Comparing the LC-MS Phenolic Acids Profiles of Seven Different Varieties of Brown Rice (Oryza sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Extraction of Free Phenolics
2.4. Extraction of Bound Phenolics
2.5. Determination of Total Phenolic Content (TPC)
2.6. UPLC-HRMS Determination of the Phenolic Composition
2.7. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content in Different Brown Rice Varieties
3.2. Qualitative and Quantitative Analysis of Phenolic Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, M.; Tomar, M.; Amarowicz, R.; Saurabh, V.; Nair, M.S.; Maheshwari, C.; Sasi, M.; Prajapati, U.; Hasan, M.; Singh, S.; et al. Guava (Psidium guajava L.) Leaves: Nutritional Composition. Foods 2021, 10, 752. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, M.M.; Guillamón, E.; Arribas, C. Autoclaved and Extruded Legumes as a Source of Bioactive Phytochemicals: A Review. Foods 2021, 10, 379. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A.; Boirie, Y. Associations between Food and Beverage Groups and Major Diet-Related Chronic Diseases: An Exhaustive Review of Pooled/Meta-Analyses and Systematic Reviews. Nutr. Rev. 2014, 72, 741–762. [Google Scholar] [CrossRef] [PubMed]
- Von Ruesten, A.; Feller, S.; Bergmann, M.M.; Boeing, H. Diet and Risk of Chronic Diseases: Results from the First 8 Years of Follow-up in the EPIC-Potsdam Study. Eur. J. Clin. Nutr. 2013, 67, 412–419. [Google Scholar] [CrossRef]
- Panlasigui, L.N.; Thompson, L.U. Blood Glucose Lowering Effects of Brown Rice in Normal and Diabetic Subjects. Int. J. Food Sci. Nutr. 2006, 57, 151–158. [Google Scholar] [CrossRef]
- Niu, Y.; Gao, B.; Slavin, M.; Zhang, X.; Yang, F.; Bao, J.; Shi, H.; Xie, Z.; Yu, L. (Lucy) Phytochemical Compositions, and Antioxidant and Anti-Inflammatory Properties of Twenty-Two Red Rice Samples Grown in Zhejiang. LWT—Food Sci. Technol. 2013, 54, 521–527. [Google Scholar] [CrossRef]
- Dinelli, G.; Segura-Carretero, A.; Di Silvestro, R.; Marotti, I.; Arráez-Román, D.; Benedettelli, S.; Ghiselli, L.; Fernadez-Gutierrez, A. Profiles of Phenolic Compounds in Modern and Old Common Wheat Varieties Determined by Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2011, 1218, 7670–7681. [Google Scholar] [CrossRef]
- Guo, W.; Beta, T. Phenolic Acid Composition and Antioxidant Potential of Insoluble and Soluble Dietary Fibre Extracts Derived from Select Whole-Grain Cereals. Food Res. Int. 2013, 51, 518–525. [Google Scholar] [CrossRef]
- Ravisankar, S.; Queiroz, V.A.V.; Awika, J.M. Rye Flavonoids–Structural Profile of the Flavones in Diverse Varieties and Effect of Fermentation and Heat on Their Structure and Antioxidant Properties. Food Chem. 2020, 324, 126871. [Google Scholar] [CrossRef]
- Gunaratne, A.; Wu, K.; Li, D.; Bentota, A.; Corke, H.; Cai, Y.Z. Antioxidant Activity and Nutritional Quality of Traditional Red-Grained Rice Varieties Containing Proanthocyanidins. Food Chem. 2013, 138, 1153–1161. [Google Scholar] [CrossRef]
- Shao, Y.; Xu, F.; Sun, X.; Bao, J.; Beta, T. Identification and Quantification of Phenolic Acids and Anthocyanins as Antioxidants in Bran, Embryo and Endosperm of White, Red and Black Rice Kernels (Oryza sativa L.). J. Cereal Sci. 2014, 59, 211–218. [Google Scholar] [CrossRef]
- Saikia, S.; Dutta, H.; Saikia, D.; Mahanta, C.L. Quality Characterisation and Estimation of Phytochemicals Content and Antioxidant Capacity of Aromatic Pigmented and Non-Pigmented Rice Varieties. Food Res. Int. 2012, 46, 334–340. [Google Scholar] [CrossRef]
- Shao, Y.; Xu, F.; Sun, X.; Bao, J.; Beta, T. Phenolic Acids, Anthocyanins, and Antioxidant Capacity in Rice (Oryza Sativa L.) Grains at Four Stages of Development after Flowering. Food Chem. 2014, 143, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Bordiga, M.; Gomez-Alonso, S.; Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Hermosin-Gutierrez, I.; Arlorio, M. Phenolics Characterization and Antioxidant Activity of Six Different Pigmented Oryza sativa L. Cultivars Grown in Piedmont (Italy). Food Res. Int. 2014, 65, 282–290. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, R.; Dong, L.; Huang, F.; Liu, L.; Deng, Y.; Ma, Y.; Zhang, Y.; Wei, Z.; Xiao, J.; et al. A Comparison of the Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Phenolic Compounds from Rice Bran and Its Dietary Fibres. Molecules 2018, 23, 202. [Google Scholar] [CrossRef] [Green Version]
- Ti, H.; Li, Q.; Zhang, R.; Zhang, M.; Deng, Y.; Wei, Z.; Chi, J.; Zhang, Y. Free and Bound Phenolic Profiles and Antioxidant Activity of Milled Fractions of Different Indica Rice Varieties Cultivated in Southern China. Food Chem. 2014, 159, 166–174. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, L.; Wang, X.; Gu, Z.; Beta, T. Changes of Phenolic Profiles and Antioxidant Activity in Canaryseed (Phalaris canariensis L.) during Germination. Food Chem. 2016, 194, 608–618. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Antiproliferative Potential and DNA Scission Inhibitory Activity of Phenolics from Whole Millet Grains. J. Funct. Foods 2011, 3, 159–170. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Dorothy, R.; Shen, S.; Johnson, S.; Fang, Z. Comprehensive Profiling of Phenolic Compounds by HPLC-DAD-ESI-QTOF-MS / MS to Reveal Their Location and Form of Presence in Different Sorghum Grain Genotypes. Food Res. Int. 2020, 137, 109671. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Q.; Beta, T. Antioxidant Properties of Commercial Wild Rice and Analysis of Soluble and Insoluble Phenolic Acids. Food Chem. 2010, 121, 140–147. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant Activity of Grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Van Hung, P. Phenolic Compounds of Cereals and Their Antioxidant Capacity. Crit. Rev. Food Sci. Nutr. 2016, 56, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, X.; Liu, Y.; Zhang, M.; Zhang, R.; Abbasi, A.M.; You, L.; Li, T.; Liu, R.H. Comparative Assessment of Phytochemical Profile, Antioxidant Capacity and Anti-Proliferative Activity in Different Varieties of Brown Rice (Oryza sativa L.). Lwt 2018, 96, 19–25. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound Phenolics in Foods, a Review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, Y.; Li, H.; Deng, Z.; Tsao, R. A Review on Insoluble-Bound Phenolics in Plant-Based Food Matrix and Their Contribution to Human Health with Future Perspectives. Trends Food Sci. Technol. 2020, 105, 347–362. [Google Scholar] [CrossRef]
- Renger, A.; Steinhart, H. Ferulic Acid Dehydrodimers as Structural Elements in Cereal Dietary Fibre. Eur. Food Res. Technol. 2000, 211, 422–428. [Google Scholar] [CrossRef]
Phenolic Compounds | Molecular Formula | Rt (min) | [M-H]–(m/z) | Main Fragment Ions (m/z) | Structure |
---|---|---|---|---|---|
Gallic acid | C7H6O5 | 2.22 | 169.0132 | 125.0232 | |
Protocatechuic acid | C7H6O4 | 3.98 | 153.0182 | 109.0283 | |
p-Hydroxybenzoic acid | C7H6O3 | 5.96 | 137.0233 | 93.0333 | |
Chlorogenic acid | C16H18O9 | 6.74 | 353.0879 | 191.0555 | |
Vanillic acid | C8H8O4 | 7.26 | 167.0342 | 152.0104 123.0439 108.0204 | |
Caffeic acid | C9H8O4 | 7.52 | 179.0342 | 135.0441 | |
Syringic acid | C9H10O5 | 8.41 | 197.0447 | 182.0211 166.9976 152.8930 | |
Vanillin | C8H8O6 | 9.26 | 151.0390 | 136.0155 | |
p-Coumaric acid | C9H8O3 | 10.20 | 163.0391 | 119.0490 | |
Ferulic acid | C10H10O4 | 11.28 | 193.0502 | 178.0263 149.0342 | |
trans-3-Hydroxycinnamic acid | C9H8O3 | 12.21 | 163.0391 | 119.0490 |
Phenolic Acids | Samples | Phenolic Acid Content (μg/g DW) | ||
---|---|---|---|---|
Free | Bound | Total | ||
Gallic acid | Guangliangyouxiang-66 | ND | ND | ND |
Zhaoyou-5431 | 4.70 ± 1.60 b | ND | 4.70 ± 1.60 b | |
Ezhong No.5 | 1.38 ± 0.04 a | ND | 1.38 ± 0.04 a | |
Juliangyou-60 | 3.14 ± 1.17 a,b | ND | 3.14 ± 1.17 a,b | |
Y liangyou-900 | 2.83 ± 1.14 a,b | ND | 2.83 ± 1.14 a,b | |
Zhongzheyou No.8 | 2.77 ± 0.91 a | ND | 2.77 ± 0.91 a | |
Luotiangongmi (red) | 1.62 ± 0.07 a | ND | 1.62 ± 0.07 a | |
Protocatechuic acid | Guangliangyouxiang-66 | 51.3 ± 24.8 a | ND | 51.3 ± 24.80 a |
Zhaoyou-5431 | 110 ± 4.45 b,c | ND | 110 ± 4.45 b | |
Ezhong No.5 | 113 ± 36.71 c | ND | 113 ± 36.71 b | |
Juliangyou-60 | 165 ± 21.58 d | ND | 165 ± 21.58 c | |
Y liangyou-900 | 68.2 ± 1.94 a,b | ND | 68.2 ± 1.94 a,b | |
Zhongzheyou No.8 | 57.4 ± 35.15 a | ND | 57.4 ± 35.15 a | |
Luotiangongmi (red) | 291 ± 21.04 e | 274 ± 15.69 | 566 ± 28.57 d | |
p-Hydroxybenzoic acid | Guangliangyouxiang-66 | ND | 29.2 ± 11.35 a | 29.2 ± 11.35 b |
Zhaoyou-5431 | ND | 28.2 ± 8.01 a | 28.2 ± 8.01 b | |
Ezhong No.5 | ND | ND | ND | |
Juliangyou-60 | ND | ND | ND | |
Y liangyou-900 | 5.35 ± 0.29 | ND | 5.35 ± 0.29 a | |
Zhongzheyou No.8 | ND | 25.0 ± 4.73 a | 25.0 ± 4.73 b | |
Luotiangongmi (red) | ND | ND | ND | |
Chlorogenic acid | Guangliangyouxiang-66 | ND | ND | ND |
Zhaoyou-5431 | ND | ND | ND | |
Ezhong No.5 | ND | ND | ND | |
Juliangyou-60 | ND | ND | ND | |
Y liangyou-900 | ND | ND | ND | |
Zhongzheyou No.8 | ND | ND | ND | |
Luotiangongmi (red) | 20.8 ± 2.86 | 16.6 ± 3.34 | 37.3 ± 6.16 | |
Vanillic acid | Guangliangyouxiang-66 | ND | 3.37 ± 2.33 a | 3.37 ± 2.33 a,b |
Zhaoyou-5431 | 3.75 ± 1.02 b | 1.64 ± 0.17 a | 5.39 ± 1.17 b | |
Ezhong No.5 | 2.87 ± 0.30 a,b | ND | 2.87 ± 0.30 a,b | |
Juliangyou-60 | ND | ND | ND | |
Y liangyou-900 | ND | ND | ND | |
Zhongzheyou No.8 | ND | ND | ND | |
Luotiangongmi (red) | 1.65 ± 0.24 a | ND | 1.65 ± 0.24 a | |
Caffeic acid | Guangliangyouxiang-66 | ND | 5.16 ± 1.45 c | 5.16 ± 1.45 d |
Zhaoyou-5431 | 0.70 ± 0.50 a | 3.24 ± 0.84 b | 3.95 ± 0.75 c,d | |
Ezhong No.5 | 1.37 ± 0.69 a,b | ND | 1.37 ± 0.69 a | |
Juliangyou-60 | ND | ND | ND | |
Y liangyou-900 | 1.67 ± 0.26 b | 1.54 ± 1.12 a | 3.21 ± 0.88 b,c | |
Zhongzheyou No.8 | 0.99 ± 0.30 a,b | 1.20 ± 0.34 a | 2.19 ± 0.09 a,b | |
Luotiangongmi (red) | 0.78 ± 0.16 a | 5.91 ± 0.30 c | 6.69 ± 0.42 e | |
Syringic acid | Guangliangyouxiang-66 | ND | ND | ND |
Zhaoyou-5431 | ND | ND | ND | |
Ezhong No.5 | 0.56 ± 0.11 | ND | 0.56 ± 0.11 | |
Juliangyou-60 | ND | ND | ND | |
Y liangyou-900 | ND | ND | ND | |
Zhongzheyou No.8 | ND | ND | ND | |
Luotiangongmi (red) | ND | ND | ND | |
Vanillin | Guangliangyouxiang-66 | 13.2 ± 3.21 a,b | 44.3 ± 16.22 b | 57.5 ± 19.43 c |
Zhaoyou-5431 | 9.01 ± 3.79 a | 24.6 ± 9.94 a | 33.6 ± 6.80 a,b | |
Ezhong No.5 | 18.3 ± 6.88 a,b | 20.6 ± 5.39 a | 38.9 ± 12.27 b,c | |
Juliangyou-60 | 21.7 ± 8.21 b | 21.2 ± 5.02 a | 42.9 ± 13.00 b,c | |
Y liangyou-900 | 18.1 ± 4.04 a,b | 22.1 ± 12.15 a | 40.2 ± 16.16 b,c | |
Zhongzheyou No.8 | 13.4 ± 7.83 a,b | 21.2 ± 5.02 a | 34.6 ± 3.34 a,b,c | |
Luotiangongmi (red) | 13.4 ± 1.14 a,b | ND | 13.4 ± 1.14 a | |
p-Coumaric acid | Guangliangyouxiang-66 | 1.49 ± 0.02 a | 135 ± 2.46 e | 137 ± 2.46 e |
Zhaoyou-5431 | 1.57 ± 0.34 a | 82.4 ± 1.95 d | 83.9 ± 2.13 d | |
Ezhong No.5 | 3.73 ± 0.94 b | 67.3 ± 0.40 b | 71.1 ± 1.33 b | |
Juliangyou-60 | 2.40 ± 0.72 a | 6.72 ± 0.71 a | 9.12 ± 1.43 a | |
Y liangyou-900 | 2.11 ± 0.64 a | 73.9 ± 2.98 c | 76.0 ± 3.05 c | |
Zhongzheyou No.8 | 2.04 ± 0.64 a | 65.8 ± 3.68 b | 67.8 ± 3.55 b | |
Luotiangongmi (red) | 1.49 ± 0.46 a | 142 ± 3.97 f | 144 ± 3.92 f | |
Ferulic acid | Guangliangyouxiang-66 | 4.32 ± 0.73 b,c | 384 ± 11.76 f | 388 ± 11.08 f |
Zhaoyou-5431 | 5.71 ± 0.24 d | 345 ± 12.11 e | 350 ± 12.21 e | |
Ezhong No.5 | 5.53 ± 0.87 c,d | 139 ± 0.78 b | 145 ± 0.20 b | |
Juliangyou-60 | 4.55 ± 1.02 b,c,d | 20.6 ± 0.23 a | 25.1 ± 0.79 a | |
Y liangyou-900 | 4.21 ± 0.26 b | 251 ± 11.82 c | 255 ± 11.83 c | |
Zhongzheyou No.8 | 5.32 ± 0.17 b,c,d | 291 ± 18.11 d | 296 ± 11.28 d | |
Luotiangongmi (red) | 2.47 ± 0.78 a | 392 ± 9.21 f | 394 ± 9.87 f | |
trans-3-Hydroxycinnamic acid | Guangliangyouxiang-66 | 0.18 ± 0.07 a,b | 30.3 ± 1.89 d | 30.5 ± 1.89 e |
Zhaoyou-5431 | 0.44 ± 0.02 d | 16.9 ± 1.63 c | 17.3 ± 1.62 d | |
Ezhong No.5 | 0.33 ± 0.08 c,d | 5.61 ± 1.36 a | 5.94 ± 1.36 b | |
Juliangyou-60 | 0.58 ± 0.15 e | ND | 0.58 ± 0.15 a | |
Y liangyou-900 | 0.29 ± 0.01 b,c | 11.0 ± 2.01 b | 11.2 ± 2.01 c | |
Zhongzheyou No.8 | 0.08 ± 0.01 a | 16.7 ± 1.02 c | 16.8 ± 1.02 d | |
Luotiangongmi (red) | 0.40 ± 0.03 c,d | 6.75 ± 3.38 a | 7.14 ± 3.38 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Xu, H.; Sui, Y.; Mei, X.; Shi, J.; Cai, S.; Xiong, T.; Carrillo, C.; Castagnini, J.M.; Zhu, Z.; et al. Comparing the LC-MS Phenolic Acids Profiles of Seven Different Varieties of Brown Rice (Oryza sativa L.). Foods 2022, 11, 1552. https://doi.org/10.3390/foods11111552
Li S, Xu H, Sui Y, Mei X, Shi J, Cai S, Xiong T, Carrillo C, Castagnini JM, Zhu Z, et al. Comparing the LC-MS Phenolic Acids Profiles of Seven Different Varieties of Brown Rice (Oryza sativa L.). Foods. 2022; 11(11):1552. https://doi.org/10.3390/foods11111552
Chicago/Turabian StyleLi, Shuyi, Hui Xu, Yong Sui, Xin Mei, Jianbin Shi, Sha Cai, Tian Xiong, Celia Carrillo, Juan Manuel Castagnini, Zhenzhou Zhu, and et al. 2022. "Comparing the LC-MS Phenolic Acids Profiles of Seven Different Varieties of Brown Rice (Oryza sativa L.)" Foods 11, no. 11: 1552. https://doi.org/10.3390/foods11111552
APA StyleLi, S., Xu, H., Sui, Y., Mei, X., Shi, J., Cai, S., Xiong, T., Carrillo, C., Castagnini, J. M., Zhu, Z., & Barba, F. J. (2022). Comparing the LC-MS Phenolic Acids Profiles of Seven Different Varieties of Brown Rice (Oryza sativa L.). Foods, 11(11), 1552. https://doi.org/10.3390/foods11111552