Interactions between Microbial Food Safety and Environmental Sustainability in the Fresh Produce Supply Chain
Abstract
:1. Introduction
2. Pre-Harvest Measures Taken for the Sake of Fresh Produce Microbial Safety: Efficacy and Consequences Regarding Sustainability
3. Post-Harvest Management in the Fresh Produce Supply Chain and Interactions between Safety and Sustainability
3.1. Structure of the Fresh Produce Supply Chain
3.2. Water Reuse and Food Safety in the Fresh Produce Industry
3.3. Packaging of Fresh Produce
3.4. Temperature Control
4. Relationship between Food Loss/Waste and Food Safety
5. Climate Change and Fresh Produce Safety
6. Approaches, Strategies and Solutions to Solve Conflicts between Fresh Produce Microbial Safety and Environmental Sustainability
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- United Nations (UN). Resolution adopted by the General Assembly on 25 September 2015. 70/1. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 29 April 2021).
- Truchado, P.; Allende, A. Relevance of fresh fruits and vegetables in foodborne outbreaks and the significance of the physiological state of bacteria | [La implicación de las frutas y hortalizas en las toxiinfecciones alimentarias y la relevancia del estado fisiológico de las bacterias]. Arbor 2020, 196, 1–9. [Google Scholar] [CrossRef]
- Focker, M.; van der Fels-Klerx, H.J. Economics applied to food safety. Curr. Opin. Food Sci. 2020, 36, 18–23. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, Food and Drug Administration, U.S. Department of Agriculture’s Food Safety and Inspection Service (CDC, FDA & USDA). Interagency Food Safety Analytics Collaboration. Foodborne Illness Source Attribution Estimates for 2018 for Salmonella, Escherichia coli O157, Listeria Monocytogenes, and Campylobacter Using Multi-Year Outbreak Surveillance Data, United States. GA and D.C.: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Food and Drug Administration, U.S. Department of Agriculture’s Food Safety and Inspection Service. 2020. Available online: https://www.cdc.gov/foodsafety/ifsac (accessed on 24 May 2021).
- Food and Agriculture Organization of the United Nations & World Health Organization (FAO & WHO). Attributing Illness Caused by Shiga Toxin-Producing Escherichia coli (STEC) to Specific Foods. Microbiological Risk Assessment Series 2019, No. 32. Rome. Available online: https://www.who.int/publications/i/item/9789241516396 (accessed on 18 May 2021).
- MacKenzie, C.A.; Apte, A. Modeling disruption in a fresh produce supply chain. Int. J. Logist. Manag. 2017, 28, 656–679. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-the, C.; Bardin, M.; Berard, A.; Berge, O.; Brillard, J.; Broussolle, V.; Carlin, F.; Renault, P.; Tchamitchian, M.; Morris, C.E. Agrifood systems and the microbial safety of fresh produce: Trade-offs in the wake of increased sustainability. Sci. Total Environ. 2016, 562, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Grace, D. Food Safety and the Sustainable Development Goals. 2017. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/100694/SDGs%20and%20food%20safety.pdf?sequence=4&isAllowed=y (accessed on 3 May 2021).
- Guillier, L.; Duret, S.; Hoang, H.-M.; Flick, D.; Laguerre, O. Is food safety compatible with food waste prevention and sustainability of the food chain? Proc. Food Sci. 2016, 7, 125–128. [Google Scholar] [CrossRef]
- Akkerman, R.; Farahani, P.; Grunow, M. Quality, safety and sustainability in food distribution: A review of quantitative operations management approaches and challenges. OR Spectr. 2010, 32, 863–904. [Google Scholar] [CrossRef]
- Duret, S.; Hoang, H.-M.; Derens-Bertheau, E.; Delahaye, A.; Laguerre, O.; Guillier, L. Combining Quantitative Risk Assessment of Human Health, Food Waste, and Energy Consumption: The Next Step in the Development of the Food Cold Chain? Risk Anal. 2019, 39, 906–925. [Google Scholar] [CrossRef]
- Leib, E.M.B.; Pollans, M.J. The new food safety. Calif. Law Rev. 2019, 107, 1173–1248. [Google Scholar] [CrossRef]
- European Commission. Towards a Sustainable Food System. Group of Chief Scientific Advisors. Scientific Opinion No.8, Mar 2020. Independent Expert Report. 2020. Available online: https://ec.europa.eu/info/sites/default/files/research_and_innovation/groups/sam/scientific_opinion_-_sustainable_food_system_march_2020.pdf (accessed on 3 June 2021).
- Guillier, L.; Duret, S.; Hoang, H.-M.; Flick, D.; Nguyen-theé, C.; Laguerre, O. Linking food waste prevention, energy consumption and microbial food safety: The next challenge of food policy? Curr. Opin. Food Sci. 2016, 12, 30–35. [Google Scholar] [CrossRef]
- Stuart, D. Constrained choice and ethical dilemmas in land management: Environmental quality and food safety in California agriculture. J. Agric. Environ. Ethic. 2009, 22, 53–71. [Google Scholar] [CrossRef]
- Karp, D.S.; Gennet, S.; Kilonzo, C.; Partyka, M.; Chaumont, N.; Atwill, E.R.; Kremen, C. Comanaging fresh produce for nature conservation and food safety. Proc. Natl. Acad. Sci. USA 2015, 112, 11126–11131. [Google Scholar] [CrossRef] [Green Version]
- Baur, P. When farmers are pulled in too many directions: Comparing institutional drivers of food safety and environmental sustainability in California agriculture. Agric. Hum. Values 2020, 37, 1175–1194. [Google Scholar] [CrossRef]
- Beretti, M.; Stuart, D. Food safety and environmental quality impose conflicting demands on Central Coast growers. Calif. Agric. 2008, 62, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Gennet, S.; Howard, J.; Langholz, J.; Andrews, K.; Reynolds, M.D.; Morrison, S.A. Farm practices for food safety: An emerging threat to floodplain and riparian ecosystems. Front. Ecol. Environ. 2013, 11, 236–242. [Google Scholar] [CrossRef]
- Olimpi, E.M.; Baur, P.; Echeverri, A.; Gonthier, D.; Karp, D.S.; Kremen, C.; Sciligo, A.; De Master, K.T. Evolving food safety pressures in California’s Central Coast Region. Front. Sustain. Food Syst. 2019, 3, 102. [Google Scholar] [CrossRef] [Green Version]
- Sellers, L.A.; Long, R.F.; Jay-Russell, M.T.; Li, X.; Atwill, E.R.; Engeman, R.M.; Baldwin, R.A. Impact of field-edge habitat on mammalian wildlife abundance, distribution, and vectored foodborne pathogens in adjacent crops. Crop Prot. 2018, 108, 1–11. [Google Scholar] [CrossRef]
- Smith, O.M.; Edworthy, A.; Taylor, J.M.; Jones, M.S.; Tormanen, A.; Kennedy, C.M.; Fu, Z.; Latimer, C.E.; Cornell, K.A.; Michelotti, L.A.; et al. Agricultural intensification heightens food safety risks posed by wild birds. J. Appl. Ecol. 2020, 57, 2246–2257. [Google Scholar] [CrossRef]
- Fonseca, J.M.; Ravishankar, S.; Sanchez, C.A.; Park, E.; Nolte, K.D. Assessing the food safety risk posed by birds entering leafy greens fields in the US southwest. Int. J. Environ. Res. Public Health 2020, 17, 8711. [Google Scholar] [CrossRef]
- Glaize, A.; Young, M.; Harden, L.; Gutierrez-Rodriguez, E.; Thakura, S. The effect of vegetation barriers at reducing the transmission of Salmonella and Escherichia coli from animal operations to fresh produce. Int. J. Food Microbiol. 2021, 347, 109196. [Google Scholar] [CrossRef]
- Chaudhry, V.; Rehman, A.; Mishra, A.; Chauhan, P.S.; Nautiyal, C.S. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 2012, 64, 450–460. [Google Scholar] [CrossRef]
- Chen, D.M.; Yuan, L.; Liu, Y.R.; Ji, J.H.; Hou, H.Q. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties. Eur. J. Agron. 2017, 90, 34–42. [Google Scholar] [CrossRef]
- Gu, G.; Strawn, L.K.; Oryang, D.O.; Zheng, J.; Reed, E.A.; Ottesen, A.R.; Bell, R.L.; Chen, Y.; Duret, S.; Ingram, D.T.; et al. Agricultural practices influence Salmonella contamination and survival in pre-harvest tomato production. Front. Microbiol. 2018, 9, 2451. [Google Scholar] [CrossRef] [Green Version]
- Devarajan, N.; McGarvey, J.A.; Scow, K.; Jones, M.S.; Lee, S.; Samaddar, S.; Schmidt, R.; Tran, T.D.; Karp, D.S. Cascading effects of composts and cover crops on soil chemistry, bacterial communities and the survival of foodborne pathogens. J. Appl. Microbiol. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Ferelli, A.M.C.; Micallef, S.A. Food safety risks and issues associated with farming and handling practices for organic certified fresh produce. In Safety and Practice for Organic Food; Biswas, D., Micallef, S.A., Eds.; Academic Press: Waltham, MA, USA, 2019; pp. 151–180. [Google Scholar] [CrossRef]
- Röös, E.; Bajzelj, B.; Weil, C.; Andersson, E.; Bossio, D.; Gordon, L.J. Moving beyond organic–A food system approach to assessing sustainable and resilient farming. Glob. Food Secur. 2021, 28, 100487. [Google Scholar] [CrossRef]
- Smith, L.G.; Kirk, G.J.D.; Jones, P.J.; Williams, A.G. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat. Commun. 2019, 10, 4641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allende, A.; Monaghan, J. Irrigation water quality for leafy crops: A perspective of risks and potential solutions. Int. J. Environ. Res. Public Health 2015, 12, 7457–7477. [Google Scholar] [CrossRef] [Green Version]
- United States Food and Drug Administration (US FDA). Investigation Summary: Factors Potentially Contributing to the Contamination of Romaine Lettuce Implicated in the Fall 2018 Multi-State Outbreak of E. coli O157:H7. 2019. Available online: https://www.fda.gov/Food/RecallsOutbreaksEmergencies/Outbreaks/ucm631243.htm (accessed on 27 April 2021).
- Gil, M.I.; Selma, M.V.; Suslow, T.; Jacxsens, L.; Uyttendaele, M.; Allende, A. Pre- and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Crit. Rev. Food Sci. 2015, 55, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Banach, J.L.; Van Der Fels-Klerx, H.J. Microbiological reduction strategies of irrigation water for fresh produce. J. Food Protect. 2020, 83, 1072–1087. [Google Scholar] [CrossRef] [PubMed]
- Dandie, C.E.; Ogunniyi, A.D.; Ferro, S.; Hall, B.; Drigo, B.; Chow, C.W.K.; Venter, H.; Myers, B.; Deo, P.; Donner, E.; et al. Disinfection options for irrigation water: Reducing the risk of fresh produce contamination with human pathogens. Crit. Rev. Environ. Sci. Technol. 2018, 50, 2144–2174. [Google Scholar] [CrossRef]
- Garrido, Y.; Marín, A.; Tudela, J.A.; Truchado, P.; Allende, A.; Gil, M.I. Chlorate accumulation in commercial lettuce cultivated in open field and irrigated with reclaimed water. Food Control 2020, 114, 107283. [Google Scholar] [CrossRef]
- Tombini-Decol, L.; López-Gálvez, F.; Truchado, P.; Tondo, E.C.; Gil, M.I.; Allende, A. Suitability of chlorine dioxide as a tertiary treatment for municipal wastewater and use of reclaimed water for overhead irrigation of baby lettuce. Food Control 2019, 96, 186–193. [Google Scholar] [CrossRef]
- López-Gálvez, F.; Andújar, S.; Marín, A.; Tudela, J.A.; Allende, A.; Gil, M.I. Disinfection by-products in baby lettuce irrigated with electrolysed water. J. Sci. Food Agric. 2018, 98, 2981–2988. [Google Scholar] [CrossRef]
- European Parliament and of the Council. Consolidated Text: Regulation (EC) No 396/2005 of the of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC. 2005. Available online: https://eur-lex.europa.eu/eli/reg/2005/396/2021-01-06 (accessed on 17 May 2021).
- Truchado, P.; Gil, M.I.; Suslow, T.; Allende, A. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS ONE 2018, 13, e199291. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Aguayo, E. Effect of irrigation with ozonated water on the quality of capsicum seedlings grown in the nursery. Agric. Water Manag. 2019, 221, 547–555. [Google Scholar] [CrossRef]
- Payen, S.; Basset-Mens, C.; Perret, S. LCA of local and imported tomato: An energy and water trade-off. J. Clean. Prod. 2015, 87, 139–148. [Google Scholar] [CrossRef]
- Boschiero, M.; Zanotelli, D.; Ciarapica, F.E.; Fadanelli, L.; Tagliavini, M. Greenhouse gas emissions and energy consumption during the post-harvest life of apples as affected by storage type, packaging and transport. J. Clean. Prod. 2019, 220, 45–56. [Google Scholar] [CrossRef]
- Kumar, V.; Wang, M.; Kumari, A.; Akkaranggoon, S.; Garza-Reyes, J.A.; Neutzling, D.M.; Tupa, J. Exploring short food supply chains from triple bottom line lens: A comprehensive systematic review. In Proceedings of the International Conference on Industrial Engineering and Operations Management 2019 (MAR), Bangkok, Thailand, 5–7 March 2018; pp. 728–738. [Google Scholar]
- Vittersø, G.; Torjusen, H.; Laitala, K.; Tocco, B.; Biasini, B.; Csillag, P.; de Labarre, M.D.; Lecoeur, J.-L.; Maj, A.; Majewski, E.; et al. Short food supply chains and their contributions to sustainability: Participants’ views and perceptions from 12 European cases. Sustainability 2019, 11, 4800. [Google Scholar] [CrossRef] [Green Version]
- Chapman, B.; Gunter, C. Local food systems food safety concerns. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, E.; Galli, F.; Menozzi, D.; Maye, D.; Touzard, J.-M.; Marescotti, A.; Six, J.; Brunori, G. Comparing the sustainability of local and global food products in Europe. J. Clean. Prod. 2017, 165, 346–359. [Google Scholar] [CrossRef]
- Hernández-Rubio, J.; Pérez-Mesa, J.C.; Piedra-Muñoz, L.; Galdeano-Gómez, E. Determinants of food safety level in fruit and vegetable wholesalers’ supply chain: Evidence from Spain and France. Int. J. Environ. Res. Public Health 2018, 15, 2246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Azcárate, M.; Cruz Maceín, J.L.; Bardají, I. Why buying directly from producers is a valuable choice? Expanding the scope of short food supply chains in Spain. Sustain. Prod. Consum. 2021, 26, 911–920. [Google Scholar] [CrossRef]
- Kirezieva, K.; Luning, P.A.; Jacxsens, L.; Uyttendaele, M. Status of food safety management activities in fresh produce companies in the European Union and beyond. Acta Hortic. 2015, 1103, 167–173. [Google Scholar] [CrossRef]
- Wright, K.G.; Sirsat, S.A.; Neal, J.A.; Gibson, K.E. Growth of local food systems: A review of potential food safety implications. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2015, 10, 025. [Google Scholar] [CrossRef] [Green Version]
- Young, I.; Thaivalappil, A.; Reimer, D.; Greig, J. Food safety at farmers’ markets: A knowledge synthesis of published research. J. Food Protect. 2017, 80, 2033–2047. [Google Scholar] [CrossRef] [PubMed]
- Manzocco, L.; Ignat, A.; Anese, M.; Bot, F.; Calligaris, S.; Valoppi, F.; Nicoli, M.C. Efficient management of the water resource in the fresh-cut industry: Current status and perspectives. Trends Food Sci. Tech. 2015, 46, 286–294. [Google Scholar] [CrossRef]
- Fusi, A.; Castellani, V.; Bacenetti, J.; Cocetta, G.; Fiala, M.; Guidetti, R. The environmental impact of the production of fresh cut salad: A case study in Italy. Int. J. Life Cycle Ass. 2016, 21, 162–175. [Google Scholar] [CrossRef]
- Morris, J.R.; Brady, P.L. Temperature effects on produce degradation. In Produce Degradation: Pathways and Prevention; Lamikanra, O., Imam, S., Ukuku, D., Eds.; CRC Press: Boca Raton, FI, USA, 2005; pp. 599–647. [Google Scholar]
- Artés, F.; Gómez, P.A.; Aguayo, E.; Escalona, V.H.; Artés-Hernández, F. Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol. Technol. 2009, 51, 287–296. [Google Scholar] [CrossRef]
- Silveira, A.C.; Aguayo, E.; Escalona, V.H.; Artés, F. Combined effect of hot water treatment and peracetic acid to maintain the overall quality in fresh-cut Galia melon. Innov. Food Sci. Emerg. 2011, 12, 569–576. [Google Scholar] [CrossRef]
- Ölmez, H. Water Consumption, Reuse and Reduction Strategies in Food Processing. In Sustainable Food Processing; Tiwari, B.K., Norton, T., Holden, N.M., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2013; pp. 401–434. [Google Scholar]
- López-Gálvez, F.; Gil, M.I. The importance of water in the fresh produce industry | [La importancia del agua en la industria de alimentos vegetales]. Arbor 2020, 196, 1–9. [Google Scholar] [CrossRef]
- Weng, S.-C.; Jacangelo, J.G.; Schwab, K.J. Sustainable practice for the food industry: Assessment of selected treatment options for reclamation of washwater from vegetable processing. Int. J. Environ. Sci. Technol. 2019, 16, 1369–1378. [Google Scholar] [CrossRef]
- Mundi, G.S.; Zytner, R.G.; Warriner, K. Fruit and vegetable wash-water characterization, treatment feasibility study and decision matrices. Can. J. Civil Eng. 2017, 44, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Nahim-Granados, S.; Sánchez-Pérez, J.A.; Polo-Lopez, M.I. Effective solar processes in fresh-cut wastewater disinfection: Inactivation of pathogenic E. coli O157:H7 and Salmonella enteritidis. Catal. Today 2018, 313, 79–85. [Google Scholar] [CrossRef]
- Meneses, Y.E.; Stratton, J.; Flores, R.A. Water reconditioning and reuse in the food processing industry: Current situation and challenges. Trends Food Sci. Tech. 2017, 61, 72–79. [Google Scholar] [CrossRef]
- López-Gálvez, F.; Tudela, J.A.; Allende, A.; Gil, M.I. Microbial and chemical characterization of commercial washing lines of fresh produce highlights the need for process water control. Innov. Food Sci. Emerg. 2019, 51, 211–219. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, B.; Van Haute, S.; Nou, X.; Zhang, B.; Teng, Z.; Turner, E.R.; Wang, Q.; Millner, P.D. Association between bacterial survival and free chlorine concentration during commercial fresh-cut produce wash operation. Food Microbiol. 2018, 70, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Tudela, J.A.; López-Gálvez, F.; Allende, A.; Gil, M.I. Chlorination management in commercial fresh produce processing lines. Food Control 2019, 106, 106760. [Google Scholar] [CrossRef]
- Vigil, M.; Laza, M.P.; Moran-Palacios, H.; Cabal, J.V.A. Optimizing the environmental profile of fresh-cut produce: Life cycle assessment of novel decontamination and sanitation techniques. Sustainability 2020, 12, 3674. [Google Scholar] [CrossRef]
- Gombas, D.; Luo, Y.; Brennan, J.; Shergill, G.; Petran, R.; Walsh, R.; Hau, H.; Khurana, K.; Zomorodi, B.; Rosen, J.; et al. Guidelines to validate control of cross-contamination during washing of fresh-cut leafy vegetables. J. Food Protect. 2017, 80, 312–330. [Google Scholar] [CrossRef] [Green Version]
- Conidi, C.; Cassano, A.; Garcia-Castello, E. Valorization of artichoke wastewaters by integrated membrane process. Water Res. 2014, 48, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, H.; Tian, J.; Shi, J.; Linhardt, R.J.; Ye, T.D.X.; Chen, S. Recovery of High Value-Added Nutrients from Fruit and Vegetable Industrial Wastewater. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1388–1402. [Google Scholar] [CrossRef] [Green Version]
- White, A.; Lockyer, S. Removing plastic packaging from fresh produce–what’s the impact? Nutr. Bull. 2020, 45, 35–50. [Google Scholar] [CrossRef]
- Kyere, E.O.; Qiu, G.W.; Md Zain, S.N.; Palmer, J.; Wargent, J.J.; Fletcher, G.C.; Flint, S. A comparison of Listeria monocytogenes contamination in bagged and un-bagged lettuce in supermarkets. LWT-Food Sci. Technol. 2020, 134, 110022. [Google Scholar] [CrossRef]
- Abejón, R.; Bala, A.; Vázquez-Rowe, I.; Aldaco, R.; Fullana-i-Palmer, P. When plastic packaging should be preferred: Life cycle analysis of packages for fruit and vegetable distribution in the Spanish peninsular market. Resour. Conserv. Recy. 2020, 155, 104666. [Google Scholar] [CrossRef]
- Suslow, T.V. Minimizing Risk in Multiple-Use Containers. Food Safety & Quality Magazine: Suslow. UC Davis April 2015 Full Version. Available online: https://ucfoodsafety.ucdavis.edu/sites/g/files/dgvnsk7366/files/inline-files/212397.pdf (accessed on 22 March 2021).
- Zhu, Y.; Wu, F.; Trmcic, A.; Wang, S.; Warriner, K. Microbiological status of RPCs in commercial grower/packer operations and risk of Salmonella cross-contamination between containers and cucumbers. Food Control 2020, 110, 107021. [Google Scholar] [CrossRef]
- López-Gálvez, F.; Rasines, L.; Conesa, E.; Gómez, P.A.; Artés-Hernández, F.; Aguayo, E. Reusable Plastic Crates (RPCs) for Fresh Produce (Case Study on Cauliflowers): Sustainable Packaging but Potential Salmonella Survival and Risk of Cross-Contamination. Foods 2021, 10, 1254. [Google Scholar] [CrossRef]
- Barbosa, J.; Albano, H.; Silva, C.P.; Teixeira, P. Microbiological contamination of reusable plastic bags for food transportation. Food Control 2019, 99, 158–163. [Google Scholar] [CrossRef]
- European Commission. Una Estrategia Europea para el Plástico en Una Economía Circular. Comunicación de la Comisión al Parlamento Europeo, al Consejo, al Comité Económico y Social Europeo y al Comité de las Regiones. 2018. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=COM:2018:0028:FIN (accessed on 3 June 2021).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Brussels, 20.5.2020 COM (2020) 381 Final. 2020. Available online: https://op.europa.eu/en/publication-detail/-/publication/ae5ada03-0dc3-48f8-9a32-0460e65ba7ed/language-en (accessed on 3 June 2021).
- Danyluk, M.D.; Schaffner, D.W. Quantitative assessment of the microbial risk of leafy greens from farm to consumption: Preliminary framework, data, and risk estimates. J. Food Protect. 2011, 74, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-W.; Zuo, M.; Zhu, W.-Y.; Zuo, J.-H.; Lü, E.-L.; Yang, X.-T. A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends. Trends Food Sci. Technol. 2021, 109, 536–551. [Google Scholar] [CrossRef]
- Collart, A.J.; Canales, E. How might broad adoption of blockchain-based traceability impact the U.S. fresh produce supply chain? Appl. Econ. Perspect. Policy 2021, in press. [Google Scholar] [CrossRef]
- Wu, W.; Beretta, C.; Cronje, P.; Hellweg, S.; Defraeye, T. Environmental trade-offs in fresh-fruit cold chains by combining virtual cold chains with life cycle assessment. Appl. Energ. 2019, 254, 113586. [Google Scholar] [CrossRef]
- Xie, Y.; Brecht, J.K.; Abrahan, C.E.; Bornhorst, E.R.; Luo, Y.; Monge, A.L.; Vorst, K.; Brown, W. Improving temperature management and retaining quality of fresh-cut leafy greens by retrofitting open refrigerated retail display cases with doors. J. Food Eng. 2021, 292, 110271. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction. Rome. Licence: CC BY-NC-SA 3.0 IGO. 2019. Available online: http://www.fao.org/3/CA6030EN/CA6030EN.pdf (accessed on 4 July 2021).
- Food and Agriculture Organization of the United Nations (FAO). Global Food Losses and Food Waste–Extent, Causes and Prevention; FAO: Rome, Italy, 2011; Available online: http://www.fao.org/3/mb060e/mb060e00.pdf (accessed on 3 June 2021).
- Food and Agriculture Organization of the United Nations (FAO). How to Reduce Food Loss and Waste for Food Security and Environmental Sustainability; FAO: Rome, Italy, 2019; Available online: http://www.fao.org/3/ca6481en/ca6481en.pdf (accessed on 2 July 2021).
- Lillford, P.; Hermansson, A.-M. Global missions and the critical needs of food science and technology. Trends Food Sci. Tech. 2021, 111, 800–811. [Google Scholar] [CrossRef]
- Kiaya, V. Post-Harvest Losses and Strategies to Reduce Them. Technical Paper on Post-Harvest Losses. Action Contre la Faim. 2014. Available online: https://www.actioncontrelafaim.org/wp-content/uploads/2018/01/technical_paper_phl__.pdf (accessed on 3 June 2021).
- Food and Agriculture Organization of the United Nations (FAO). Transforming Food and Agriculture to Achieve the SDGs. 20 Interconnected Actions to Guide Decision-Makers; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Available online: http://www.fao.org/3/I9900EN/i9900en.pdf (accessed on 3 June 2021).
- Watson, M.; Meah, A. Food, waste and safety: Negotiating conflicting social anxieties into the practices of domestic provisioning. Sociol. Rev. 2013, 60 (Suppl. 2), 102–120. [Google Scholar] [CrossRef]
- Kasza, G.; Szabó-Bódi, B.; Lakner, Z.; Izsó, T. Balancing the desire to decrease food waste with requirements of food safety. Trends Food Sci. Tech. 2019, 84, 74–76. [Google Scholar] [CrossRef]
- High Level Panel of Experts on Food Security and Nutrition (HLPE). Food Losses and Waste in the Context of Sustainable Food Systems. In A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; HLPE: Rome, Italy, 2014; Available online: http://www.fao.org/3/i3901e/i3901e.pdf (accessed on 3 June 2021).
- European Parliament and of the Council. Regulation (Eu) No 1169/2011 of 25 October 2011 on the Provision of Food Information to Consumers. Published on 22.11.2011. Off. J. Eur. Union 2011, 304, 18–63. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R1169 (accessed on 3 June 2021).
- European Commission. Flash Eurobarometer 425. Food Waste and Date Marking. 2015. Available online: https://europa.eu/eurobarometer/surveys/detail/2095 (accessed on 27 May 2021).
- Caldeira, C.; De Laurentiis, V.; Sala, S. Assessment of Food Waste Prevention Actions: Development of an Evaluation Framework to Assess the Performance of Food Waste Prevention Actions; EUR 29901 EN; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- De Boeck, E.; Jacxsens, L.; Goubert, H.; Uyttendaele, M. Ensuring food safety in food donations: Case study of the Belgian donation/acceptation chain. Food Res. Int. 2017, 100, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Bierma, T.J.; Jin, G.; Bazan, C.N. Food donation and food safety: Challenges, current practices, and the road ahead. J. Environ. Health 2019, 81, 16–21. [Google Scholar]
- Hecht, A.A.; Neff, R.A. Food rescue intervention evaluations: A systematic review. Sustainability 2019, 11, 6718. [Google Scholar] [CrossRef] [Green Version]
- Plazzotta, S.; Manzocco, L. Food waste valorization. In Saving Food: Production, Supply Chain, Food Waste and Food Consumption; Galanakis, C.M., Ed.; Academic Press: Waltham, MA, USA, 2019; pp. 279–313. [Google Scholar]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Terry, L.A.; Esteban, R.M. The Impact of Pasteurisation and Sterilisation on Bioactive Compounds of Onion By-products. Food Bioprocess Technol. 2013, 6, 1979–1989. [Google Scholar] [CrossRef]
- Redlingshöfer, B.; Barles, S.; Weisz, H. Are waste hierarchies effective in reducing environmental impacts from food waste? A systematic review for OECD countries. Resour. Conserv. Recy. 2020, 156, 104723. [Google Scholar] [CrossRef]
- Augustin, M.A.; Sanguansri, L.; Fox, E.M.; Cobiac, L.; Cole, M.B. Recovery of wasted fruit and vegetables for improving sustainable diets. Trends Food Sci. Technol. 2020, 95, 75–85. [Google Scholar] [CrossRef]
- Wei, H.; Seidi, F.; Zhang, T.; Jin, Y.; Xiao, H. Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chem. 2021, 337, 127750. [Google Scholar] [CrossRef]
- Papoutsis, K.; Edelenbos, M. Postharvest environmentally and human-friendly pre-treatments to minimize carrot waste in the supply chain caused by physiological disorders and fungi. Trends Food Sci. Technol. 2021, 112, 88–98. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Guirao-Martínez, J.; Martínez, J.A.; Lozano-Pastor, P.; Aguayo, E. Inducing fungal resistance of spinach treated with preharvest hormetic doses of UV-C. LWT Food Sci. Technol. 2019, 113, 108302. [Google Scholar] [CrossRef]
- Falagán, N.; Artés, F.; Gómez, P.A.; Artés-Hernández, F.; Conejero, W.; Aguayo, E. Deficit irrigation strategies combined with controlled atmosphere preserve quality in early peaches. Food Sci. Technol. Int. 2015, 21, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Falagán, N.; Artés, F.; Aguayo, E. Natural additives to preserve quality and improve nutritional value of fresh-cut nectarine. Food Sci. Technol. Int. 2016, 22, 429–439. [Google Scholar] [CrossRef]
- Falagán, N.; Artés, F.; Aguayo, E. Heat treatment as postharvest tool for improving quality in extra-early nectarines. J. Sci. Food Agric. 2018, 98, 1469–1475. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 3 June 2021).
- WHO. Food Safety, Climate Change and the Role of WHO. 2018. Available online: https://www.who.int/foodsafety/publications/all/climate_change/en/ (accessed on 10 June 2021).
- United States Global Change Research Program (USGCRP). The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment; Crimmins, A., J. Balbus, J.L., Gamble, C.B., Beard, J.E., Bell, D., Dodgen, R.J., Eisen, N., Fann, M.D., Hawkins, S.C., et al., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2016; p. 312. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). Climate Change: Unpacking the Burden on Food Safety; Food Safety and Quality Series; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Filippelli, G.M.; Freeman, J.L.; Gibson, J.; Jay, S.; Moreno-Madriñán, M.J.; Ogashawara, I.; Rosenthal, F.S.; Wang, Y.; Wells, E. Climate change impacts on human health at an actionable scale: A state-level assessment of Indiana, USA. Clim. Chang. 2020, 163, 1985–2004. [Google Scholar] [CrossRef]
- Liu, C.; Hofstra, N.; Franz, E. Impacts of climate change on the microbial safety of pre-harvest leafy green vegetables as indicated by Escherichia coli O157 and Salmonella spp. Int. J. Food Microbiol. 2013, 163, 119–128. [Google Scholar] [CrossRef]
- McIntyre, K.M.; Setzkorn, C.; Hepworth, P.J.; Morand, S.; Morse, A.P.; Baylis, M. Systematic Assessment of the Climate Sensitivity of Important Human and Domestic Animals Pathogens in Europe. Sci. Rep. 2017, 7, 7134. [Google Scholar] [CrossRef] [Green Version]
- Holvoet, K.; Sampers, I.; Seynnaeve, M.; Uyttendaele, M. Relationships among hygiene indicators and enteric pathogens in irrigation water, soil and lettuce and the impact of climatic conditions on contamination in the lettuce primary production. Int. J. Food Microbiol. 2014, 171, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Guidance on Microbial Contamination in Previously Flooded Outdoor Areas. Atlanta: U.S. Department of Health and Human Services. 2011. Available online: https://www.cdc.gov/nceh/ehs/publications/guidance_flooding.htm (accessed on 24 May 2021).
- Castro-Ibáñez, I.; Gil, M.I.; Tudela, J.A.; Allende, A. Microbial safety considerations of flooding in primary production of leafy greens: A case study. Food Res. Int. 2015, 68, 62–69. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Special Report. Climate Change and Land. 2019. Available online: https://www.ipcc.ch/srccl/ (accessed on 27 May 2021).
- Zhang, Y.; Sallach, J.B.; Hodges, L.; Snow, D.D.; Bartelt-Hunt, S.L.; Eskridge, K.M.; Li, X. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation. Environ. Pollut. 2016, 208, 523–531. [Google Scholar] [CrossRef]
- Hellberg, R.S.; Chu, E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Crit. Rev. Microbiol. 2016, 42, 548–572. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Maggiore, A.; Afonso, A.; Barrucci, F.; De Sanctis, G. Climate Change As a Driver of Emerging Risks for Food and Feed Safety, Plant, Animal Health and Nutritional Quality; EFSA Supporting Publication: Parma, Italy, 2020; p. 146. [Google Scholar] [CrossRef]
- Kirezieva, K.; Jacxsens, L.; van Boekel, M.A.J.S.; Luning, P.A. Towards strategies to adapt to pressures on safety of fresh produce due to climate change. Food Res. Int. 2015, 68, 94–107. [Google Scholar] [CrossRef]
- Smith, B.A.; Ruthman, T.; Sparling, E.; Auld, H.; Comer, N.; Young, I.; Lammerding, A.M.; Fazil, A. A risk modeling framework to evaluate the impacts of climate change and adaptation on food and water safety. Food Res. Int. 2015, 68, 78–85. [Google Scholar] [CrossRef] [Green Version]
- United States Food and Drug Administration (US FDA). Final Environmental Impact Statement (EIS) for the Proposed Rule: Standards for Growing, Harvesting, Packing, and Holding of Produce for Human Consumption. 2015. Available online: https://www.fda.gov/media/94347/download (accessed on 27 May 2021).
- Steiner, R. Curso Sobre Agricultura Biodinámica; Steiner, R., Ed.; Publisher: Rudolf Steiner Madrid, Spain, 2017; p. 223. [Google Scholar]
- Crohn, D.M.; Bianchi, M.L. Research priorities for coordinating management of food safety and water quality. J. Environ. Qual. 2008, 37, 1411–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belias, A.M.; Sbodio, A.; Truchado, P.; Weller, D.; Pinzon, J.; Skots, M.; Allende, A.; Munther, D.; Suslow, T.; Wiedmann, M.; et al. Effect of weather on the die-off of Escherichia coli and attenuated Salmonella enterica serovar typhimurium on preharvest leafy greens following irrigation with contaminated water. Appl. Environ. Microb. 2020, 86, e00899. [Google Scholar] [CrossRef]
- Partyka, M.L.; Bond, R.F.; Farrar, J.; Falco, A.; Cassens, B.; Cruse, A.; Atwill, E.R. Quantifying the sensitivity of scent detection dogs to identify fecal contamination on raw produce. J. Food Protect. 2014, 77, 6–14. [Google Scholar] [CrossRef]
- Cho, H.; Kim, M.S.; Kim, S.; Lee, H.; Oh, M.; Chung, S.H. Hyperspectral determination of fluorescence wavebands for multispectral imaging detection of multiple animal fecal species contaminations on Romaine lettuce. Food Bioprocess Tech. 2018, 11, 774–784. [Google Scholar] [CrossRef]
- United States Food and Drug Administration (US FDA). Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption. 2015. Available online: https://www.regulations.gov/document/FDA-2011-N-0921-18558 (accessed on 26 April 2021).
- European Union (EU). Commission Notice on Guidance Document on Addressing Microbiological Risks in Fresh Fruits and Vegetables at Primary Production through Good Hygiene. Official Journal of the European Union 2017/C 163/01. Available online: https://eurlex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:52017XC0523(03)&from=ES (accessed on 26 April 2021).
- Tromp, S.-O.; Rijgersberg, H.; Franz, E. Reusing salad from salad bars-simulating the effects on product loss, microbial safety and product quality. Int. J. Food Sci. Technol. 2012, 47, 1144–1150. [Google Scholar] [CrossRef]
- Yam, K.L.; Takhistov, P. Sustainable packaging technology to improve food safety. IBM J. Res. Dev. 2016, 60, 7580697. [Google Scholar] [CrossRef]
- Madanayake, N.H.; Hossain, A.; Adassooriya, N.M. Nanobiotechnology for agricultural sustainability, and food and environmental safety. Qual. Assur. Saf. Crop. 2021, 13, 20–36. [Google Scholar] [CrossRef]
- Garcia, S.N.; Osburn, B.I.; Jay-Russell, M.T. One Health for Food Safety, Food Security, and Sustainable Food Production. Front. Sustain. Food Syst. 2020, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). Fruit and vegetables–your dietary essentials. In The International Year of Fruits and Vegetables, 2021 Background Paper, 2020b ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; Available online: http://www.fao.org/3/cb2395en/CB2395EN.pdf (accessed on 3 June 2021).
Topic | Sub-Topic | Microbial Safety | Environmental Sustainability | Optimization Options |
---|---|---|---|---|
Fresh produce safety at primary production | Elimination of natural habitat | Avoidance of animal intrusion | Affects wildlife and ecosystem services | Find co-management options |
Avoidance of animal-based organic amendments | Avoidance of input of pathogens | Loss of positive effects on soil health | Use of appropriately treated animal-based manure | |
Irrigation water disinfection | Safer irrigation water | Input of chemicals in the agricultural environment (disinfectants and DBPs) | Use of environmentally friendly disinfection methods (e.g., ultraviolet irradiation). | |
Food waste | Food date labels | “Use by” date labels are needed for safety reasons | Misinterpreting “use by” and “best before” dates can increase food waste | Clarifying the meaning of food date labels; consumer education |
Food redistribution | Fruits and vegetables reintroduced into the food supply chain can increase the risk | Redistribution is an important food waste management method | Development of regulations; monitoring by authorities | |
Supply chain structure | Short supply chains | Concerns over safety standards of shorter chains | Potentially more sustainable due to reduced transport | Scientific statements on the safety in short versus global supply chains; development of regulations; monitoring by authorities |
Climate change | Potential increments in the prevalence of some pathogens | Caused by unsustainable human activities | Research to fill knowledge gaps on the safety consequences of climate change | |
Water reuse | Requires water treatment to avoid microbial safety risks | Potential to increase the sustainability of the fresh produce industry | Optimization of process water management; identification of sustainable options | |
Temperature control | Needed for some products (e.g., fresh-cut) | Avoids food waste but demands energy | Strategies for energy saving to reduce environmental impact (e.g., supply chain optimization using IoT a, AI b, Big Data) | |
Packaging | Single-use packaging | Safer | Less sustainable | Renewable single-use packaging if needed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Gálvez, F.; Gómez, P.A.; Artés, F.; Artés-Hernández, F.; Aguayo, E. Interactions between Microbial Food Safety and Environmental Sustainability in the Fresh Produce Supply Chain. Foods 2021, 10, 1655. https://doi.org/10.3390/foods10071655
López-Gálvez F, Gómez PA, Artés F, Artés-Hernández F, Aguayo E. Interactions between Microbial Food Safety and Environmental Sustainability in the Fresh Produce Supply Chain. Foods. 2021; 10(7):1655. https://doi.org/10.3390/foods10071655
Chicago/Turabian StyleLópez-Gálvez, Francisco, Perla A. Gómez, Francisco Artés, Francisco Artés-Hernández, and Encarna Aguayo. 2021. "Interactions between Microbial Food Safety and Environmental Sustainability in the Fresh Produce Supply Chain" Foods 10, no. 7: 1655. https://doi.org/10.3390/foods10071655
APA StyleLópez-Gálvez, F., Gómez, P. A., Artés, F., Artés-Hernández, F., & Aguayo, E. (2021). Interactions between Microbial Food Safety and Environmental Sustainability in the Fresh Produce Supply Chain. Foods, 10(7), 1655. https://doi.org/10.3390/foods10071655