Sensory Consumer and Descriptive Analysis of Steaks from Beef Animals Selected from Tough and Tender Animal Genotypes: Genetic Meat Quality Traits Can Be Detected by Consumers
Abstract
:1. Introduction
2. Methods and Materials
2.1. Source of Beef and Pre-Mortem Management
2.2. Meat Sampling
2.3. Consumer Analysis
2.4. Trained Sensory Panels
2.5. Statistics
3. Results and Discussion
4. Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krystallis, A.; Arvanitoyannis, I.S. Investigating the concept of meat quality from the consumers’ perspective: The case of Greece. Meat Sci. 2006, 72, 164–176. [Google Scholar] [CrossRef]
- Acebrón, B.L.; Dopico, C.D. The importance of intrinsic and extrinsic cues to expected and experienced quality: An empirical application for beef. Food Qual. Prefer. 2000, 11, 229–238. [Google Scholar] [CrossRef]
- Grunert, K.G.; Bredahl, L.; Brunsø, K. Consumer perception of meat quality and implications for product development in the meat sector—A review. Meat Sci. 2004, 66, 259–272. [Google Scholar] [CrossRef]
- Steenkamp, J.-B.E.M.; van Trijp, H.C.M. Quality guidance: A consumer based approach to food quality improvement using partial least squares. Eur. Rev. Agric. Econ. 1996, 23, 195–215. [Google Scholar] [CrossRef]
- King, D.A.; Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M. 3-Fresh Meat Texture and Tenderness. In Improving the Sensory and Nutritional Quality of Fresh Meat; Kerry, J.P., Ledward, D., Eds.; Woodhead Publishing: Sawston, UK, 2009; pp. 61–88. [Google Scholar]
- O’Quinn, T.G.; Legako, J.F.; Brooks, J.C.; Miller, M.F. Evaluation of the contribution of tenderness, juiciness, and flavor to the overall consumer beef eating experience1. Transl. Anim. Sci. 2018, 2, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakrys, P.I.; Hogan, S.A.; O’Sullivan, M.G.; Allen, P.; Kerry, J.P. Effects of oxygen concentration on sensory evaluation and quality indicators of beef muscle packed under modified atmosphere. Meat Sci. 2008, 79, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Zakrys-Waliwander, P.I.; O’Sullivan, M.G.; Walshe, H.; Allen, P.; Kerry, J.P. Sensory comparison of commercial low and high oxygen modified atmosphere packed sirloin beef steaks. Meat Sci. 2011, 88, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Van Wezemael, L.; De Smet, S.; Ueland, O.; Verbeke, W. Relationships between sensory evaluations of beef tenderness, shear force measurements and consumer characteristics. Meat Sci. 2014, 97, 310–315. [Google Scholar] [CrossRef]
- Hocquette, J.; Wezemael, L.V.; Chriki, S.; Legrand, I.; Verbeke, W.; Farmer, L.; Scollan, N.; Polkinghorne, R.; Rødbotten, R.; Allen, P.; et al. Modelling of beef sensory quality for a better prediction of palatability. Meat Sci. 2014, 97, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Judge, M.M.; Conroy, S.; Hegarty, P.J.; Cromie, A.R.; Fanning, R.; Kelly, D.; Croften, E.; Berry, D.P. Eating quality of the longissimus thoracis muscle in beef cattle–Contributing factors to the underlying variability and associations with performance traits. Meat Sci. 2021, 172, 108371. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.P.; Conroy, S.; Pabiou, T.; Cromie, A.R. Animal breeding strategies can improve meat quality attributes within entire populations. Meat Sci. 2017, 132, 6–18. [Google Scholar] [CrossRef]
- Berry, D.; Conroy, S.; Hegarty, P.; Evans, R.; Pabiou, T.; Judge, M. Inter-animal genetic variability exist in organoleptic properties of prime beef meat. Meat Sci. 2021, 173, 108401. [Google Scholar] [CrossRef]
- Kelly, D.N.; Murphy, C.; Sleator, R.D.; Judge, M.M.; Conroy, S.B.; Berry, D.P. Feed efficiency and carcass metrics in growing cattle. J. Anim. Sci. 2019, 97, 4405–4417. [Google Scholar] [CrossRef] [PubMed]
- Polkinghorne, R.; Thompson, J.M.; Watson, R.; Gee, A.; Porter, M. Evolution of the Meat Standards Australia (MSA) beef grading system. Aust. J. Exp. Agric. 2008, 48, 1351–1359. [Google Scholar] [CrossRef] [Green Version]
- American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation and Instrumental Tenderness Measurements of Meat. Available online: https://meatscience.org/docs/default-source/publications-resources/amsa-sensory-and-tenderness-evaluation-guidelines/research-guide/2015-amsa-sensory-guidelines-1-0.pdf?sfvrsn=6 (accessed on 16 July 2020).
- Lidauer, M.; Matilainen, K.; Mantysaari, E.; Stranden, I. Mixed Model Equations Solver Mix99. Available online: https://portal.mtt.fi/portal/page/portal/mtt_en/mtt/about/researchunits/bel/biometricalgenetics/software/MiX99/documentation/7D327F881511%20C24EE040A8C0033C4560 (accessed on 16 July 2020).
- Chong, F.S.; Farmer, L.J.; Hagan, T.D.J.; Speers, J.; Sanderson, D.; Devlin, D.; Tollerton, J.; Gordon, S.; Methven, L.; Moloney, A.P.; et al. Regional, Socioeconomic and Behavioural-Impacts on Consumer Acceptability of Beef in Northern Ireland, Republic of Ireland and Great Britain. Meat Sci. 2019, 154, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Sitz, B.M.; Calkins, C.R.; Feuz, D.M.; Umberger, W.J.; Eskridge, K.M. Consumer sensory acceptance and value of domestic, Canadian, and Australian grass-fed beef steaks. J. Anim. Sci. 2005, 83, 2863–2868. [Google Scholar] [CrossRef] [Green Version]
- Calkins, C.R.; Hodgen, J.M. A fresh look at meat flavour. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef]
- Zakrys-Waliwander, P.I.; O’Sullivan, M.G.; O’Neill, E.E.; Kerry, J.P. The effects of high oxygen modified atmosphere packaging on protein oxidation of bovine M. longissimus dorsi muscle during chilled storage. Food Chem. 2012, 2, 527–532. [Google Scholar] [CrossRef]
- Santos, D.; Monteiro, M.J.; Voss, H.P.; Komora, N.; Teixeira, P.; Pntado, M. The most important attributes of beef sensory quality and production variables that can affect it: A review. Livest. Sci. 2021, 250, 104573. [Google Scholar] [CrossRef]
- Conroy, P.; O’Sullivan, M.G.; Hamill, R.H.; Kerry, J.P. Sensory capabilities of young, middle aged and elderly Irish assessors to identify beef steaks of varying texture. Meat Sci. 2017, 132, 125–130. [Google Scholar] [CrossRef]
- Miller, R. Drivers of consumer liking for beef, pork, and lamb: A review. Foods 2020, 9, 428. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ellies-Oury, M.-P.; Chriki, S.; Legrand, I.; Pogorzelski, G.; Wierzbicki, J.; Farmer, L.; Troy, D.; Polkinghorne, R.; Hocquette, J.-F. Contributions of tenderness, juiciness and flavor liking to overall liking of beef in Europe. Meat Sci. 2020, 168, 108190. [Google Scholar] [CrossRef] [PubMed]
- Roininen, K.; Fillion Laurence Kilcast, D.; Lahteenmaki, L. Perceived eating difficulties and preferences for various textures of raw and cooked carrots in young and elderlysubjecs. J. Sens. Stud. 2003, 18, 437–451. [Google Scholar] [CrossRef]
- Morley, J.E. Decreased food intake with aging. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donini, L.M.; Savina, C.; Cannella, C. Eating habits and appetite control in the elderly: The anorexia of aging. Int. Psychogeriatr. 2003, 15, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Farmer, L.; Devlin, D.; Gault, N.; Gordon, A.; Moss, B.; Polkinghorne, R.; Thompson, J.; Tolland, E.; Tollerton, I.; Watson, R. Adaptation of Meat Standards Australia Quality System for Northern Irish Beef. Adv. Anim. Biosci. 2010, 1, 127. [Google Scholar] [CrossRef] [Green Version]
- Farmer, L.J.; Devlin, D.J.; Gault, N.F.S.; Gordon, A.W.; Moss, B.W.; Tolland, E.L.C.; Tollerton, I.J. Comparison of systems for assuring the eating quality of beef. Adv. Anim. Biosci. 2010, 1, 231. [Google Scholar] [CrossRef] [Green Version]
- Connolly, S.M.; Cromie, A.R.; Sleator, R.D.; Berry, D.P. Predicted carcass meat yield and primal cut yields in cattle divergent in genetic merit for a terminal index. Transl. Anim. Sci. 2019, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ring, S.C.; Evans, R.D.; Cromie, A.R.; Berry, D.P. Cross-sectional analyses of national database confirms superior genetic merit translates to superior dairy cow performance. J. Dairy Sci. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.M.; Drennan, M.J.; McGee, M.; Kenny, D.A.; Evans, R.D.; Berry, D.P. Intake, growth and carcass traits in male progeny of sires differing in genetic merit for beef production. Animal 2009, 3, 791–801. [Google Scholar] [CrossRef] [Green Version]
- McHugh, N.; Cromie, A.R.; Evans, R.D.; Berry, D.P. Validation of national genetic evaluations for maternal beef cattle traits using Irish field data. J. Anim. Sci. 2014, 92, 1423–1432. [Google Scholar] [CrossRef] [Green Version]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.F.B.; Schenkel, F.S.; Garcia, D.A.; Gordo, D.G.M.; Tonussi, R.L.; Espigolan, R.; de Oliveira Silva, R.M.; Braz, C.U.; Júnior, G.A.F.; Baldi, F.; et al. Genomic selection for meat quality traits in Nelore cattle. Meat Sci. 2018, 148, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.P.; Shalloo, L.; Cromie, A.R.; Veerkamp, R.F.; Dillon, P.; Amer, P.R.; Kearney, J.F.; Evans, R.D.; Wickham, B. The Economic Breeding Index: A Generation on; Irish Cattle Breeding Federation: Bandon, Ireland, 2007. [Google Scholar]
- Twomey, A.J.; Cromie, A.R.; McHugh, N.; Berry, D.P. Validation of a beef cattle maternal breeding objective based on a cross-sectional analysis of a large national cattle database. J. Anim. Sci. 2020, 98, skaa322. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.P.; Amer, P.R.; Evans, R.D.; Byrne, T.; Cromie, A.R.; Hely, F. A breeding index to rank beef bulls for use on dairy females to maximize profit. J. Dairy Sci. 2019, 102, 10056–10072. [Google Scholar] [CrossRef]
- Berry, D.P.; Ring, S.C. Observed progeny performance validates the benefit of mating genetically elite beef sires to dairy females. J. Dairy Sci. 2020, 103, 2523–2533. [Google Scholar] [CrossRef]
Liking of Tenderness | Liking of Aroma | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | No. | Tender Genotype | SEM | Tough Genotype | SEM | Tender Genotype | SEM | Tough Genotype | SEM | |||
18–24 | 157 | 6.33 a**** | 0.15 | 4.90 b | 0.19 | 6.28 NS | 0.27 | 5.84 | 0.15 | |||
25–34 | 146 | 6.98 a* | 0.25 | 5.93 b | 0.38 | 6.71 NS | 0.15 | 6.48 | 0.31 | |||
35–44 | 97 | 6.65 a*** | 0.21 | 5.56 b | 0.25 | 6.07 NS | 0.21 | 5.87 | 0.22 | |||
45–54 | 63 | 6.47 a*** | 0.24 | 5.37 b | 0.26 | 6.48 NS | 0.21 | 6.59 | 0.88 | |||
55–64 | 67 | 6.90 a**** | 0.22 | 5.44 b | 0.28 | 5.86 NS | 0.23 | 5.41 | 0.21 | |||
65+ | 20 | 6.59 a* | 0.49 | 5.02 b | 0.49 | 5.35 NS | 0.37 | 4.92 | 0.44 | |||
Liking of Juiciness | Liking of Flavour | Overall Acceptability | ||||||||||
Age | Tender Genotype | SEM | Tough Genotype | SEM | Tender Genotype | SEM | Tough Genotype | SEM | Tender Genotype | SEM | Tough Genotype | Tough Genotype |
18–24 | 5.62 a*** | 0.16 | 4.75 b | 0.18 | 6.20 a**** | 0.14 | 5.34 b | 0.17 | 6.19 a**** | 0.14 | 5.29 b | 0.16 |
25–34 | 5.87 a*** | 0.17 | 5.00 b | 0.19 | 6.27 a* | 0.15 | 5.81 b | 0.15 | 6.37 a**** | 0.14 | 5.57 b | 0.15 |
35–44 | 5.71 NS | 0.23 | 5.22 | 0.24 | 6.50 NS | 0.22 | 6.05 | 0.22 | 6.35 NS | 0.22 | 5.94 | 0.21 |
45–54 | 6.12 a*** | 0.24 | 4.67 b | 0.27 | 6.44 a*** | 0.20 | 5.60 b | 0.25 | 6.55 a *** | 0.20 | 5.73 b | 0.24 |
55–64 | 5.69 a* | 0.27 | 4.91 b | 0.26 | 6.09 a* | 0.22 | 5.44 b | 0.25 | 6.19 a* | 0.22 | 5.56 b | 0.25 |
65+ | 4.66 NS | 0.57 | 4.10 | 0.51 | 5.44 NS | 0.43 | 5.47 | 0.31 | 5.68 NS | 0.47 | 5.31 | 0.41 |
Age | Tender Genotype | SEM | Tough Genotype | SEM |
---|---|---|---|---|
18–24 | 61.77 a**** | 1.26 | 51.36 b | 1.54 |
25–34 | 64.70 a*** | 1.48 | 56.91 b | 1.84 |
35–44 | 64.22 a** | 1.97 | 57.85 b | 2.09 |
45–54 | 64.50 a** | 2.00 | 54.79 b | 2.31 |
55–64 | 63.24 a** | 2.01 | 54.24 b | 2.29 |
65+ | 57.78 NS | 4.29 | 51.49 NS | 3.61 |
Trait | Tender | Tough | SED | p-Value |
---|---|---|---|---|
Location 1 | ||||
Tenderness | 7.00 | 6.63 | 0.184 | ≤0.05 |
Juicy | 6.91 | 6.34 | 0.180 | ≤0.01 |
Flavour | 7.04 | 6.75 | 0.124 | ≤0.05 |
Location 2 | ||||
Tenderness | 6.95 | 6.73 | 0.158 | 0.18 |
Juicy | 6.36 | 6.34 | 0.168 | 0.93 |
Flavour | 6.77 | 6.73 | 0.159 | 0.78 |
Chewy | 2.91 | 3.25 | 0.173 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Sullivan, M.G.; O’Neill, C.M.; Conroy, S.; Judge, M.J.; Crofton, E.C.; Berry, D.P. Sensory Consumer and Descriptive Analysis of Steaks from Beef Animals Selected from Tough and Tender Animal Genotypes: Genetic Meat Quality Traits Can Be Detected by Consumers. Foods 2021, 10, 1911. https://doi.org/10.3390/foods10081911
O’Sullivan MG, O’Neill CM, Conroy S, Judge MJ, Crofton EC, Berry DP. Sensory Consumer and Descriptive Analysis of Steaks from Beef Animals Selected from Tough and Tender Animal Genotypes: Genetic Meat Quality Traits Can Be Detected by Consumers. Foods. 2021; 10(8):1911. https://doi.org/10.3390/foods10081911
Chicago/Turabian StyleO’Sullivan, Maurice G., Ciara M. O’Neill, Stephen Conroy, Michelle J. Judge, Emily C. Crofton, and Donagh P. Berry. 2021. "Sensory Consumer and Descriptive Analysis of Steaks from Beef Animals Selected from Tough and Tender Animal Genotypes: Genetic Meat Quality Traits Can Be Detected by Consumers" Foods 10, no. 8: 1911. https://doi.org/10.3390/foods10081911
APA StyleO’Sullivan, M. G., O’Neill, C. M., Conroy, S., Judge, M. J., Crofton, E. C., & Berry, D. P. (2021). Sensory Consumer and Descriptive Analysis of Steaks from Beef Animals Selected from Tough and Tender Animal Genotypes: Genetic Meat Quality Traits Can Be Detected by Consumers. Foods, 10(8), 1911. https://doi.org/10.3390/foods10081911