Analysis of Bovine Kappa-Casein Glycomacropeptide by Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. LC/MS and MS/MS Analysis
2.3. Data Analysis
3. Results and Discussion
3.1. Confirmation of Non-Glycosylated CMP (aCMP) Sequence Variants
3.2. Confirmation of gCMP Structures with Single or Multiple O-glycans
3.3. Confirmation of gCMP with Multiple Modifications (Phosphorylation and Oxidation)
3.4. Overall Findings of Peptides in Samples
3.5. Limitations of the Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomä, C.; Krause, I.; Kulozik, U. Precipitation behaviour of caseinomacropeptides and their simultaneous determination with whey proteins by RP-HPLC. Int. Dairy J. 2006, 16, 285–293. [Google Scholar] [CrossRef]
- Oh, S.; Worobo, R.W.; Kim, B.; Rheem, S.; Kim, S. Detection of the cholera toxin-binding activity of kappa-casein macropeptide and optimization of its production by the response surface methodology. Biosci. Biotechnol. Biochem. 2000, 64, 516–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brück, W.M.; Kelleher, S.L.; Gibson, G.R.; Graverholt, G.; Lönnerdal, B.L. The effects of alpha-lactalbumin and glycomacropeptide on the association of CaCo-2 cells by enteropathogenic escherichia coli, salmonella typhimurium and shigella flexneri. FEMS Microbiol. Lett. 2006, 259, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Janer, C.; Peláez, C.; Requena, T. Caseinomacropeptide and whey protein concentrate enhance bifidobacterium lactis growth in milk. Food Chem. 2004, 86, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Otani, H.; Hata, I. Inhibition of proliferative responses of mouse spleen lymphocytes and rabbit peyer’s patch cells by bovine milk caseins and their digests. J. Dairy Res. 1995, 62, 339–348. [Google Scholar] [CrossRef]
- Aniansson, G.; Andersson, B.; Lindstedt, R.; Svanborg, C. Anti-adhesive activity of human casein against streptococcus pneumoniae and haemophilus influenzae. Microb. Pathog. 1990, 8, 315–323. [Google Scholar] [CrossRef]
- Holland, J.W.; Boland, M.J. Chapter 5-post-translational modifications of caseins. In Milk Proteins (Second Edition); Singh, H., Boland, M., Thompson, A., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 141–168. ISBN 978-0-12-405171-3. [Google Scholar]
- Córdova-Dávalos, L.E.; Jiménez, M.; Salinas, E. Glycomacropeptide bioactivity and health: A review highlighting action mechanisms and signaling pathways. Nutrients 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Manguy, J.; Shields, D.C. Implications of kappa-casein evolutionary diversity for the self-assembly and aggregation of casein micelles. R. Soc. Open Sci. 2019, 6, 190939. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, N.A.; Jensen, H.B.; Larsen, L.B. Factors influencing degree of glycosylation and phosphorylation of caseins in individual cow milk samples. J. Dairy Sci. 2016, 99, 3325–3333. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Itoh, T. Variations and distributions of o-glycosidically linked sugar chains in bovine κ-casein. J. Dairy Sci. 1992, 75, 1768–1774. [Google Scholar] [CrossRef]
- Talbo, G.H.; Suckau, D.; Malkoski, M.; Reynolds, E.C. MALDI-PSD-MS analysis of the phosphorylation sites of caseinomacropeptide. Peptides 2001, 22, 1093–1098. [Google Scholar] [CrossRef]
- Holland, J.W.; Deeth, H.C.; Alewood, P.F. Resolution and characterisation of multiple isoforms of bovine kappa-casein by 2-de following a reversible cysteine-tagging enrichment strategy. Proteomics 2006, 6, 3087–3095. [Google Scholar] [CrossRef]
- Hua, S.; Nwosu, C.C.; Strum, J.S.; Seipert, R.R.; An, H.J.; Zivkovic, A.M.; German, J.B.; Lebrilla, C.B. Site-specific protein glycosylation analysis with glycan isomer differentiation. Anal. Bioanal. Chem. 2012, 403, 1291–1302. [Google Scholar] [CrossRef]
- Holland, J.W.; Deeth, H.C.; Alewood, P.F. Analysis of O-glycosylation site occupancy in bovine kappa-casein glycoforms separated by two-dimensional gel electrophoresis. Proteomics 2005, 5, 990–1002. [Google Scholar] [CrossRef]
- Cui, W.; Rohrs, H.W.; Gross, M.L. Top-down mass spectrometry: Recent developments, applications and perspectives. Analyst 2011, 136, 3854–3864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, C.M.; Woonton, B.W. Quantity and carbohydrate content of glycomacropeptide fractions isolated from raw and heat-treated milk. Int. Dairy J. 2009, 19, 709–714. [Google Scholar] [CrossRef]
- Riley, N.M.; Malaker, S.A.; Driessen, M.D.; Bertozzi, C.R. Optimal dissociation methods differ for N- and O-glycopeptides. J. Proteome Res. 2020, 19, 3286–3301. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Dallas, D.C. Systematic examination of protein extraction, proteolytic glycopeptide enrichment and MS/MS fragmentation techniques for site-specific profiling of human milk N-glycoproteins. Talanta 2021, 224, 121811. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wang, B.; Chen, Z.; Urabe, G.; Glover, M.S.; Shi, X.; Guo, L.-W.; Kent, K.C.; Li, L. Electron-transfer/higher-energy collision dissociation (EThcD)-enabled intact glycopeptide/glycoproteome characterization. J. Am. Soc. Mass Spectrom. 2017, 28, 1751–1764. [Google Scholar] [CrossRef]
- Bern, M.; Kil, Y.J.; Becker, C. Byonic: Advanced peptide and protein identification software. Curr. Protoc. Bioinforma. 2012. [Google Scholar] [CrossRef] [Green Version]
- Totten, S.M.; Feasley, C.L.; Bermudez, A.; Pitteri, S.J. Parallel comparison of n-linked glycopeptide enrichment techniques reveals extensive glycoproteomic analysis of plasma enabled by SAX-ERLIC. J. Proteome Res. 2017, 16, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Ashwood, C.; Lin, C.-H.; Thaysen-Andersen, M.; Packer, N.H. Discrimination of isomers of released n- and o-glycans using diagnostic product ions in negative Ion PGC-LC-ESI-MS/MS. J. Am. Soc. Mass Spectrom. 2018, 29, 1194–1209. [Google Scholar] [CrossRef]
- Nwosu, C.C.; Seipert, R.R.; Strum, J.S.; Hua, S.S.; An, H.J.; Zivkovic, A.M.; German, B.J.; Lebrilla, C.B. Simultaneous and Extensive site-specific N- and O-glycosylation analysis in protein mixtures. J. Proteome Res. 2011, 10, 2612–2624. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.Q.; Kondo, A.; Kato, I.; Lee, Y.C. High-performance liquid chromatography of glycopeptides and oligosaccharides on graphitized carbon columns. Anal. Biochem. 1994, 219, 224–229. [Google Scholar] [CrossRef]
- Alagesan, K.; Hinneburg, H.; Seeberger, P.H.; Silva, D.V.; Kolarich, D. Glycan size and attachment site location affect electron transfer dissociation (etd) fragmentation and automated glycopeptide identification. Glycoconj. J. 2019, 36, 487–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, C.M.; Rush, M.J.P.; Riley, N.M.; Merrill, A.E.; Kwiecien, N.W.; Holden, D.D.; Mullen, C.; Westphall, M.S.; Coon, J.J. A calibration routine for efficient ETD in large-scale proteomics. J. Am. Soc. Mass Spectrom. 2015, 26, 1848–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, A.L.; O’Flaherty, F.; Fox, P.F. Indigenous proteolytic enzymes in milk: A brief overview of the present state of knowledge. Int. Dairy J. 2006, 16, 563–572. [Google Scholar] [CrossRef]
- Franzoi, M.; Niero, G.; Visentin, G.; Penasa, M.; Cassandro, M.; De Marchi, M. Variation of detailed protein composition of cow milk predicted from a large database of mid-infrared spectra. Anim. Open Access J. MDPI 2019, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Gellrich, K.; Meyer, H.H.D.; Wiedemann, S. Composition of major proteins in cow milk differing in mean protein concentration during the first 155 days of lactation and the influence of season as well as short-term restricted feeding in early and mid-lactation. Czech J. Anim. Sci. 2014, 59, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Hecht, E.S.; Scigelova, M.; Eliuk, S.; Makarov, A. Fundamentals and advances of orbitrap mass spectrometry. In Encyclopedia of Analytical Chemistry; American Cancer Society: Atlanta, GA, USA, 2019; pp. 1–40. ISBN 978-0-470-02731-8. [Google Scholar]
CMP STD | CMP Powder 1 | CMP Powder 2 | WPI | |
---|---|---|---|---|
aCMP | 8 | 8 | 8 | 8 |
gCMP | 40 | 41 | 43 | 42 |
fragment aCMP | 44 | 49 | 48 | 48 |
fragment gCMP | 105 | 105 | 102 | 105 |
GMP STD | CMP Powder 1 | CMP Powder 2 | WPI | |
---|---|---|---|---|
aCMP | 10.6% | 39.4% | 53.9% | 51.6% |
gCMP | 53.8% | 26.7% | 21.1% | 18.0% |
1 O-glycan | 53.7% * | 79.0% * | 80.7% * | 78.8% * |
2 O-glycans | 43.0% * | 19.5% * | 17.8% * | 17.1% * |
3 O-glycans | 3.3% * | 1.5% * | 1.5% * | 4.0% * |
fragment aCMP | 1.4% | 3.7% | 1.4% | 2.9% |
fragment gCMP | 23.5% | 30.2% | 23.5% | 27.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Kim, B.-J.; Koh, J.; Dallas, D.C. Analysis of Bovine Kappa-Casein Glycomacropeptide by Liquid Chromatography–Tandem Mass Spectrometry. Foods 2021, 10, 2028. https://doi.org/10.3390/foods10092028
Qu Y, Kim B-J, Koh J, Dallas DC. Analysis of Bovine Kappa-Casein Glycomacropeptide by Liquid Chromatography–Tandem Mass Spectrometry. Foods. 2021; 10(9):2028. https://doi.org/10.3390/foods10092028
Chicago/Turabian StyleQu, Yunyao, Bum-Jin Kim, Jeewon Koh, and David C. Dallas. 2021. "Analysis of Bovine Kappa-Casein Glycomacropeptide by Liquid Chromatography–Tandem Mass Spectrometry" Foods 10, no. 9: 2028. https://doi.org/10.3390/foods10092028
APA StyleQu, Y., Kim, B. -J., Koh, J., & Dallas, D. C. (2021). Analysis of Bovine Kappa-Casein Glycomacropeptide by Liquid Chromatography–Tandem Mass Spectrometry. Foods, 10(9), 2028. https://doi.org/10.3390/foods10092028