Rapid Determination of β-Glucan Content of Hulled and Naked Oats Using near Infrared Spectroscopy Combined with Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Oat Samples
2.2. Chemicals
2.3. Determination of β-Glucan Content
2.4. Acquisition of NIR Spectra
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT, Food and Agriculture Organization of the United Nations (FAO). Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 3 April 2020).
- Suttie, J.M.; Reynolds, S.G. Fodder Oats: A World Overview; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004. [Google Scholar]
- Yoo, H.U.; Ko, M.J.; Chung, M.S. Hydrolysis of beta-glucan in oat flour during subcritical-water extraction. Food Chem. 2020, 308, 125670. [Google Scholar] [CrossRef]
- Redaelli, R.; Del Frate, V.; Bellato, S.; Terracciano, G.; Ciccoritti, R.; Germeier, C.U.; De Stefanis, E.; Sgrulletta, D. Genetic and environmental variability in total and soluble β-glucan in European oat genotypes. J. Cereal Sci. 2013, 57, 193–199. [Google Scholar] [CrossRef]
- Du, B.; Meenu, M.; Liu, H.; Xu, B. A concise review on the molecular structure and function relationship of β-glucan. Int. J. Mol. Sci. 2019, 20, 4032. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Meenu, M.; Xu, B. Insights into improvement of physiochemical and biological properties of dietary fibers from different sources via micron technology. Food Rev. Int. 2020, 36, 367–383. [Google Scholar] [CrossRef]
- Du, B.; Bian, Z.; Xu, B. Skin health promotion effects of natural beta-glucan derived from cereals and microorganisms: A review. Phyther. Res. 2014, 28, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Dotsenko, G.; Andersson, A.A.M.; Andersson, R. Material disintegration affects enzymatic determination of β-glucan in barley and oats. J. Cereal Sci. 2019, 88, 138–144. [Google Scholar] [CrossRef]
- McCleary, B.V.; Codd, R. Measurement of (1 → 3),(1 → 4)-β-D-glucan in barley and oats: A streamlined enzymic procedure. J. Sci. Food Agric. 1991, 55, 303–312. [Google Scholar] [CrossRef]
- Meenu, M.; Kamboj, U.; Sharma, A.; Guha, P.; Mishra, S. Green method for determination of phenolic compounds in mung bean (Vigna radiata L.) based on near-infrared spectroscopy and chemometrics. Int. J. Food Sci. Technol. 2016, 51, 2520–2527. [Google Scholar] [CrossRef]
- Sakudo, A. Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clin. Chim. Acta 2016, 455, 181–188. [Google Scholar] [CrossRef]
- Deidda, R.; Sacre, P.; Clavaud, M.; Coïc, L.; Avohou, H.; Hubert, P.; Ziemons, E. Vibrational spectroscopy in analysis of pharmaceuticals: Critical review of innovative portable and handheld NIR and Raman spectrophotometers. Trends Anal. Chem. 2019, 114, 251–259. [Google Scholar] [CrossRef]
- Redaelli, R.; Berardo, N. Evaluation of groat percentage in oats (Avena sativa L.) by near infrared spectroscopy. J. Near Infrared Spectrosc. 2002, 109, 103–109. [Google Scholar] [CrossRef]
- Redaelli, R.; Berardo, N. Prediction of fibre components in oat hulls by near infrared reflectance spectroscopy. J. Sci. Food Agric. 2007, 585, 580–585. [Google Scholar] [CrossRef]
- Kays, S.E.; Barton, F.E.; Windham, W.R. Predicting protein content by near infrared reflectance spectroscopy in diverse cereal food products. J. Near Infrared Spectrosc. 2000, 44, 35–43. [Google Scholar] [CrossRef]
- Cristina, S.; Milach, K.; Agriscience, C. Near infrared reflectance spectroscopy (NIRS) to assess protein and lipid Near infrared reflectance spectroscopy (NIRS) to assess protein and lipid contents in Avena sativa L. Crop Breed. Appl. Biotechnol. 2008, 8, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhang, X.; Yu, Z.; Li, G.; Zhou, B. Quantitative analysis of adulterations in oat flour by FT-NIR spectroscopy, incomplete unbalanced randomized block design, and partial least squares. J. Anal. Methods Chem. 2014, 2014, 393596. [Google Scholar] [CrossRef]
- Seefeldt, H.F.; Blennow, A.; Jespersen, B.M.; Wollenweber, B.; Engelsen, S.B. Accumulation of mixed linkage (1/3) (1/4)-b-D-glucan during grain filling in barley: A vibrational spectroscopy study. J. Cereal Sci. 2009, 49, 24–31. [Google Scholar] [CrossRef]
- Bellato, S.; Del Frate, V.; Redaelli, R.; Sgrulletta, D.; Bucci, R.; Magrì, A.D.; Marini, F. Use of near infrared reflectance and transmittance coupled to robust calibration for the evaluation of nutritional value in naked oats. J. Agric. Food Chem. 2011, 59, 4349–4360. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Gergely, S.; Schönlechner, R.; Grausgruber, H.; Tömösközi, S.; Salgó, A.; Berghofer, E. Comparison of different types of NIR instruments in ability to measure β-glucan content in naked barley. Cereal Chem. 2009, 86, 398–404. [Google Scholar] [CrossRef]
- Gracia, M.B.; Armstrong, P.R.; Rongkui, H.; Mark, S. Quantification of betaglucans, lipid and protein contents in whole oat groats (Avena sativa L.) using near infrared reflectance spectroscopy. J. Near Infrared Spectrosc. 2017, 25, 172–179. [Google Scholar] [CrossRef]
- Paudel, D.; Caffe-Treml, M.; Krishnan, P. A single analytical platform for the rapid and simultaneous measurement of protein, oil, and β-glucan contents of oats using near-infrared reflectance spectroscopy. Cereal Foods World 2018, 63, 17–25. [Google Scholar]
- Biancolillo, A.; Marini, F. Chemometrics Applied to Plant Spectral Analysis. In Comprehensive Analytical Chemistry; Lopes, J., Sousa, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 80, pp. 69–104. ISBN 9780444640482. [Google Scholar]
- Nørgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S.B. Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. Appl. Spectrosopy 2016, 54, 413–419. [Google Scholar] [CrossRef]
- Frost, T. Quantitative Analysis. In Encyclopedia of Spectroscopy and Spectrometry; Lindon, J.C., Ed.; Academic Press: Cambridge, MA, USA, 1999; pp. 2325–2330. ISBN 9780123744135. [Google Scholar]
- Jiao, Y.; Li, Z.; Chen, X.; Fei, S. Preprocessing methods for near-infrared spectrum calibration. J. Chemom. 2020, 34, e3306. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 2002, 36, 1627–1639. [Google Scholar] [CrossRef]
- Martens, H.; Næs, T. Multivariate Calibration; John Wiley & Sons: New York, NY, USA, 1989; ISBN 0 471 90979 3. [Google Scholar]
- Meenu, M.; Cai, Q.; Xu, B. A critical review on analytical techniques to detect adulteration of extra virgin olive oil. Trends Food Sci. Technol. 2019, 91, 391–408. [Google Scholar] [CrossRef]
- Meenu, M.; Decker, E.A.; Xu, B. Application of vibrational spectroscopic techniques for determination of thermal degradation of frying oils and fats: A review. Crit. Rev. Food Sci. Nutr. 2021, 1891520. [Google Scholar] [CrossRef]
- Meenu, M.; Xu, B. Application of vibrational spectroscopy for classification, authentication and quality analysis of mushroom: A concise review. Food Chem. 2019, 289, 545–557. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Rossel, R.A.V.; MacDonald, L.M.; McLaughlin, M.J. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 2013, 49, 139–186. [Google Scholar] [CrossRef]
- Recha, J.W.; Olale, K.O.; Sila, A.; Ambaw, G.; Radeny, M.; Solomon, D. Ensemble modeling on near-infrared spectra as rapid tool for assessment of soil health indicators for sustainable food production systems. Soil Syst. 2021, 5, 69. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.R.; Marcelo, V.; Pereira-Obaya, D.; García-Fernández, M.; Sanz-Ablanedo, E. Estimating soil properties and nutrients by visible and infrared diffuse reflectance spectroscopy to characterize vineyards. Agronomy 2021, 11, 1895. [Google Scholar] [CrossRef]
S. No. | Sample Name | Moisture Content (%) | β-Glucan % w/w (Dry wt. Basis) | Origin |
---|---|---|---|---|
1 | zyp2 gp 016-14 | 5.91 ± 0.04 | 4.74 ± 0.06 | Zhangjiakou, Hebei, China |
2 | zyp2 gp 002-1 | 5.65 ± 0.04 | 4.14 ± 0.04 | Zhangjiakou, Hebei, China |
3 | zyp2 gp 035-30 | 5.64 ± 0.04 | 4.65 ± 0.12 | Zhangjiakou, Hebei, China |
4 | zyp2 gp 129-119 | 5.68 ± 0.04 | 4.35 ± 0.19 | Zhangjiakou, Hebei, China |
5 | zyp2 gp 135-65 | 6.41 ± 0.11 | 4.77 ± 0.10 | Zhangjiakou, Hebei, China |
6 | zyp2 gp -74 | 5.99 ± 0.67 | 4.63 ± 0.03 | Zhangjiakou, Hebei, China |
7 | zyp2 gp 023-20 | 6.30 ± 0.67 | 4.77 ± 0.13 | Zhangjiakou, Hebei, China |
8 | zyp2 gp 78-71 | 5.70 ± 0.04 | 4.35 ± 0.01 | Zhangjiakou, Hebei, China |
9 | zyp2 gp 74-67 | 5.42 ± 0.04 | 4.56 ± 0.03 | Zhangjiakou, Hebei, China |
10 | zyp2 gp 015-13 | 5.66 ± 0.42 | 4.59 ± 0.05 | Zhangjiakou, Hebei, China |
11 | zyp2 gp 107-100 | 5.32 ± 0.62 | 4.01 ± 0.11 | Zhangjiakou, Hebei, China |
12 | zyp2 gp 027-24 | 5.33 ± 0.48 | 4.33 ± 0.03 | Zhangjiakou, Hebei, China |
13 | zyp2 gp 137-07 | 5.67 ± 0.56 | 3.82 ± 0.03 | Zhangjiakou, Hebei, China |
14 | zyp2 gp 70-63 | 5.19 ± 0.16 | 4.68 ± 0.04 | Zhangjiakou, Hebei, China |
15 | zyp2 gp 76-69 | 5.18 ± 0.08 | 3.59 ± 0.06 | Zhangjiakou, Hebei, China |
16 | zyp2 gp 017-15 | 5.48 ± 0.50 | 4.61 ± 0.14 | Zhangjiakou, Hebei, China |
17 | zyp2 gp 61-54 | 5.64 ± 0.09 | 4.61 ± 0.12 | Zhangjiakou, Hebei, China |
18 | zyp2 gp 031-27 | 5.47 ± 0.52 | 4.71 ± 0.00 | Zhangjiakou, Hebei, China |
19 | zyp2 gp 104-97 | 5.20 ± 0.37 | 4.4 ± 0.04 | Zhangjiakou, Hebei, China |
20 | zyp2 gp 91-84 | 5.50 ± 0.57 | 4.51 ± 0.03 | Zhangjiakou, Hebei, China |
21 | zyp2 gp 82-75 | 6.14 ± 0.26 | 4.34 ± 0.00 | Zhangjiakou, Hebei, China |
22 | zyp2 gp 63-56 | 5.70 ± 0.57 | 5.25 ± 0.03 | Zhangjiakou, Hebei, China |
23 | zyp2 gp 57-51 | 6.43 ± 0.43 | 4.87 ± 0.05 | Zhangjiakou, Hebei, China |
24 | zyp2 gp 86-79 | 5.04 ± 0.45 | 4.94 ± 0.08 | Zhangjiakou, Hebei, China |
25 | zyp2 gp 20B PSX 17G-26 | 5.42 ± 0.42 | 3.92 ± 0.04 | Zhangjiakou, Hebei, China |
26 | zyp2 gp 083-2 | 6.18 ± 0.39 | 3.97 ± 0.14 | Zhangjiakou, Hebei, China |
27 | zyp2 gp 024-21 | 5.84 ± 0.40 | 3.55 ± 0.02 | Zhangjiakou, Hebei, China |
28 | IYP gp-6 | 5.58 ± 0.57 | 4.4 ± 0.02 | Zhangjiakou, Hebei, China |
29 | zyp2 gp 67-60 | 5.69 ± 0.21 | 4.02 ± 0.11 | Zhangjiakou, Hebei, China |
30 | Zhangyan #2 | 5.76 ± 0.12 | 4.1 ± 0.08 | Zhangjiakou, Hebei, China |
31 | Yibaiyan #1 | 5.65 ± 0.47 | 4.49 ± 0.04 | United States |
32 | Qinghai 444 | 5.62 ± 0.06 | 4.32 ± 0.01 | Xining, Qinghai, China |
33 | Qingyin #1 | 5.45 ± 0.08 | 3.98 ± 0.08 | Xining, Qinghai, China |
34 | Qingyin #1 | 5.51 ± 0.32 | 3.6 ± 0.00 | Xining, Qinghai, China |
35 | Kanyan #1 | 5.69 ± 0.40 | 3.8 ± 0.04 | |
36 | Yizhangyan #4 | 5.31 ± 0.19 | 3.64 ± 0.02 | Zhangjiakou, Hebei, China |
37 | Dingyan #2 | 5.60 ± 0.01 | 4.32 ± 0.00 | Dingxi, Gansu, China |
38 | Jingbaiyan #2 | 5.55 ± 0.06 | 3.69 ± 0.10 | |
39 | Anrui | 5.7 ± 0.13 | 4.28 ± 0.07 | United States |
40 | Qinghai sweet oat | 5.61 ± 0.08 | 4.12 ± 0.03 | Xining, Qinghai, China |
41 | Kanyan #5 | 6.19 ± 0.52 | 3.78 ± 0.13 | |
42 | Zhangyan #7 | 5.67 ± 0.08 | 3.1 ± 0.06 | Zhangjiakou, Hebei, China |
43 | Qingyan #1 | 5.50 ± 0.11 | 4.69 ± 0.00 | Xining, Qinghai, China |
44 | Baiyan #7 | 5.52 ± 0.18 | 4.38 ± 0.01 | |
45 | Linna | 5.57 ± 0.40 | 4.31 ± 0.04 | Canada |
46 | Kanyan #4 | 5.47 ± 0.42 | 3.57 ± 0.03 | |
47 | Baiyan #14 | 5.35 ± 0.42 | 3.48 ± 0.19 | |
48 | Kanyan #2 | 5.19 ± 0.10 | 3.6 ± 0.08 | |
49 | Zhangyan #3 | 5.21 ± 0.12 | 4.47 ± 0.06 | Zhangjiakou, Hebei, China |
50 | Dingyin #1 | 5.15 ± 0.22 | 3.81 ± 0.02 | Dingxi, Gansu, China |
51 | Kanyan #3 | 5.36 ± 0.08 | 4.13 ± 0.01 | |
52 | Mingcui | 5.60 ± 0.11 | 4.25 ± 0.10 | United States |
53 | Yibaiyan #3 | 4.87 ± 0.59 | 4.67 ± 0.10 | United States |
54 | Zhangyan #1 | 5.87 ± 0.52 | 4.03 ± 0.01 | Zhangjiakou, Hebei, China |
55 | Kanyan #6 | 5.11 ± 0.40 | 4.08 ± 0.03 | |
56 | Lezhen | 5.53 ± 0.45 | 4.35 ± 0.00 | United States |
57 | Zhangyan #4 | 5.96 ± 0.30 | 4.74 ± 0.01 | Zhangjiakou, Hebei, China |
58 | Beile | 5.50 ± 0.45 | 3.91 ± 0.00 | Canada |
59 | Jiayan #2 | 5.37 ± 0.04 | 3.79 ± 0.11 | Canada |
60 | ZNY 221 | 5.57 ± 0.06 | 3.97 ± 0.02 | Zhangjiakou, Hebei, China |
61 | ZNY 202 | 6.17 ± 0.33 | 4.32 ± 0.04 | Zhangjiakou, Hebei, China |
62 | ZNY 300 | 5.48 ± 0.46 | 4.14 ± 0.00 | Zhangjiakou, Hebei, China |
63 | ZNY 303 | 5.61 ± 0.06 | 3.82 ± 0.04 | Zhangjiakou, Hebei, China |
64 | ZNY 297 | 5.65 ± 0.43 | 4.48 ± 0.02 | Zhangjiakou, Hebei, China |
65 | ZNY 218 | 5.54 ± 0.44 | 4.17 ± 0.00 | Zhangjiakou, Hebei, China |
66 | ZNY 293 | 6.15 ± 0.47 | 4.78 ± 0.06 | Zhangjiakou, Hebei, China |
67 | ZNY 225 | 5.57 ± 0.60 | 4.38 ± 0.00 | Zhangjiakou, Hebei, China |
68 | ZNY 254 | 5.58 ± 0.66 | 3.27 ± 0.00 | Zhangjiakou, Hebei, China |
69 | ZNY 233 | 5.19 ± 0.08 | 4.62 ± 0.04 | Zhangjiakou, Hebei, China |
70 | ZNY 290 | 5.33 ± 0.23 | 3.7 ± 0.03 | Zhangjiakou, Hebei, China |
71 | ZNY 205 | 5.78 ± 0.38 | 4.48 ± 0.17 | Zhangjiakou, Hebei, China |
72 | ZNY 232 | 5.36 ± 0.28 | 4.13 ± 0.04 | Zhangjiakou, Hebei, China |
73 | ZNY 248 | 5.40 ± 0.30 | 4.44 ± 0.07 | Zhangjiakou, Hebei, China |
74 | ZNY 288 | 5.41 ± 0.34 | 4.23 ± 0.02 | Zhangjiakou, Hebei, China |
75 | ZNY 231 | 5.44 ± 0.39 | 3.48 ± 0.10 | Zhangjiakou, Hebei, China |
76 | ZNY 251 | 5.68 ± 0.72 | 4.51 ± 0.03 | Zhangjiakou, Hebei, China |
77 | ZNY 258 | 5.62 ± 0.15 | 5.5 ± 0.08 | Zhangjiakou, Hebei, China |
78 | ZNY 255 | 5.77 ± 0.60 | 4.83 ± 0.06 | Zhangjiakou, Hebei, China |
79 | ZNY239 | 4.84 ± 0.31 | 4.01 ± 0.01 | Zhangjiakou, Hebei, China |
S. No. | Sample Name | Moisture Content (%) | β-Glucan % w/w (Dry wt. Basis) | Origin |
---|---|---|---|---|
1 | Yanke #2 | 5.56 ± 0.31 | 3.96 ± 0.06 | Huhehaote, Inner Mongolia, China |
2 | Baiyan #2 | 5.84 ± 0.39 | 4.00 ± 0.16 | Baicheng, Jilin, China |
3 | Kanyou #6 | 5.74 ± 0.14 | 3.97 ± 0.09 | |
4 | Dingyou #9 | 5.71 ± 0.29 | 3.59 ± 0.17 | Dingxi, Gansu, China |
5 | Baiyan #11 | 5.63 ± 0.49 | 4.23 ± 0.03 | Baicheng, Jilin, China |
6 | Kanyou #18 | 5.76 ± 0.05 | 5.06 ± 0.13 | |
7 | Jinyan #8 | 5.97 ± 0.23 | 4.14 ± 0.10 | Datong, Shanxi, China |
8 | Yuanza #1 | 5.14 ± 0.44 | 3.74 ± 0.05 | Zhangjiakou, Hebei, China |
9 | Caoyou #1 | 5.91 ± 0.66 | 3.75 ± 0.11 | Huhehaote, Inner Mongolia, China |
10 | Yanxuan 2007 | 5.61 ± 0.07 | 4.34 ± 0.01 | Datong, Shanxi, China |
11 | Jinyan #1 | 5.64 ± 0.39 | 3.82 ± 0.03 | Datong, Shanxi, China |
12 | Bayan #9 | 5.79 ± 0.13 | 5.21 ± 0.08 | |
13 | Yizhangyou #6 | 5.60 ± 0.32 | 4.28 ± 0.08 | Zhangjiakou, Hebei, China |
14 | Baiyan #15 | 5.55 ± 0.43 | 3.63 ± 0.05 | |
15 | Baiyan #8 | 5.49 ± 0.68 | 3.82 ± 0.00 | |
16 | Zhangyou #7 | 5.72 ± 0.66 | 3.93 ± 0.12 | |
17 | Yizhangyou #3 | 5.82 ± 0.40 | 4.44 ± 0.01 | Zhangjiakou, Hebei, China |
18 | Yizhangyou #12 | 5.52 ± 0.38 | 4.01 ± 0.04 | |
19 | Yizhangyou #2 | 6.18 ± 0.57 | 3.84 ± 0.03 | Zhangjiakou, Hebei, China |
20 | Jinyinyan #1 | 5.45 ± 0.39 | 4.54 ± 0.03 | Datong, Shanxi, China |
21 | w85 | 5.44 ± 0.10 | 3.59 ± 0.01 | Baicheng, Jilin, China |
22 | Yizhangyou #5 | 5.58 ± 0.42 | 4.25 ± 0.01 | Zhangjiakou, Hebei, China |
23 | Kanyou #8 | 5.54 ± 0.43 | 4.23 ± 0.04 | |
24 | Kanyou #13 | 5.66 ± 0.13 | 3.80 ± 0.02 | |
25 | Huazao #2 | 5.51 ± 0.47 | 3.27 ± 0.01 | Zhangjiakou, Hebei, China |
26 | Baiyan #13 | 5.77 ± 0.85 | 4.22 ± 0.01 | |
27 | Kanyou #10 | 5.44 ± 0.54 | 4.14 ± 0.09 | |
28 | Kanyou #5 | 5.22 ± 0.05 | 4.50 ± 0.02 | |
29 | Neiyan #5 | 6.19 ± 0.42 | 3.98 ± 0.07 | |
30 | Jinyan #14 | 5.33 ± 0.28 | 4.05 ± 0.10 | Datong, Shanxi, China |
31 | Kanyou #3 | 5.43 ± 0.42 | 4.33 ± 0.04 | |
32 | Ningyou #1 | 5.94 ± 0.61 | 4.18 ± 0.03 | Guyuan, Ningxia, China |
33 | Yizhangyou #4 | 5.58 ± 0.07 | 3.73 ± 0.03 | Zhangjiakou, Hebei, China |
34 | Yan 2009 | 5.39 ± 0.08 | 4.01 ± 0.01 | Datong, Shanxi, China |
35 | Jinyan #13 | 5.13 ± 0.05 | 4.06 ± 0.06 | Datong, Shanxi, China |
36 | Yizhangyou #5 | 5.31 ± 0.11 | 3.91 ± 0.03 | Zhangjiakou, Hebei, China |
37 | Huawan #6 | 5.50 ± 0.56 | 3.78 ± 0.03 | Zhangjiakou, Hebei, China |
38 | Yuanza #2 | 5.46 ± 0.04 | 4.43 ± 0.06 | Zhangjiakou, Hebei, China |
39 | Ding you #1 | 5.46 ± 0.52 | 3.82 ± 0.00 | Dingxi, Gansu, China |
40 | Jinyan #9 | 5.70 ± 0.87 | 3.13 ± 0.00 | Datong, Shanxi, China |
41 | ZNY 242 | 5.83 ± 0.83 | 3.80 ± 0.06 | Zhangjiakou, Hebei, China |
42 | ZNY 283 | 5.72 ± 0.72 | 3.55 ± 0.00 | Zhangjiakou, Hebei, China |
43 | ZNY 273 | 5.17 ± 0.52 | 4.23 ± 0.04 | Zhangjiakou, Hebei, China |
44 | ZNY 266 | 5.24 ± 0.08 | 4.31 ± 0.02 | Zhangjiakou, Hebei, China |
45 | ZNY 272 | 5.81 ± 0.74 | 3.89 ± 0.02 | Zhangjiakou, Hebei, China |
46 | ZNY 209 | 6.05 ± 0.57 | 3.84 ± 0.10 | Zhangjiakou, Hebei, China |
47 | BY 1 | 5.59 ± 0.32 | 4.44 ± 0.09 | Zhangjiakou, Hebei, China |
48 | BY 2 | 5.25 ± 0.39 | 4.98 ± 0.17 | Zhangjiakou, Hebei, China |
49 | BY 3 | 5.37 ± 0.66 | 4.92 ± 0.07 | Zhangjiakou, Hebei, China |
50 | BY 4 | 5.51 ± 0.49 | 5.22 ± 0.03 | Zhangjiakou, Hebei, China |
51 | BY 5 | 5.32 ± 0.79 | 4.50 ± 0.04 | Zhangjiakou, Hebei, China |
52 | BY 6 | 5.80 ± 0.49 | 4.45 ± 0.03 | Zhangjiakou, Hebei, China |
53 | BY 7 | 5.75 ± 0.51 | 4.04 ± 0.10 | Zhangjiakou, Hebei, China |
54 | BY 8 | 5.47 ± 0.49 | 4.28 ± 0.09 | Zhangjiakou, Hebei, China |
55 | BY 9 | 6.03 ± 0.28 | 3.91 ± 0.11 | Zhangjiakou, Hebei, China |
56 | BY 10 | 5.79 ± 0.42 | 4.31 ± 0.02 | Zhangjiakou, Hebei, China |
57 | BY 11 | 5.62 ± 0.62 | 4.69 ± 0.05 | Zhangjiakou, Hebei, China |
58 | BY 12 | 5.58 ± 0.58 | 4.19 ± 0.05 | Zhangjiakou, Hebei, China |
59 | BY 13 | 5.49 ± 0.42 | 4.60 ± 0.09 | Zhangjiakou, Hebei, China |
60 | BY 14 | 5.07 ± 0.19 | 4.52 ± 0.09 | Zhangjiakou, Hebei, China |
61 | BY 15 | 5.54 ± 0.49 | 4.26 ± 0.04 | Zhangjiakou, Hebei, China |
62 | BY 16 | 5.42 ± 0.79 | 4.47 ± 0.00 | Zhangjiakou, Hebei, China |
63 | BY 17 | 5.13 ± 0.49 | 5.16 ± 0.00 | Zhangjiakou, Hebei, China |
64 | BY 18 | 4.82 ± 0.51 | 4.44 ± 0.02 | Zhangjiakou, Hebei, China |
65 | BY 19 | 5.27 ± 0.49 | 4.37 ± 0.03 | Zhangjiakou, Hebei, China |
66 | BY 20 | 5.22 ± 0.28 | 4.03 ± 0.02 | Zhangjiakou, Hebei, China |
67 | BY 21 | 5.55 ± 0.42 | 4.12 ± 0.01 | Zhangjiakou, Hebei, China |
68 | BY 22 | 4.77 ± 0.62 | 4.07 ± 0.13 | Zhangjiakou, Hebei, China |
69 | BY 23 | 5.31 ± 0.58 | 4.00 ± 0.05 | Zhangjiakou, Hebei, China |
70 | BY 24 | 5.57 ± 0.42 | 4.13 ± 0.04 | Zhangjiakou, Hebei, China |
71 | BY 25 | 4.80 ± 0.19 | 5.02 ± 0.12 | Zhangjiakou, Hebei, China |
72 | BY 26 | 4.59 ± 0.25 | 4.61 ± 0.08 | Zhangjiakou, Hebei, China |
73 | BY 27 | 5.76 ± 0.71 | 4.57 ± 0.06 | Zhangjiakou, Hebei, China |
74 | BY 28 | 5.09 ± 0.55 | 4.37 ± 0.00 | Zhangjiakou, Hebei, China |
75 | BY 29 | 5.00 ± 0.50 | 4.54 ± 0.00 | Zhangjiakou, Hebei, China |
76 | BY 30 | 5.70 ± 0.47 | 3.43 ± 0.02 | Zhangjiakou, Hebei, China |
77 | BY 31 | 5.41 ± 0.83 | 4.37 ± 0.02 | Zhangjiakou, Hebei, China |
78 | BY 32 | 5.08 ± 1.07 | 4.04 ± 0.07 | Zhangjiakou, Hebei, China |
79 | BY 33 | 4.43 ± 0.47 | 4.06 ± 0.12 | Zhangjiakou, Hebei, China |
80 | BY 34 | 4.43 ± 0.27 | 5.17 ± 0.00 | Zhangjiakou, Hebei, China |
81 | BY 35 | 5.01 ± 1.03 | 4.84 ± 0.00 | Zhangjiakou, Hebei, China |
82 | BY 36 | 5.44 ± 0.10 | 4.37 ± 0.01 | Zhangjiakou, Hebei, China |
83 | BY 37 | 5.26 ± 1.03 | 3.12 ± 0.00 | Zhangjiakou, Hebei, China |
84 | BY 38 | 5.27 ± 0.39 | 3.13 ± 0.01 | Zhangjiakou, Hebei, China |
85 | BY 39 | 4.69 ± 0.78 | 4.93 ± 0.01 | Zhangjiakou, Hebei, China |
86 | BY 40 | 4.24 ± 0.37 | 3.90 ± 0.02 | Zhangjiakou, Hebei, China |
87 | BY 41 | 4.85 ± 1.05 | 4.28 ± 0.02 | Zhangjiakou, Hebei, China |
88 | BY 42 | 4.53 ± 1.31 | 4.45 ± 0.01 | Zhangjiakou, Hebei, China |
89 | BY 43 | 4.54 ± 0.42 | 3.74 ± 0.04 | Zhangjiakou, Hebei, China |
90 | BY 44 | 4.21 ± 0.11 | 4.03 ± 0.07 | Zhangjiakou, Hebei, China |
91 | BY 45 | 5.01 ± 0.71 | 4.99 ± 0.08 | Zhangjiakou, Hebei, China |
92 | BY 46 | 5.52 ± 0.66 | 4.16 ± 0.07 | Zhangjiakou, Hebei, China |
93 | BY 47 | 5.64 ± 0.49 | 4.29 ± 0.06 | Zhangjiakou, Hebei, China |
94 | BY 48 | 5.11 ± 0.42 | 4.25 ± 0.00 | Zhangjiakou, Hebei, China |
95 | BY 49 | 4.22 ± 0.74 | 3.45 ± 0.04 | Zhangjiakou, Hebei, China |
96 | BY 50 | 4.54 ± 0.16 | 3.73 ± 0.00 | Zhangjiakou, Hebei, China |
97 | BY 51 | 4.92 ± 0.35 | 4.43 ± 0.00 | Zhangjiakou, Hebei, China |
98 | BY 52 | 4.69 ± 0.79 | 4.13 ± 0.01 | Zhangjiakou, Hebei, China |
99 | BY 53 | 5.02 ± 0.52 | 3.99 ± 0.02 | Zhangjiakou, Hebei, China |
100 | ZNY282 | 4.17 ± 0.05 | 4.45 ± 0.05 | Zhangjiakou, Hebei, China |
Wavelength Range (nm) | Hulled Oats | Naked Oats | ||||||
---|---|---|---|---|---|---|---|---|
R2c | R2p | RMSEC | RMSEP | R2c | R2p | RMSEC | RMSEP | |
700–1300 | 0.789 | 0.735 | 0.177 | 0.199 | 0.677 | 0.620 | 0.210 | 0.228 |
1300–1900 | 0.431 | 0.301 | 0.291 | 0.323 | 0.325 | 0.226 | 0.304 | 0.325 |
1900–2500 | 0.460 | 0.336 | 0.284 | 0.315 | 0.382 | 0.274 | 0.291 | 0.315 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meenu, M.; Zhang, Y.; Kamboj, U.; Zhao, S.; Cao, L.; He, P.; Xu, B. Rapid Determination of β-Glucan Content of Hulled and Naked Oats Using near Infrared Spectroscopy Combined with Chemometrics. Foods 2022, 11, 43. https://doi.org/10.3390/foods11010043
Meenu M, Zhang Y, Kamboj U, Zhao S, Cao L, He P, Xu B. Rapid Determination of β-Glucan Content of Hulled and Naked Oats Using near Infrared Spectroscopy Combined with Chemometrics. Foods. 2022; 11(1):43. https://doi.org/10.3390/foods11010043
Chicago/Turabian StyleMeenu, Maninder, Yaqian Zhang, Uma Kamboj, Shifeng Zhao, Lixia Cao, Ping He, and Baojun Xu. 2022. "Rapid Determination of β-Glucan Content of Hulled and Naked Oats Using near Infrared Spectroscopy Combined with Chemometrics" Foods 11, no. 1: 43. https://doi.org/10.3390/foods11010043
APA StyleMeenu, M., Zhang, Y., Kamboj, U., Zhao, S., Cao, L., He, P., & Xu, B. (2022). Rapid Determination of β-Glucan Content of Hulled and Naked Oats Using near Infrared Spectroscopy Combined with Chemometrics. Foods, 11(1), 43. https://doi.org/10.3390/foods11010043