., Kharbach, M., & Han, W. (2021). Multi-Way Analysis Coupled with Near-Infrared Spectroscopy in Food Industry: Models and Applications. Foods, 10(4), 802. https://doi.org/10.3390/foods10040802