Quality Characterization of Different Parts of Broiler and Ligor Hybrid Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Determination of Proximate Composition
2.3. Determination of Collagen Content
2.4. Determination of pH and Color
2.5. Determination of Shear Force and Cooking Loss
2.6. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.7. Amino Acid Profile
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Collagen Content
3.3. Physicochemical Properties
3.4. Cooking Loss
3.5. Textural Properties
3.6. Protein Patterns
3.7. Amino Acid Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John, K.A.; Maalouf, J.; Barsness, C.; Yuan, K.; Cogswell, M.E.; Gunn, J.P. Do lower calorie or lower fat foods have more sodium than their regular counterparts? Nutrients 2016, 8, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaturasitha, S.; Srikanchai, T.; Kreuzer, M.; Wicke, M. Differences in carcass and meat characteristics between chicken indigenous to Northern Thailand (Black-Boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poult. Sci. 2008, 87, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Katemala, S.; Molee, A.; Thumanu, K.; Yongsawatdigul, J. Meat quality and Raman spectroscopic characterization of Korat hybrid chicken obtained from various rearing periods. Poult. Sci. 2021, 100, 1248–1261. [Google Scholar] [CrossRef] [PubMed]
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Composition, color, and texture of Thai indigenous and broiler chicken muscles. Poult Sci. 2004, 83, 123–128. [Google Scholar] [CrossRef]
- Jaturasitha, S.; Chaiwang, N.; Kreuzer, M. Thai native chicken meat: An option to meet the demands for specific meat quality by certain groups of consumers: A review. Anim. Prod. Sci. 2017, 57, 1582–1587. [Google Scholar] [CrossRef]
- Maliwan, P.; Khempaka, S.; Molee, W. Evaluation of various feeding programmes on growth performance, carcass and meat qualities of Thai indigenous crossbred chickens. S. Afr. J. Anim. Sci. 2017, 47, 16–25. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, Y.; Xiao, Y.; Chen, H.; Zhao, L.; Huang, M.; Zhou, G. Differences in physicochemical and nutritional properties of breast and thigh meat from crossbred chickens, commercial broilers, and spent hens. Asian-Australas. J. Anim. Sci. 2016, 29, 855–864. [Google Scholar] [CrossRef]
- Chen, X.D.; Ma, Q.G.; Tang, M.Y.; Ji, C. Development of breast muscle and meat quality in Arbor Acres broilers, Jingxing 100 crossbred chickens and Beijing fatty chickens. Meat Sci. 2007, 77, 220–227. [Google Scholar] [CrossRef]
- Reddy, N.A.; Reddy, K.K.; Kumar, M.S.; Krishnaiah, N.; Rao, V.K. Studies on effect of sex and age on physico-chemical and organoleptic qualities of Rajasri chicken. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 406–415. [Google Scholar] [CrossRef]
- Khawaja, T.; Khan, S.H.; Mukhtar, N.; Parveen, A. Comparative study of growth performance, meat quality and haematological parameters of Fayoumi, Rhode Island Red and their reciprocal crossbred chickens. Ital. J. Anim. Sci. 2012, 11, 211–216. [Google Scholar] [CrossRef]
- Rashid, M.A.; Howlider, M.A.R.; Alam, J.; Rashid, M.A.; Kawsar, M.H.; Azmal, S.A. Effect of dwarfism on reproductive and meat yield parameters of crossbred chicken. Int. J. Poult. Sci. 2005, 4, 372–377. [Google Scholar]
- Cho, S.H.; Heo, J.M.; Yi, Y.-J. Growth performance of crossed breed Korean domestic chickens for twelve weeks after hatching. Korean J. Agric. Sci. 2019, 46, 591–599. [Google Scholar]
- Katemala, S.; Molee, A.; Thumanu, K.; Yongsawatdigul, J. A comparative study of meat quality and vibrational spectroscopic properties of different chicken breeds. Poult. Sci. 2022, 101, 101829. [Google Scholar] [CrossRef] [PubMed]
- Tougan, P.U.; Dahouda, M.; Salifou, C.F.A.; Ahounou, S.G.A.; Kpodekon, M.T.; Mensah, G.A.; Thewis, A.; Karim, I.Y.A. Conversion of chicken muscle to meat and factors affecting chicken meat quality: A review. Int. J. Agron. Agric. Res. 2013, 3, 1–20. [Google Scholar]
- Cross, H.R.; Durland, P.R.; Seideman, S.C. Sensory Qualities of Meat, 1st ed.; Academic Press: New York, NY, USA, 1986; pp. 279–320. [Google Scholar]
- Debut, M.; Berri, C.; Baeza, E.; Sellier, N.; Arnould, C.; Guemene, D.; Jehl, N.; Boutten, B.; Jego, Y.; Beaumont, C.; et al. Variation of chicken technological meat quality in relation to genotype and preslaughter stress conditions. Poult. Sci. 2003, 82, 1829–1838. [Google Scholar] [CrossRef]
- Lonergan, S.M.; Deeb, N.; Fedler, C.A.; Lamont, S.J. Breast meat quality and composition in unique chicken populations. Poult. Sci. 2003, 82, 1990–1994. [Google Scholar] [CrossRef]
- Shahin, K.A.; Abd Elazeem, F. Effects of breed, sex and diet and their interactions on carcass composition and tissue weight distribution of broiler chickens. Arch. Anim. Breed. 2005, 48, 612–626. [Google Scholar] [CrossRef]
- Kumar, S.; Bhat, Z.F.; Kumar, P.; Singh, P.K. Effect of sex on carcass quality parameters of Vanaraja chicken of over 72 weeks of age. Indian J Poult. Sci. 2012, 47, 377–381. [Google Scholar]
- A.O.A.C. Official Methods of Analysis, 16th ed.; Association of Official Analysis Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Petcharat, T.; Benjakul, S.; Karnjanapratum, S.; Nalinanon, S. Ultrasound-assisted extraction of collagen from clown featherback (Chitala ornata) skin: Yield and molecular characteristics. J. Sci. Food Agric. 2021, 101, 648–658. [Google Scholar] [CrossRef]
- Benjakul, S.; Chantakun, K.; Karnjanapratum, S. Impact of retort process on characteristics and bioactivities of herbal soup based on hydrolyzed collagen from seabass skin. J. Food Sci. Technol. 2018, 55, 3779–3791. [Google Scholar] [CrossRef]
- Petcharat, T.; Benjakul, S.; Hemar, Y. Improvement of gel properties of fish gelatin using gellan. Int. J. Food Eng. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Kaewthong, P.; Wattanachant, C.; Wattanachant, S. Improving the quality of barbecued culled-dairy-goat meat by marination with plant juices and sodium bicarbonate. J. Food Sci. Technol. 2021, 58, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Panpipat, W.; Chaijan, M. Effect of atmospheric pressure cold plasma on biophysical properties and aggregation of natural actomyosin from threadfin bream (Nemipterus bleekeri). Food Bioprocess Technol. 2020, 13, 851–859. [Google Scholar] [CrossRef]
- Zheng, A.; Chang, W.; Liu, G.; Yue, Y.; Li, J.; Zhang, S.; Cai, H.; Yang, A.; Chen, Z. Molecular differences in hepatic metabolism between AA broiler and big bone chickens: A proteomic study. PLoS ONE 2016, 11, e0164702. [Google Scholar] [CrossRef]
- Intarapichet, K.-O.; Suksombat, W.; Maikhunthod, B. Chemical compositions, fatty acid, collagen and cholesterol contents of Thai hybrid native and broiler chicken meats. J. Poult. Sci. 2008, 45, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Chuaynukool, K.; Wattanachant, S.; Siripongvutikorn, S.; Yai, H. Chemical and physical properties of raw and cooked spent hen, broiler and Thai indigenous chicken muscles in mixed herbs acidified soup (Tom Yum). J. Food Technol. 2007, 5, 180–186. [Google Scholar]
- Fernandez, X.; Sante, V.; Baeza, E.; Lebihan-Duval, E.; Berri, C.; Remignon, H.; Babile, R.; Le Pottier, G.; Millet, N.; Berge, P.; et al. Post mortem muscle metabolism and meat quality in three genetic types of turkey. Br. Poult. Sci. 2001, 42, 462–469. [Google Scholar] [CrossRef]
- Peña-Saldarriaga, L.M.; Fernández-López, J.; Pérez-Alvarez, J.A. Quality of chicken fat by-products: Lipid profile and colour properties. Foods. 2020, 9, 1046. [Google Scholar] [CrossRef]
- Tan, S.M.; Lee, S.M.; Dykes, G.A. Fat contributes to the buffering capacity of chicken skin and meat but enhances the vulnerability of attached Salmonella cells to acetic acid treatment. Food Res. Int. 2014, 66, 417–423. [Google Scholar] [CrossRef]
- Berge, P.; Lepetit, J.; Renerre, M.; Touraille, C. Meat quality traits in the emu (Dromaius novaehollandiae) as affected by muscle type and animal age. Meat Sci. 1997, 45, 209–221. [Google Scholar] [CrossRef]
- Indriani, S.; Benjakul, S.; Kishimura, H.; Karnjanapratum, S.; Nalinanon, S. Impact of extraction condition on the yield and molecular characteristics of collagen from Asian bullfrog (Rana tigerina) skin. LWT 2022, 162, 113439. [Google Scholar] [CrossRef]
- Nakamura, Y.N.; Iwamoto, H.; Shiba, N.; Miyachi, H.; Tabata, S.; Nishimura, S. Growth changes of the collagen content and architecture in the pectoralis and iliotibialis lateralis muscles of cockerels. Br. Poult. Sci. 2004, 45, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Klandorf, H.; Zhou, Q.; Sams, A.R. Inhibition by aminoguanidine of glucose-derived collagen cross-linking in skeletal muscle of broiler breeder hens. Poult. Sci. 1996, 75, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Warriss, P.D. The Chemical Composition and Structure of Meat; CABI Publishing: Wallingford, UK, 2000; pp. 37–67. [Google Scholar]
- CA. Thai Chickens, 4th ed.; Asia Pacific Printing: Bangkok, Thailand, 1999. [Google Scholar]
- Hussein, E.O.S.; Suliman, G.M.; Al-Owaimer, A.N.; Ahmed, S.H.; Abudabos, A.M.; Abd El-Hack, M.E.; Taha, A.E.; Saadeldin, I.M.; Swelum, A.A. Effects of stock, sex, and muscle type on carcass characteristics and meat quality attributes of parent broiler breeders and broiler chickens. Poult. Sci. 2019, 98, 6586–6592. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, N.; Pavlovski, Z.; Milošević, N.; Perić, L. The quantity of abdominal fat in broiler chicken of different genotypes from fifth to seventh week of age. Biotechnol. Anim. Husb. 2007, 23, 331–338. [Google Scholar] [CrossRef]
- Díaz, O.; Rodríguez, L.; Torres, A.; Cobos, A. Chemical composition and physico-chemical properties of meat from capons as affected by breed and age. Span. J. Agric. Res. 2010, 8, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar]
- Wattanachant, S. Factors affecting the quality characteristics of Thai indigenous chicken meat. Suranaree J. Sci. Technol. 2008, 15, 317–332. [Google Scholar]
- Fletcher, D.L. Poultry meat quality. Worlds Poult. Sci. J. 2002, 58, 131–145. [Google Scholar] [CrossRef]
- Eriksson, J.; Larson, G.; Gunnarsson, U.; Bed’Hom, B.; Tixier-Boichard, M.; Strömstedt, L.; Wright, D.; Jungerius, A.; Vereijken, A.; Randi, E.; et al. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet. 2008, 4, e1000010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, B.K.; Froning, G.W.; Yang, T.S. Heme pigment levels in chicken broilers chilled in ice slush and air. Poult. Sci. 1991, 70, 2197–2200. [Google Scholar] [CrossRef]
- Jaturasitha, S.; Kayan, A.; Wicke, M. Carcass and meat characteristics of male chickens between Thai indigenous compared with improved layer breeds and their crossbred. Arch. Tierz. 2008, 51, 283–294. [Google Scholar] [CrossRef]
- Debut, M.; Bihan-Duval, E.; Berri, C. Impacts des conditions de pré-abattage sur la qualité technologique de la viande de volaille. Sci. Tech. Avi. 2004, 48, 4–13. [Google Scholar]
- Cygan-Szczegielniak, D.; Bogucka, J. Growth performance, carcass characteristics and meat quality of organically reared broiler chickens depending on sex. Animals 2021, 11, 3274. [Google Scholar] [CrossRef] [PubMed]
- Lengkidworraphiphat, P.; Wongpoomchai, R.; Taya, S.; Jaturasitha, S. Effect of genotypes on macronutrients and antioxidant capacity of chicken breast meat. Asian-Australas. J. Anim. Sci. 2020, 33, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Pathak, V.; Kumar, A.; Singh, V. Protein profile of meat produced by Aseel, Kadaknath and Vanraja indigenous chickens. Int. J. Livest. Res. 2017, 7, 64–70. [Google Scholar] [CrossRef]
- De Liu, X.; Jayasena, D.D.; Jung, Y.; Jung, S.; Kang, B.S.; Heo, K.N.; Lee, J.H.; Jo, C. Differential proteome analysis of breast and thigh muscles between Korean native chickens and commercial broilers. Asian-Australas. J. Anim. Sci. 2012, 25, 895–902. [Google Scholar] [CrossRef]
- Hall, J.E.; Guyton, A.C. Pocket Companion to Guyton & Hall Textbook of Medical Physiology, 14th ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 518–521. [Google Scholar]
- Petcharat, T.; Chaijan, M.; Karnjanapratum, S. Effect of furcellaran incorporation on gel properties of sardine surimi. Int. J. Food Sci. Tech. 2021, 56, 5957–5967. [Google Scholar] [CrossRef]
- Farmer, L.J. Poultry meat flavour. In Poultry Meat Science, 1st ed.; Richardson, R.I., Mead, G.C., Eds.; CABI Publishing: Wallingford, UK, 1999; Volume 25, pp. 127–158. [Google Scholar]
Chicken | Chicken Parts | Sex | Moisture | Crude Protein | Fat | Ash |
---|---|---|---|---|---|---|
Broiler | Breast | M | 73.84 ± 0.20 bA | 22.63 ± 0.83 aB | 0.34 ± 0.03 eA | 1.17 ± 0.06 aA |
F | 73.84 ± 0.34 bA | 21.80 ± 0.50 aB | 0.44 ± 0.01 dA | 1.19 ± 0.04 aA | ||
Thigh | M | 74.94 ± 0.02 aB | 19.21 ± 0.04 bB | 4.65 ± 0.12 cA | 0.88 ± 0.04 bB | |
F | 74.89 ± 0.07 aB | 18.82 ± 0.55 bB | 5.32 ± 0.47 bA | 0.86 ± 0.06 bB | ||
Skin | M | 54.22 ± 0.17 cB | 9.69 ± 0.39 cB | 12.15 ± 0.42 aA | 0.37 ± 0.02 cB | |
F | 53.96 ± 0.78 cB | 9.52 ± 0.77 cB | 12.70 ± 0.45 aA | 0.44 ± 0.04 cB | ||
Ligor | Breast | M | 73.88 ± 0.34 bA | 23.81 ± 0.19 aA | 0.24 ± 0.03 fB | 1.15 ± 0.10 aA |
F | 73.66 ± 0.45 bA | 23.69 ± 0.09 aA | 0.33 ± 0.02 eB | 1.11 ± 0.06 aA | ||
Thigh | M | 76.72 ± 0.13 aA | 21.17 ± 0.57 bA | 0.65 ± 0.04 dB | 0.97 ± 0.02 abA | |
F | 76.47 ± 0.16 aA | 21.11 ± 0.01 bA | 0.94 ± 0.02 cB | 0.96 ± 0.07 bA | ||
Skin | M | 60.46 ± 1.31 cA | 14.71 ± 0.50 cdA | 8.78 ± 0.17 bB | 0.52 ± 0.01 dA | |
F | 59.05 ± 0.10 dA | 14.22 ± 0.27 dA | 9.22 ± 0.15 aB | 0.60 ± 0.02 cA |
Chicken | Chicken Parts | Sex | pH | L* | a* | b* |
---|---|---|---|---|---|---|
Broiler | Breast | M | 5.87 ± 0.01 dA | 60.78 ± 0.35 bA | 6.60 ± 0.42 bA | 15.60 ± 0.24 bB |
F | 5.84 ± 0.01 eA | 61.01 ± 0.61 bA | 6.81 ± 0.28 bA | 15.48 ± 0.39 bB | ||
Thigh | M | 6.44 ± 0.01 aA | 55.78 ± 1.07 dA | 8.55 ± 0.58 aB | 14.63 ± 0.66 cB | |
F | 6.36 ± 0.01 bA | 57.02 ± 0.59 cA | 8.62 ± 0.21 aB | 14.52 ± 0.12 cB | ||
Skin | M | 6.20 ± 0.03 cA | 76.60 ± 0.39 aA | 4.66 ± 0.41 cA | 16.43 ± 0.60 aB | |
F | 6.18 ± 0.02 cA | 76.15 ± 0.13 aA | 4.29 ± 0.31 cA | 16.63 ± 0.46 aB | ||
Ligor | Breast | M | 5.51 ± 0.00 cB | 61.29 ± 0.65 bA | 6.41 ± 0.20 bA | 19.95 ± 0.17 bA |
F | 5.47 ± 0.01 dB | 60.10 ± 0.36 bA | 6.51 ± 0.20 bA | 20.25 ± 0.20 bA | ||
Thigh | M | 5.88 ± 0.01 aB | 54.04 ± 0.81 cB | 9.14 ± 0.88 aA | 17.84 ± 0.46 cA | |
F | 5.76 ± 0.01 bB | 53.40 ± 0.85 cB | 10.32 ± 0.33 aA | 17.95 ± 0.71 cA | ||
Skin | M | 5.71 ± 0.05 bB | 73.26 ± 0.32 aB | 4.44 ± 1.46 cA | 23.89 ± 0.33 aA | |
F | 5.74 ± 0.07 bB | 73.64 ± 0.26 aB | 4.54 ± 0.26 cA | 25.20 ± 0.87 aA |
Chicken | Chicken Parts | Sex | Condition | Significance | |
---|---|---|---|---|---|
Raw | Cooked | ||||
Broiler | Breast | M | 1.23 ± 0.27 cA | 1.55 ± 0.36 cB | NS |
F | 1.08 ± 0.15 cA | 1.40 ± 0.24 cB | NS | ||
Thigh | M | 2.44 ± 0.57 aB | 3.17 ± 0.56 aB | * | |
F | 2.17 ± 0.32 bB | 2.81 ± 0.38 bB | * | ||
Ligor | Breast | M | 1.32 ± 0.53 cA | 4.08 ± 1.30 cA | * |
F | 1.19 ± 0.45 cA | 3.44 ± 0.99 dA | * | ||
Thigh | M | 3.28 ± 0.40 aA | 8.73 ± 1.42 aA | * | |
F | 3.07 ± 0.21 bA | 6.25 ± 1.19 bA | * |
Sample | LF-S | LF-B | LF-T | LM-S | LM-B | LM-T | BF-S | BF-B | BF-T | BM-S | BM-B | BM-T |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Essential Amino Acids | ||||||||||||
Lys | 2.18 ± 0.70 fA | 6.51 ± 0.41 cA | 5.92 ± 0.28 dA | 3.22 ± 0.71 eA | 8.68 ± 0.34 aA | 7.42 ± 0.28 bA | 0.92 ± 0.11 eB | 6.49 ± 0.13 bA | 5.46 ± 0.31 cB | 1.57 ± 0.48 dB | 8.38 ± 0.76 aA | 6.08 ± 1.72 bcB |
Thr | 0.97 ± 0.24 cA | 2.04 ± 0.28 aB | 2.25 ± 0.38 aA | 1.31 ± 0.22 bA | 2.81 ± 0.53 aB | 2.99 ± 0.43 aA | 0.50 ± 0.09 dB | 2.59 ± 0.17 bA | 2.53 ± 0.15 bA | 0.74 ± 0.21 cB | 3.23 ± 0.18 aA | 2.67 ± 0.79 abB |
Val | 0.63 ± 0.24 bA | 1.15 ± 0.15 aB | 1.24 ± 0.12 aB | 0.72 ± 0.14 bA | 1.33 ± 0.18 aB | 1.48 ± 0.16 aB | 0.32 ± 0.25 bB | 1.63 ± 0.26 aA | 1.48 ± 0.11 aA | 0.46 ± 0.15 bB | 1.71 ± 0.33 aA | 1.53 ± 0.36 aA |
Ile | 1.20 ± 0.22 dA | 3.50 ± 0.50 bA | 3.24 ± 0.34 bA | 1.72 ± 0.26 cA | 4.80 ± 1.08 aA | 4.36 ± 0.85 aA | 0.46 ± 0.07 dB | 3.60 ± 0.40 bA | 2.90 ± 0.33 bA | 0.84 ± 0.24 cB | 5.03 ± 0.57 aA | 4.84 ± 0.48 aA |
Leu | 2.79 ± 0.67 fA | 6.99 ± 0.29 cA | 6.47 ± 0.69 dA | 3.64 ± 0.57 eA | 9.85 ± 1.87 aA | 8.25 ± 1.19 bA | 1.18 ± 0.25 fB | 6.90 ± 0.23 cA | 5.87 ± 0.20 dA | 2.00 ± 0.51 eB | 9.10 ± 1.06 aA | 8.49 ± 1.99 bA |
Met | 0.41 ± 0.12 eA | 1.23 ± 0.16 cB | 1.22 ± 0.16 cA | 0.50 ± 0.12 dA | 1.78 ± 0.41 aB | 1.49 ± 0.30 bA | 0.15 ± 0.04 fB | 1.41 ± 0.15 bA | 1.11 ± 0.21 dA | 0.21 ± 0.07 eB | 1.91 ± 0.35 aA | 1.26 ± 0.44 cB |
His | 0.83 ± 0.20 fA | 2.26 ± 0.34 cA | 2.05 ± 0.32 dA | 1.16 ± 0.24 eA | 3.41 ± 0.70 aA | 2.69 ± 0.44 bA | 0.27 ± 0.08 fB | 2.35 ± 0.26 bA | 1.84 ± 0.21 dB | 0.43 ± 0.17 eB | 3.18 ± 0.22 aB | 2.00 ± 0.47 cB |
Phe | 1.21 ± 0.34 fA | 3.00 ± 0.20 cA | 2.77 ± 0.18 dA | 1.72 ± 0.29 eA | 4.43 ± 0.98 aA | 3.63 ± 0.59 bA | 0.56 ± 0.09 fB | 3.01 ± 0.22 bA | 2.55 ± 0.18 dB | 0.76 ± 0.23 eB | 4.14 ± 0.54 aB | 2.76 ± 0.90 cB |
Trp | 0.20 ± 0.02 fA | 0.59 ± 0.08 cB | 0.46 ± 0.05 dB | 0.25 ± 0.05 eA | 0.97 ± 0.26 aB | 0.82 ± 0.16 bA | 0.07 ± 0.02 fB | 0.68 ± 0.09 bA | 0.60 ± 0.08 bA | 0.14 ± 0.05 eB | 1.08 ± 0.18 aA | 0.59 ± 0.20 cB |
Non-essential amino acids | ||||||||||||
Arg | 3.39 ± 1.45 aA | 3.76 ± 1.29 aA | 6.19 ± 4.24 aA | 2.96 ± 0.19 aA | 2.32 ± 0.82 aA | 2.69 ± 0.10 aA | 3.08 ± 3.75 aA | 2.47 ± 0.97 aB | 2.71 ± 0.58 aB | 2.88 ± 0.87 aB | 2.11 ± 0.47 aA | 2.56 ± 0.89 aB |
Ala | 5.05 ± 1.14 fA | 8.49 ± 1.30 bA | 6.63 ± 0.59 dA | 6.30 ± 0.76 eA | 9.89 ± 1.82 aA | 7.68 ± 1.38 cA | 1.51 ± 0.21 fB | 7.03 ± 0.50 bB | 5.24 ± 0.54 dB | 2.13 ± 0.62 eB | 7.96 ± 0.51 aB | 5.47 ± 1.26 cB |
Gly | 2.21 ± 0.51 bA | 0.89 ± 0.18 fB | 1.26 ± 0.24 dB | 2.67 ± 0.22 aA | 1.05 ± 0.41 eA | 1.35 ± 0.36 cB | 1.73 ± 0.29 bB | 1.18 ± 0.19 eA | 1.45 ± 0.16 cA | 2.41 ± 0.81 aB | 1.27 ± 0.13 dA | 1.77 ± 0.35 bA |
Ser | 0.63 ± 0.21 dA | 2.49 ± 0.13 bB | 2.51 ± 0.72 bA | 0.69 ± 0.18 cA | 3.97 ± 1.00 aA | 3.21 ± 0.61 bA | 0.23 ± 0.06 cB | 2.84 ± 0.24 bA | 2.55 ± 0.34 bA | 0.29 ± 0.07 cB | 3.81 ± 0.22 aA | 2.65 ± 0.82 bA |
Pro | 0.64 ± 0.34 bA | 0.23 ± 0.19 cA | 0.27 ± 0.20 cA | 0.90 ± 0.18 aA | 0.23 ± 0.08 cA | 0.27 ± 0.08 cA | 0.34 ± 0.04 bB | 0.23 ± 0.02 cA | 0.21 ± 0.06 cB | 0.52 ± 0.29 aB | 0.17 ± 0.03 cB | 0.21 ± 0.08 cA |
Glu | 18.43 ± 1.18 dA | 26.02 ± 1.14 bA | 22.51 ± 2.39 cA | 19.26 ± 1.97 dA | 30.40 ± 3.70 aA | 26.31 ± 2.18 bA | 11.55 ± 2.15 eB | 15.82 ± 2.32 dB | 16.60 ± 1.75 dB | 18.51 ± 1.67 cB | 25.17 ± 1.33 aB | 21.38 ± 2.73 bB |
Asp | 1.44 ± 0.47 eA | 4.57 ± 0.42 cA | 3.99 ± 0.21 dA | 1.92 ± 0.41 dA | 5.88 ± 1.18 aA | 5.12 ± 0.80 bA | 0.38 ± 0.16 eB | 4.39 ± 0.66 bB | 3.44 ± 0.64 cB | 0.74 ± 0.33 dB | 5.18 ± 0.31 aB | 3.78 ± 1.16 cB |
Cys | 0.84 ± 0.18 eA | 2.11 ± 0.30 cA | 1.82 ± 0.41 cA | 1.38 ± 0.33 dA | 3.21 ± 0.67 aA | 2.74 ± 0.58 bA | 0.41 ± 0.18 fB | 2.14 ± 0.23 bA | 1.78 ± 0.09 dB | 0.54 ± 0.19 eB | 3.10 ± 0.44 aA | 1.92 ± 0.66 cB |
Tyr | 0.90 ± 0.18 fA | 2.62 ± 0.12 cA | 2.37 ± 0.16 dA | 1.25 ± 0.27 eA | 3.77 ± 0.87 aA | 3.17 ± 0.46 bA | 0.43 ± 0.07 fB | 2.71 ± 0.14 bB | 2.22 ± 0.18 dB | 0.58 ± 0.18 eB | 3.61 ± 0.51 aB | 2.40 ± 0.71 cB |
Total | 43.93 ± 6.15 fA | 77.75 ± 3.40 cA | 73.16 ± 6.58 dA | 54.59 ± 6.20 eA | 98.78 ± 3.57 aA | 84.68 ± 6.86 bA | 24.09 ± 3.34 fB | 67.45 ± 1.85 cB | 60.54 ± 3.76 dB | 35.96 ± 6.68 eB | 95.35 ± 8.81 aB | 70.97 ± 5.52 bB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panpipat, W.; Chaijan, M.; Karnjanapratum, S.; Keawtong, P.; Tansakul, P.; Panya, A.; Phonsatta, N.; Aoumtes, K.; Quan, T.H.; Petcharat, T. Quality Characterization of Different Parts of Broiler and Ligor Hybrid Chickens. Foods 2022, 11, 1929. https://doi.org/10.3390/foods11131929
Panpipat W, Chaijan M, Karnjanapratum S, Keawtong P, Tansakul P, Panya A, Phonsatta N, Aoumtes K, Quan TH, Petcharat T. Quality Characterization of Different Parts of Broiler and Ligor Hybrid Chickens. Foods. 2022; 11(13):1929. https://doi.org/10.3390/foods11131929
Chicago/Turabian StylePanpipat, Worawan, Manat Chaijan, Supatra Karnjanapratum, Pensiri Keawtong, Pavit Tansakul, Atikorn Panya, Natthaporn Phonsatta, Kittipat Aoumtes, Tran Hong Quan, and Tanyamon Petcharat. 2022. "Quality Characterization of Different Parts of Broiler and Ligor Hybrid Chickens" Foods 11, no. 13: 1929. https://doi.org/10.3390/foods11131929
APA StylePanpipat, W., Chaijan, M., Karnjanapratum, S., Keawtong, P., Tansakul, P., Panya, A., Phonsatta, N., Aoumtes, K., Quan, T. H., & Petcharat, T. (2022). Quality Characterization of Different Parts of Broiler and Ligor Hybrid Chickens. Foods, 11(13), 1929. https://doi.org/10.3390/foods11131929