Waste Bread as Main Ingredient for Cookie Elaboration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Bread Flour Preparation
2.2.2. Cookie Making Procedure
2.2.3. Cookie Dough Rheology
2.2.4. Cookie Characteristics
2.2.5. Consumer Test
2.2.6. Statistical Analysis
3. Results
3.1. Dough Rheology
3.2. Cookie Characteristics
3.3. Consumer Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonini, D.; Albizzati, P.F.; Astrup, T.F. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag. 2018, 76, 744–766. [Google Scholar] [CrossRef]
- Galanakis, C.M. The Food Systems in the Era of the Coronavirus (COVID-19) Pandemic Crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Brancoli, P.; Rousta, K.; Bolton, K. Life cycle assessment of supermarket food waste. Resour. Conserv. Recycl. 2017, 118, 39–46. [Google Scholar] [CrossRef]
- Eriksson, M.; Strid, I.; Hansson, P.-A. Carbon footprint of food waste management options in the waste hierarchy—A Swedish case study. J. Clean. Prod. 2015, 93, 115–125. [Google Scholar] [CrossRef]
- Gélinas, P.; McKinnon, C.M.; Pelletier, M. Sourdough-type bread from waste bread crumb. Food Microbiol. 1999, 16, 37–43. [Google Scholar] [CrossRef]
- Luo, S.; Koksel, F. Physical and technofunctional properties of yellow pea flour and bread crumb mixtures processed with low moisture extrusion cooking. J. Food Sci. 2020, 85, 2688–2698. [Google Scholar] [CrossRef] [PubMed]
- Samray, M.N.; Masatcioglu, T.M.; Koksel, H. Bread crumbs extrudates: A new approach for reducing bread waste. J. Cereal Sci. 2018, 85, 130–136. [Google Scholar] [CrossRef]
- Martínez, M.M.; Román, L.; Gómez, M. Corrigendum to ‘Implications of hydration depletion in the in vitro starch digestibility of white bread crumb and crust’ [Food Chem. 239 (2018) 295–303]. Food Chem. 2018, 250, 276. [Google Scholar] [CrossRef] [PubMed]
- Pico, J.; Bernal, J.; Gómez, M. Wheat bread aroma compounds in crumb and crust: A review. Food Res. Int. 2015, 75, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Mancebo, C.M.; Rodriguez, P.; Gómez, M. Assessing rice flour-starch-protein mixtures to produce gluten free sugar-snap cookies. LWT Food Sci. Technol. 2015, 67, 127–132. [Google Scholar] [CrossRef]
- Belorio, M.; Sahagún, M.; Gómez, M. Influence of flour particle size distribution on the quality of maize gluten-free cookies. Foods 2019, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- CIE 015:2018 Colorimetry, 4th ed.; International Commission on Illumination: Viena, Austria, 2018. [CrossRef]
- Primo-Martín, C.; Van Nieuwenhuijzen, N.H.; Hamer, R.J.; Van Vliet, T. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust. J. Cereal Sci. 2007, 45, 219–226. [Google Scholar] [CrossRef]
- Biliaderis, C.G. Structural Transitions and Related Physical Properties of Starch. In Starch; Elsevier: Amsterdam, The Netherlands, 2009; pp. 293–372. [Google Scholar]
- Hagenimana, A.; Ding, X.; Fang, T. Evaluation of rice flour modified by extrusion cooking. J. Cereal Sci. 2006, 43, 38–46. [Google Scholar] [CrossRef]
- Martínez, M.M.; Rosell, C.M.; Gómez, M. Modification of wheat flour functionality and digestibility through different extrusion conditions. J. Food Eng. 2014, 143, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Camire, M.E.; Camire, A.; Krumhar, K. Chemical and nutritional changes in foods during extrusion. Crit. Rev. Food Sci. Nutr. 1990, 29, 35–57. [Google Scholar] [CrossRef]
- Inglett, G.E.; Chen, D.; Liu, S.X. Physical properties of gluten-free sugar cookies made from amaranth–oat composites. LWT Food Sci. Technol. 2015, 63, 214–220. [Google Scholar] [CrossRef]
- Sahagún, M.; Gómez, M. Influence of protein source on characteristics and quality of gluten-free cookies. J. Food Sci. Technol. 2018, 94, 50–56. [Google Scholar] [CrossRef]
- Miller, R.A.; Hoseney, R.C. Use of Elongational Viscosity to Estimate Cookie Diameter. Cereal Chem. J. 1997, 74, 614–616. [Google Scholar] [CrossRef]
- Barrera, G.N.; Pérez, G.T.; Ribotta, P.D.; León, A.E. Influence of damaged starch on cookie and bread-making quality. Eur. Food Res. Technol. 2007, 225, 1–7. [Google Scholar] [CrossRef]
- Rocha-Parra, A.F.; Belorio, M.; Ribotta, P.D.; Ferrero, C.; Gómez, M. Effect of the particle size of pear pomace on the quality of enriched layer and sponge cakes. Int. J. Food Sci. Technol. 2019, 54, 1265–1275. [Google Scholar] [CrossRef]
- Sozer, N.; Cicerelli, L.; Heiniö, R.-L.; Poutanen, K. Effect of wheat bran addition on in vitro starch digestibility, physico-mechanical and sensory properties of biscuits. J. Cereal Sci. 2014, 60, 105–113. [Google Scholar] [CrossRef]
- Purlis, E. Browning development in bakery products—A review. J. Food Eng. 2010, 99, 239–249. [Google Scholar] [CrossRef]
- Mancebo, C.M.; Merino, C.; Martínez, M.M.; Gómez, M. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality. J. Food Sci. Technol. 2015, 52, 6323–6333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Román, L.; Gómez, M.; Li, C.; Hamaker, B.R.; Martinez, M.M. Biophysical features of cereal endosperm that decrease starch digestibility. Carbohydr. Polym. 2017, 165, 180–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, D.; Peterson, D.G. Identification of bitter compounds in whole wheat bread. Food Chem. 2013, 141, 1345–1353. [Google Scholar] [CrossRef]
Ingredients | CF | TBF 1000 50% | TBF 1000 | TBF 500 | TBF 200 | WBF 1000 50% | WBF 1000 | WBF 500 | WBF 200 |
---|---|---|---|---|---|---|---|---|---|
Wheat Flour | 173.2 | 86.6 | - | - | - | 86.6 | - | - | - |
Bread Flour | - | 86.6 | 173.2 | 173.2 | 173.2 | 86.6 | 173.2 | 173.2 | 173.2 |
Sucrose | 124.8 | 124.8 | 124.8 | 124.8 | 124.8 | 124.8 | 124.8 | 124.8 | 124.8 |
Margarine | 77.6 | 77.6 | 77.6 | 77.6 | 77.6 | 77.6 | 77.6 | 77.6 | 77.6 |
Sodium Bicarbonate | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 |
G’ (×103) | G” (×103) | G* (×103) | tan δ | |
---|---|---|---|---|
CF | 123.85 ± 0.07 a | 40.50 ± 1.18 a | 130.40 ± 0.28 a | 0.32 ± 0.01 d |
TBF1000 50% | 140.55 ± 16.89 a | 44.02 ± 4.54 a | 147.40 ± 17.39 a | 0.31 ± 0.01 d |
WBF1000 50% | 151.95 ± 6.85 a | 47.22 ± 1.64 a | 159.30 ± 6.08 a | 0.31 ± 0.02 d |
TBF200 | 653.85 ± 225.92 bc | 101.49 ± 20.66 b | 662.95 ± 225.35 bc | 0.16 ± 0.04 bc |
TBF500 | 777.50 ± 107.36 c | 102.70 ± 5.27 b | 784.90 ± 105.24 c | 0.13 ± 0.08 ab |
TBF1000 | 1098.50 ± 98.28 d | 137.60 ± 20.93 d | 1108.50 ± 101.11 d | 0.12 ± 0.01 ab |
WBF200 | 506.05 ± 99.20 b | 94.34 ± 3.69 b | 515.60 ± 99.13 b | 0.19 ± 0.03 c |
WBF500 | 840.95 ± 144.32 c | 109.75 ± 4.59 bc | 848.80 ± 143.68 c | 0.13 ± 0.02 ab |
WBF1000 | 1125.00 ± 123.87 d | 127.90 ± 6.78 cd | 1133.00 ± 122.03 d | 0.11 ± 0.04 a |
Dimensions | Texture | ||||
---|---|---|---|---|---|
Diameter (mm) | Thickness (mm) | Spreading Factor | Hardness (N) | Firmness (N/mm) | |
Control | 58.17 ± 0.08 e | 7.08 ± 0.03 ab | 8.22 ± 0.01 c | 23.45 ± 5.92 abc | 48.91 ± 9.26 a |
TBF1000 50% | 54.54 ± 0.31 d | 7.00 ± 0.25 a | 7.80 ± 0.23 b | 19.30 ± 0.77 a | 61.29 ± 3.51 ab |
WBF1000 50% | 54.35 ± 0.70 d | 7.30 ± 0.21 abc | 7.46 ± 0.30 b | 20.00 ± 0.57 ab | 53.08 ± 8.34 a |
TBF200 | 40.52 ± 0.21 a | 7.41 ± 0.05 bc | 5.48 ± 0.01 a | 47.98 ± 0.76 d | 103.91 ± 9.44 d |
TBF500 | 42.77 ± 0.01 abc | 7.39 ± 0.11 bc | 5.79 ± 0.08 a | 42.87 ± 0.99 d | 98.31 ± 5.73 d |
TBF1000 | 43.34 ± 0.16 bc | 7.48 ± 0.03 cd | 5.80 ± 0.05 a | 41.45 ± 2.18 d | 96.18 ± 9.09 cd |
WBF200 | 41.26 ± 0.25 ab | 7.54 ± 0.05 cde | 5.48 ± 0.01 a | 46.52 ± 0.33 d | 96.57 ± 7.99 d |
WBF500 | 44.45 ± 3.05 c | 7.79 ± 0.14 de | 5.71 ± 0.29 a | 30.46 ± 6.81 c | 75.60 ± 5.42 b |
WBF1000 | 44.58 ± 1.22 c | 7.83 ± 0.23 e | 5.70 ± 0.01 a | 27.04 ± 1.70 bc | 78.19 ± 10.20 bc |
Flours | Cookies | |||||
---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |
Control | 89.94 ± 2.76 d | 1.13 ± 0.17 a | 10.71 ± 0.02 a | 51.78 ± 6.29 d | 5.68 ± 0.79 a | 22.07 ± 0.73 ab |
TBF1000 50% | ND | ND | ND | 51.22 ± 2.50 cd | 9.85 ± 0.55 b | 24.79 ± 0.04 d |
WBF1000 50% | ND | ND | ND | 45.36 ± 0.15 abcd | 9.90 ± 0.87 b | 22.12 ± 0.91 abc |
TBF200 | 84.62 ± 2.32 cd | 5.91 ± 1.42 b | 18.66 ± 1.04 b | 50.63 ± 4.40 bcd | 10.22 ± 0.08 b | 23.61 ± 0.94 bcd |
TBF500 | 81.88 ± 1.54 c | 6.90 ± 1.31 b | 20.08 ± 1.11 bc | 44.63 ± 1.18 abc | 10.44 ± 0.74 b | 23.78 ± 0.04 cd |
TBF1000 | 81.00 ± 2.22 c | 7.17 ± 1.17 b | 20.59 ± 1.11 c | 50.42 ± 1.75 bcd | 10.82 ± 0.18 bc | 24.71 ± 0.08 d |
WBF200 | 73.64 ± 2.45 b | 9.56 ± 0.84 c | 22.42 ± 0.34 d | 44.99 ± 0.26 abc | 12.01 ± 0.11 c | 22.88 ± 0.33 abc |
WBF500 | 67.98 ± 1.40 a | 10.58 ± 0.75 c | 23.34 ± 0.59 d | 40.90 ± 2.86 a | 11.06 ± 0.74 bc | 21.53 ± 0.81 a |
WBF1000 | 65.30 ± 2.78 a | 10.66 ± 0.74 c | 23.00 ± 0.37 d | 44.50 ± 0.33 ab | 11.95 ± 0.08 c | 23.22 ± 0.11 abcd |
Sample | Appearance | Odour | Taste | Texture | Overall Acceptability |
---|---|---|---|---|---|
Control | 6.88 ± 1.62 c | 6.55 ± 1.60 b | 6.74 ± 1.95 c | 6.40 ± 1.80 b | 6.69 ± 1.49 c |
TBF1000 50% | 7.15 ± 1.39 cd | 6.63 ± 1.43 b | 7.35 ± 1.52 d | 7.05 ± 1.53 c | 7.28 ± 1.32 d |
WBF1000 50% | 7.47 ± 1,29 d | 6.30 ± 1.44 b | 7.10 ± 1.53 cd | 7.13 ± 1.35 c | 7.21 ± 1.26 d |
TBF1000 | 6.05 ± 1.78 b | 5.81 ± 1.40 a | 5.27 ± 2.03 b | 4.57 ± 1.83 a | 5.34 ± 1.61 b |
WBF1000 | 5.51 ± 1.76 a | 5.76 ± 1.44 a | 4.72 ± 2.09 a | 4.14 ± 1.98 a | 4.89 ± 1.61 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra-Oliveira, P.; Belorio, M.; Gómez, M. Waste Bread as Main Ingredient for Cookie Elaboration. Foods 2021, 10, 1759. https://doi.org/10.3390/foods10081759
Guerra-Oliveira P, Belorio M, Gómez M. Waste Bread as Main Ingredient for Cookie Elaboration. Foods. 2021; 10(8):1759. https://doi.org/10.3390/foods10081759
Chicago/Turabian StyleGuerra-Oliveira, Priscila, Mayara Belorio, and Manuel Gómez. 2021. "Waste Bread as Main Ingredient for Cookie Elaboration" Foods 10, no. 8: 1759. https://doi.org/10.3390/foods10081759
APA StyleGuerra-Oliveira, P., Belorio, M., & Gómez, M. (2021). Waste Bread as Main Ingredient for Cookie Elaboration. Foods, 10(8), 1759. https://doi.org/10.3390/foods10081759