Date Fruits as Raw Material for Vinegar and Non-Alcoholic Fermented Beverages
Abstract
:1. Introduction
2. Date Palm Characteristics
The Composition of Date Palm Fruit and Juice
Dates Composition | Lowest Reported | Highest Reported |
---|---|---|
Content [g/100 g] | ||
Carbohydrates | 54.90 | 88.30 |
Protein | 0.46 | 3.85 |
Ash | 1.45 | 2.3 |
Dietary fiber | 2.70 | 20.25 |
Fat | 0.07 | 0.57 |
Amino acids | Content [mg/100 g] | |
Alanine | 8.00 | 342.00 |
Arginine | 2.00 | 261.00 |
Aspartame | 230.00 | 450.00 |
Aspartic acid | 2.00 | 467.00 |
Cysteine | 11.00 | 114.00 |
Glutamic acid | 40.00 | 631.00 |
Glycine | 4.00 | 349.00 |
Histidine | 0.1 | 76.00 |
Isoleucine | 0.2 | 465.00 |
Leucine | 0.5 | 264.00 |
Lysine | 3.00 | 282.00 |
Methionine | 0.2 | 219.00 |
Phenylalanine | 0.8 | 173.00 |
Proline | 12.00 | 369.00 |
Serine | 6.00 | 238.00 |
Threonine | 1.00 | 264.00 |
Tryptophan | 49.5 | 100.00 |
Tyrosine | 1.00 | 181.00 |
Valine | 0.5 | 271.00 |
Minerals | Content [mg/100 g] | |
Potassium | 107.40 | 916.00 |
Boron | 3.30 | 5.60 |
Sodium | 32.90 | 131.00 |
Calcium | 9.50 | 207.00 |
Magnesium | 47.00 | 215.55 |
Phosphorus | 13.00 | 63.00 |
Iron | 0.30 | 32.76 |
Copper | 0.10 | 2.90 |
Cobalt | 0.41 | 1.00 |
Selenium | 0.10 | 0.32 |
Zinc | 0.10 | 1.80 |
Manganese | 0.21 | 5.90 |
Vitamins | Content [mg/100 g] | |
Folic acid | 0.004 | 0.3 |
Niacin | 0.0004 | 1.61 |
Riboflavin (B2) | 0.06 | 0.17 |
Thiamine (B1) | 0.05 | 0.13 |
Vitamin C | 2.4 | 17.5 |
3. Fermentation of Date Palm Juice
Vinegar
4. Exploring Innovative Date Fruits Products by Acetic Acid Bacteria Fermentation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mann, J.; Cummings, J.H.; Englyst, H.N.; Key, T.; Liu, S.; Riccardi, G.; Summerbell, C.; Uauy, R.; van Dam, R.M.; Venn, B.; et al. FAO/WHO Scientific Update on carbohydrates in human nutrition: Conclusions. Eur. J. Clin. Nutr. 2007, 61, S132–S137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zotta, T.; Solieri, L.; Iacumin, L.; Picozzi, C.; Gullo, M. Valorization of cheese whey using microbial fermentations. Appl. Microbiol. Biotechnol. 2020, 104, 2749–2764. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration. Available online: https://www.fda.gov/ (accessed on 8 February 2022).
- Scoccianti, C.; Cecchini, M.; Anderson, A.S.; Berrino, F.; Boutron-Ruault, M.C.; Espina, C.; Key, T.J.; Leitzmann, M.; Norat, T.; Powers, H.; et al. European Code against Cancer 4th Edition: Alcohol drinking and cancer. Cancer Epidemiol. 2016, 45, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Keefe, J.H.; Bhatti, S.K.; Bajwa, A.; Di Nicolantonio, J.J.; Lavie, C.J. Alcohol and cardiovascular health: The dose makes the poison… or the remedy. Mayo Clin. Proc. 2014, 89, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.; Daskalopoulou, M.; Rapsomaniki, E.; George, J.; Britton, A.; Bobak, M.; Casas, J.P.; Dale, C.E.; Denaxas, S.; Shah, A.D.; et al. Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: Population based cohort study using linked health records. BMJ 2017, 356. [Google Scholar] [CrossRef] [Green Version]
- Lundgaard, I.; Wang, W.; Eberhardt, A.; Vinitsky, H.S.; Reeves, B.C.; Peng, S.; Lou, N.; Hussain, R.; Nedergaard, M. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci. Rep. 2018, 8, 2246. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, I.J.; Mosca, L.; Piano, M.R.; Fisher, E.A. Wine and your heart: A science advisory for healthcare professionals from the Nutrition Committee, Council on Epidemiology and Prevention, and Council on Cardiovascular Nursing of the American Heart Association. Circulation 2001, 103, 472–475. [Google Scholar] [CrossRef] [Green Version]
- Giudici, P.; Gullo, M.; Solieri, L. Traditional balsamic vinegar. In Vinegars of the World; Springer: Milano, Italy, 2009; pp. 157–177. ISBN 9788847008656. [Google Scholar]
- Mas, A.; Torija, M.J.; García-Parrilla, M.D.C.; Troncoso, A.M. Acetic acid bacteria and the production and quality of wine vinegar. Sci. World J. 2014, 2014, 394671. [Google Scholar] [CrossRef]
- Gullo, M.; Zanichelli, G.; Verzelloni, E.; Lemmetti, F.; Giudici, P. Feasible acetic acid fermentations of alcoholic and sugary substrates in combined operation mode. Process Biochem. 2016, 51, 1129–1139. [Google Scholar] [CrossRef] [Green Version]
- Di Donna, L.; Bartella, L.; De Vero, L.; Gullo, M.; Giuffrè, A.M.; Zappia, C.; Capocasale, M.; Poiana, M.; D’Urso, S.; Caridi, A. Vinegar production from Citrus bergamia by-products and preservation of bioactive compounds. Eur. Food Res. Technol. 2020, 246, 1981–1990. [Google Scholar] [CrossRef]
- Krusong, W.; Sriphochanart, W.; Suwapanich, R.; Mekkerdchoo, O.; Sriprom, P.; Wipatanawin, A.; Massa, S. Healthy dried baby corn silk vinegar production and determination of its main organic volatiles containing antimicrobial activity. LWT Food Sci. Technol. 2020, 117, 108620. [Google Scholar] [CrossRef]
- Sharifudin, S.A.; Ho, W.Y.; Yeap, S.K.; Abdullah, R.; Koh, S.P. Fermentation and characterisation of potential kombucha cultures on papaya-based substrates. LWT Food Sci. Technol. 2021, 151, 112060. [Google Scholar] [CrossRef]
- Sengun, I.Y.; Kilic, G.; Ozturk, B. Screening physicochemical, microbiological and bioactive properties of fruit vinegars produced from various raw materials. Food Sci. Biotechnol. 2020, 29, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, S.; Adiamo, O.; Ahmad, M.; Mudgil, P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 2020, 308, 125522. [Google Scholar] [CrossRef]
- Sirisena, S.; Ng, K.; Ajlouni, S. The emerging australian date palm industry: Date fruit nutritional and bioactive compounds and valuable processing by-products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 813–823. [Google Scholar] [CrossRef]
- Shehzad, M.; Rasheed, H.; Naqvi, S.A.; Al-Khayri, J.M.; Lorenzo, J.M.; Alaghbari, M.A.; Manzoor, M.F.; Aadil, R.M. Therapeutic potential of date palm against human infertility: A review. Metabolites 2021, 11, 408. [Google Scholar] [CrossRef]
- Younas, A.; Naqvi, S.A.; Khan, M.R.; Shabbir, M.A.; Jatoi, M.A.; Anwar, F.; Inam-Ur-Raheem, M.; Saari, N.; Aadil, R.M. Functional food and nutra-pharmaceutical perspectives of date (Phoenix dactylifera L.) fruit. J. Food Biochem. 2020, 44, e13332. [Google Scholar] [CrossRef]
- Ghnimi, S.; Umer, S.; Karim, A.; Kamal-Eldin, A. Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS J. 2017, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.M.B.; Mousavi Khaneghah, A.; Saraiva, J.A.; Jambrak, A.R.; Barba, F.J.; Mota, M.J. Effect of ultrasound on lactic acid production by Lactobacillus strains in date (Phoenix dactylifera var. Kabkab) syrup. Appl. Microbiol. Biotechnol. 2018, 102, 2635–2644. [Google Scholar] [CrossRef]
- Ahmad, A.; Naqvi, S.A.; Jaskani, M.J.; Waseem, M.; Ali, E.; Khan, I.A.; Manzoor, M.F.; Siddeeg, A.; Aadil, R.M. Efficient utilization of date palm waste for the bioethanol production through Saccharomyces cerevisiae strain. Food Sci. Nutr. 2021, 9, 2066–2074. [Google Scholar] [CrossRef]
- Khaman, P.N.; Al Maadeed, M.A. Improvement of ternary recycled polymer blend reinforced with date palm fibre. Mater. Des. 2014, 60, 532–539. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Bahkali, A.H. Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology—Review. Saudi J. Biol. Sci. 2013, 20, 105–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karbasi, M.; Yarmand, M.S.; Mousavi, M. Fermentation Potential of Lactobacillus rhamnosus and Lactobacillus acidophilus in date syrup to develop a functional fermented beverage: A comparative study. J. Food Process Preserv. 2015, 39, 863–870. [Google Scholar] [CrossRef]
- Mostafa, H.S.; Ali, M.R.; Mohamed, R.M. Production of a novel probiotic date juice with anti-proliferative activity against hep-2 cancer cells. Food Sci. Technol. 2021, 41, 105–115. [Google Scholar] [CrossRef]
- Shahravy, A.; Tabandeh, F.; Bambai, B.; Zamanizadeh, H.R.; Mizani, M. Optimization of probiotic Lactobacillus casei ATCC 334 production using date powder as carbon source. Chem. Ind. Chem. Eng. Q. 2012, 18, 273–282. [Google Scholar] [CrossRef]
- Nancib, A.; Nancib, N.; Boubendir, A.; Boudrant, J. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus. Braz. J. Microbiol. 2015, 46, 893–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onwumah, M.; Okoronkwo, P.; Effiong, E. Molecular characterization of yeast isolated from palm wine in Alakahia, Rivers State, Nigeria. World Sci. News 2019, 130, 297–304. [Google Scholar]
- Mohammed, S.S.D.; Yohanna, B.; Wartu, J.R.; Abubakar, N.L.; Bello, S. Wine produced from fermentation of honey slurry and ddates palm fruit juice blend using Saccharomyces cerevisiae isolated from palm wine. Int. J. Biol. 2018, 10, 52. [Google Scholar] [CrossRef]
- Ezeronye, O.U.; Legras, J.L. Genetic analysis of Saccharomyces cerevisiae strains isolated from palm wine in eastern Nigeria. Comparison with other African strains. J. Appl. Microbiol. 2009, 106, 1569–1578. [Google Scholar] [CrossRef]
- Talukder, A.A.; Adnan, N.; Siddiqa, A.; Miah, R.; Tuli, J.F.; Khan, S.T.; Dey, S.K.; Lertwattanasakul, N.; Yamada, M. Fuel ethanol production using xylose assimilating and high ethanol producing thermosensitive Saccharomyces cerevisiae isolated from date palm juice in Bangladesh. Biocatal. Agric. Biotechnol. 2019, 18, 101029. [Google Scholar] [CrossRef]
- Matloob, M.H.; Balakit, A.A.A.H. Phenolic content of various date palm fruits and vinegars from Iraq. Int. J. Chem. Sci. 2016, 14, 1893–1906. [Google Scholar]
- Siddeeg, A.; Zeng, X.A.; Rahaman, A.; Manzoor, M.F.; Ahmed, Z.; Ammar, A.F. Quality characteristics of the processed dates vinegar under influence of ultrasound and pulsed electric field treatments. J. Food Sci. Technol. 2019, 56, 4380–4389. [Google Scholar] [CrossRef] [PubMed]
- Matloob, M.H. Zahdi date vinegar: Production and characterization. Am. J. Food Technol. 2014, 9, 231–245. [Google Scholar] [CrossRef] [Green Version]
- La China, S.; Zanichelli, G.; De Vero, L.; Gullo, M. Oxidative fermentations and exopolysaccharides production by acetic acid bacteria: A mini review. Biotechnol. Lett. 2018, 40, 1289–1302. [Google Scholar] [CrossRef]
- Ali, Z.; Li, J.; Zhang, Y.; Naeem, N.; Younas, S.; Javeed, F. Dates (Phoenix Dactylifera) and date vinegar: Preventive role against various diseases and related in vivo mechanisms. Food Rev. Int. 2020, 38, 1–28. [Google Scholar] [CrossRef]
- Jain, P.; Jain, S.; Sharma, S.; Paliwal, S. Diverse application of Phoenix sylvestris: A potential herb. Agric. Nat. Resour. 2018, 52, 107–114. [Google Scholar] [CrossRef]
- Chowdhury, M.S.H.; Halim, M.A.; Muhammed, N.; Haque, F.; Koike, M. traditional utilization of wild date palm. J. For. Res. 2008, 19, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Shajib, M.S.; Akter, S.; Ahmed, T.; Imam, M.Z. Antinociceptive and neuropharmacological activities of methanol extract of Phoenix sylvestris fruit pulp. Front. Pharmacol. 2015, 6, 212. [Google Scholar] [CrossRef] [Green Version]
- Flowers, J.M.; Hazzouri, K.M.; Lemansour, A.; Capote, T.; Gros-Balthazard, M.; Ferrand, S.; Lebrun, M.; Amiri, K.M.A.; Purugganan, M.D. Patterns of volatile diversity yield insights into the genetics and biochemistry of the date palm fruit volatilome. Front. Plant Sci. 2022, 13, 853651. [Google Scholar] [CrossRef]
- Hatem, A.; Al-Khalifa, A.R.; Farouk, A.; Shaheen, M. Effect of maturation stages on flavor profile and antioxidant activity of date palm fruits (Phoenix dactylifera) grown in Saudi Arabia. Int. J. Pharm. 2018, 14, 407–414. [Google Scholar] [CrossRef] [Green Version]
- El Arem, A.; Flamini, G.; Saffi, E.B.; Issaoui, M.; Zayene, N.; Ferchichi, A.; Hammami, M.; Helal, A.N.; Achour, L. Chemical and aroma volatile compositions of date palm (Phoenix dactylifera L.) fruits at three maturation stages. Food Chem. 2011, 127, 1744–1754. [Google Scholar] [CrossRef]
- Khalid, S.; Ahmad, A.; Masud, T.; Asad, M.J.; Sandhu, M. Nutritional assessment of Ajwa date flesh and pits in comparison to local varieties. J. Anim. Plant Sci. 2016, 26, 1072–1080. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/home/ (accessed on 9 February 2022).
- Ashraf, Z.; Hamidi-Esfahani, Z. Date and date processing: A review. Food Rev. Int. 2011, 27, 101–133. [Google Scholar] [CrossRef]
- El Hadrami, A.; Al-Khayri, J.M. Socioeconomic and traditional importance of date palm. Emir. J. Food Agric. 2012, 24, 371–385. [Google Scholar]
- Mirza, M.B.; Syed, F.Q.; Khan, F.; Elkady, A.I.; Al-Attar, A.M.; Hakeem, K.R. Ajwa dates: A highly nutritive fruit with the impending therapeutic application. Plant Hum. Health Pharmacol. Ther. Uses 2008, 3, 209–230. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Hai, A.; Banat, F.; Hasan, S.W.; Taher, H.; Zaid, H.F.M. Nutritional quality and physico-chemical characteristics of selected date fruit varieties of the United Arab Emirates. Processes 2020, 8, 256. [Google Scholar] [CrossRef] [Green Version]
- Assirey, E.A.R. Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J. Taibah Univ. Sci. 2015, 9, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Kuras, M.J.; Zielińska-Pisklak, M.; Duszyńska, J.; Jabłońska, J. Determination of the elemental composition and antioxidant properties of dates (Phoenix dactyliferia) originated from different regions. J. Food Sci. Technol. 2020, 57, 2828–2839. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.-X.; Shi, L.-E.; Aleid, S. Date fruit chemical composition, nutritionaland medicinal values, products. J. Sci. Food Agric. 2013, 93, 2351–2361. [Google Scholar] [CrossRef]
- Amira, E.A.; Behija, S.E.; Beligh, M.; Lamia, L.; Manel, I.; Mohamed, H.; Lotfi, A. Effects of the ripening stage on phenolic profile, phytochemical composition and antioxidant activity of date palm fruit. J. Agric. Food Chem. 2012, 60, 10896–10902. [Google Scholar] [CrossRef]
- Al-Mssallem, M.Q.; Alqurashi, R.M.; Al-Khayri, J.M. Bioactive compounds of date palm (Phoenix dactylifera L.). Ref. Ser. Phytochem. 2020, 91–105. [Google Scholar] [CrossRef]
- Al-Shahib, W.; Marshall, R.J. The fruit of the date palm: Its possible use as the best food for the future? Int. J. Food Sci. Nutr. 2003, 54, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Compositional and sensory characteristics of three native sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem. 2005, 53, 7586–7591. [Google Scholar] [CrossRef] [PubMed]
- Borchani, C.; Besbes, S.; Blecker, C.; Masmoudi, M.; Baati, R.; Attia, H. Chemical properties of 11 date cultivars and their corresponding fiber extracts. Afr. J. Biotechnol. 2010, 9, 4096–4105. [Google Scholar] [CrossRef]
- Al-Farsi, M.A.; Lee, C.Y. Nutritional and functional properties of dates: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar] [CrossRef]
- Siddiq, M.; Greiby, I. Overview of date fruit production, postharvest handling, processing, and nutrition. Dates Postharvest Sci. Process. Technol. Health Benefits 2013, 1, 1–28. [Google Scholar] [CrossRef]
- Chaira, N.; Mrabet, A.; Ferchichi, A. Evaluation of antioxidant activity, phenolics, sugar and mineral contents in date palm fruits. J. Food Biochem. 2009, 33, 390–403. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Al-Abid, M.; Al-Shoaily, K.; Al-Amry, M.; Al-Rawahy, F. Compositional and functional characteristics of dates, syrups, and their by-products. Food Chem. 2007, 104, 943–947. [Google Scholar] [CrossRef]
- Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. Int. 2011, 44, 1812–1822. [Google Scholar] [CrossRef]
- Meng, Z.; Yi, L.; Hu, Q.; Lin, Z.; Ramaswamy, H.S.; Wang, C. Optimized extraction and characterization of folates from date palm fruits and their tracking during fruits wine fermentation. Front. Nutr. 2021, 8, 583. [Google Scholar] [CrossRef]
- Saafi, E.B.; El Arem, A.; Issaoui, M.; Hammami, M.; Achour, L. Phenolic content and antioxidant activity of four date palm (Phoenix dactylifera L.) fruit varieties grown in Tunisia. Int. J. Food Sci. Technol. 2009, 44, 2314–2319. [Google Scholar] [CrossRef]
- Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. Technol. 2012, 47, 2023–2044. [Google Scholar] [CrossRef]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Chem. Technol. Metall.. 2005, 40, 255–260. [Google Scholar]
- Yang, J.; Martinson, T.E.; Liu, R.H. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Quadir, A.; Shakeel, F.; Ali, A.; Faiyazuddin, M. Phytotherapeutic potential and pharmaceutical impact of Phoenix dactylifera (date palm). J. Food Sci. Technol. 2020, 57, 1191–1204. [Google Scholar] [CrossRef]
- Oladzad, S.; Fallah, N.; Mahboubi, A.; Afsham, N.; Taherzadeh, M.J. Date fruit processing waste and approaches to its valorization: A review. Bioresour. Technol. 2021, 340, 125625. [Google Scholar] [CrossRef] [PubMed]
- Abbès, F.; Besbes, S.; Brahim, B.; Kchaou, W.; Attia, H.; Blecker, C. Effect of concentration temperature on some bioactive compounds and antioxidant proprieties of date syrup. Food Sci. Technol. Int. 2013, 19, 323–333. [Google Scholar] [CrossRef]
- Djeni, T.N.; Kouame, K.H.; Ake, F.D.M.; Amoikon, L.S.T.; Dje, M.K.; Jeyaram, K. Microbial Diversity and metabolite profiles of palm wine produced from three different palm tree species in Côte d’Ivoire. Sci. Rep. 2020, 10, 1715. [Google Scholar] [CrossRef]
- Awe, S.; Nnadoze, S. Production and microbiological assesment of date palm (Phoenix dactylifera L.) fruit wine. Br. Microbiol. Res. J. 2015, 8, 480–488. [Google Scholar] [CrossRef]
- Mehaia, M.A.; Cheryan, M. Ethanol and vinegar in batch and continuous membrane reactors. Enzyme Microb. Technol. 1991, 13, 257–261. [Google Scholar] [CrossRef]
- Bhusari, S.I.; Desai, V.D.; Nalavade, M.L.; Wadkar, S.S.; Ghosh, J.S. Fermentation and characterization of wine from fruits of Phoenix dactylifera, using Saccharomyces cerevisae NCIM 3495. Int. Food Res. J. 2013, 20, 3411–3415. [Google Scholar]
- Said, R.B.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative characterization of polyphenolic compounds in the male flowers of Phoenix dactylifera by liquid chromatography coupled with mass spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef]
- Ousaaid, D.; Mechchate, H.; Laaroussi, H.; Hano, C.; Bakour, M.; Ghouizi, A.E.; Conte, R.; Lyoussi, B.; Arabi, I. Fruits Vinegar: Quality characteristics, phytochemistry, and functionality. Molecules 2022, 27, 222. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Zhang, B.; Duan, W.; Zhang, J.; Wang, M. Nutrients and bioactive components from vinegar: A fermented and functional food. J. Funct. Foods 2020, 64, 103681. [Google Scholar] [CrossRef]
- Ali, Z.; Ma, H.; Ayim, I.; Wali, A. Efficacy of new beverage made of dates vinegar and garlic juice in improving serum lipid profile parameters and inflammatory biomarkers of mildly hyperlipidemic adults: A double-blinded, randomized, placebo-controlled study. J. Food Biochem. 2018, 42, e12545. [Google Scholar] [CrossRef]
- Ali, Z.; Ma, H.; Wali, A.; Ayim, I.; Sharif, M.N. Daily date vinegar consumption improves hyperlipidemia, β-carotenoid and inflammatory biomarkers in mildly hypercholesterolemic adults. J. Herb. Med. 2019, 17–18, 100265. [Google Scholar] [CrossRef]
- Ali, Z.; Ma, H.; Wali, A.; Ayim, I.; Rashid, M.T.; Younas, S. A double-blinded, randomized, placebo-controlled study evaluating the impact of dates vinegar consumption on blood biochemical and hematological parameters in patients with type 2 diabetes. Trop. J. Pharm. Res. 2018, 17, 2463–2469. [Google Scholar] [CrossRef]
- Zangiabadi, N.; Asadi-Shekaari, M.; Sheibani, V.; Jafari, M.; Shabani, M.; Asadi, A.R.; Tajadini, H.; Jarahi, M. Date fruit extract is a neuroprotective agent in diabetic peripheral neuropathy in streptozotocin-induced diabetic rats: A multimodal analysis. Oxid. Med. Cell. Longev. 2011, 2011, 976948I. [Google Scholar] [CrossRef] [Green Version]
- Karizaki, V.M. Iranian dates and ethnic date-based products. J. Ethn. Foods 2017, 4, 204–209. [Google Scholar] [CrossRef]
- Food & Drug Administration. CPG Sec 525.825 Vinegar, Definitions—Adulteration with Vinegar Eels; Center for Food Safety and Applied Nutrition Office of Regulatory Affairs: Silver Spring, MD, USA, 1995. [Google Scholar]
- Budak, H.N. Alteration of antioxidant activity and total phenolic content during the eight-week fermentation of apple cider vinegar. Hortis 2021, 38, 39–45. [Google Scholar] [CrossRef]
- Wang, D.; Wang, M.; Cao, L.; Wang, X.; Sun, J.; Yuan, J.; Gu, S. Changes and correlation of microorganism and flavor substances during persimmon vinegar fermentation. Food Biosci. 2022, 46, 101565. [Google Scholar] [CrossRef]
- Duan, W.; Xia, T.; Zhang, B.; Li, S.; Zhang, C.; Zhao, C.; Song, J.; Wang, M. Changes of physicochemical, bioactive compounds and antioxidant capacity during the brewing process of Zhenjiang aromatic vinegar. Molecules 2019, 24, 3935. [Google Scholar] [CrossRef] [Green Version]
- Hur, S.J.; Lee, S.Y.; Kim, Y.; Choi, I.; Kim, G. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Albertini, B.; Schoubben, A.; Guarnaccia, D.; Pinelli, F.; Della Vecchia, M.; Ricci, M.; Di Renzo, G.C.; Blasi, P. Effect of fermentation and drying on cocoa polyphenols. J. Agric. Food Chem. 2015, 63, 9948–9953. [Google Scholar] [CrossRef] [PubMed]
- John, W.; Böttcher, N.; Aßkamp, M.; Bergounhou, A.; Kumari, N.; Ho, P.; D’Souza, R.; Nevoigt, E.; Ullrich, M. Forcing fermentation: Profiling proteins, peptides and polyphenols in lab-scale cocoa bean fermentation. Food Chem. 2019, 278, 786–794. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, C.; Guo, Y.; Wang, X.; Meng, Y. Polyphenols in fermented apple juice: Beneficial effects on human health. J. Funct. Foods 2021, 76, 104294. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Yang, J.H.; Lin, H.C.; Mau, J.L. Antioxidant properties of several commercial mushrooms. Food Chem. 2002, 77, 229–235. [Google Scholar] [CrossRef]
- Hafzan, Y.; Saw, J.W.; Fadzilah, I. Physicochemical properties, total phenolic content, and antioxidant capacity of homemade and commercial date (Phoenix dactylifera L.) vinegar. Int. Food Res. J. 2017, 24, 2557–2562. [Google Scholar]
- Ali, Z.; Ma, H.; Rashid, M.T.; Wali, A.; Younas, S. Preliminary study to evaluate the phytochemicals and physiochemical properties in red and black date’s vinegar. Food Sci. Nutr. 2019, 7, 1976–1985. [Google Scholar] [CrossRef] [PubMed]
- Halladj, F.; Boukhiar, A.; Amellal, H.; Benamara, S. Optimization of traditional date vinegar preparation using full factorial design. J. Am. Soc. Brew. Chem. 2016, 74, 137–144. [Google Scholar] [CrossRef]
- Cañete-Rodríguez, A.; Santos-Dueñas, I.; Jiménez-Hornero, J.; Ehrenreich, A.; Liebl, W.; García-García, I. Gluconic acid: Properties, production methods and applications—An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochem. 2016, 51, 1891–1903. [Google Scholar] [CrossRef]
- Dufresne, C.; Farnworth, E. Tea, Kombucha, and health: A review. Food Res. Int. 2000, 33, 409–421. [Google Scholar] [CrossRef]
- Kapp, J.M.; Sumner, W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Watawana, M.I.; Jayawardena, N.; Gunawardhana, C.B.; Waisundara, V.Y. Health, wellness, and safety aspects of the consumption of kombucha. J. Chem. 2015, 2015, 591869. [Google Scholar] [CrossRef] [Green Version]
- La China, S.; De Vero, L.; Anguluri, K.; Brugnoli, M.; Mamlouk, D.; Gullo, M. Kombucha tea as a reservoir of cellulose producing bacteria: Assessing diversity among komagataeibacter isolates. Appl. Sci. 2021, 11, 1595. [Google Scholar] [CrossRef]
- Mamlouk, D.; Gullo, M. Acetic acid bacteria: Physiology and carbon sources oxidation. Indian J. Microbiol. 2013, 53, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, S.; Safari, M.; Emam-Djomeh, Z.; Golmakani, M.T. Development of fermented date syrup using Kombucha starter culture. J. Food Process. Preserv. 2019, 43, e13872. [Google Scholar] [CrossRef]
- Laureys, D.; Britton, S.J.; De Clippeleer, J. Kombucha tea fermentation: A review. J. Am. Soc. Brew. Chem. 2020, 78, 165–174. [Google Scholar] [CrossRef]
Fruits | Phenolic Content (mg GAE/100 g Fresh Weight) |
---|---|
Date | 326 |
Green grape | 201 |
Dark purple grape | 397 |
Kiwifruit | 112 |
Orange | 243 |
Plum | 311 |
Apple | 100 |
Pear | 125 |
Raspberry | 267 |
Bioactive Components | Content [mg/100 g] | |
---|---|---|
Lowest Reported | Highest Reported | |
Phenolic acids | 20.24 | 64.44 |
Carotenoids | 0.03 | 2.90 |
Anthocyanins | 0.24 | 1.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantadori, E.; Brugnoli, M.; Centola, M.; Uffredi, E.; Colonello, A.; Gullo, M. Date Fruits as Raw Material for Vinegar and Non-Alcoholic Fermented Beverages. Foods 2022, 11, 1972. https://doi.org/10.3390/foods11131972
Cantadori E, Brugnoli M, Centola M, Uffredi E, Colonello A, Gullo M. Date Fruits as Raw Material for Vinegar and Non-Alcoholic Fermented Beverages. Foods. 2022; 11(13):1972. https://doi.org/10.3390/foods11131972
Chicago/Turabian StyleCantadori, Elsa, Marcello Brugnoli, Marina Centola, Erik Uffredi, Andrea Colonello, and Maria Gullo. 2022. "Date Fruits as Raw Material for Vinegar and Non-Alcoholic Fermented Beverages" Foods 11, no. 13: 1972. https://doi.org/10.3390/foods11131972
APA StyleCantadori, E., Brugnoli, M., Centola, M., Uffredi, E., Colonello, A., & Gullo, M. (2022). Date Fruits as Raw Material for Vinegar and Non-Alcoholic Fermented Beverages. Foods, 11(13), 1972. https://doi.org/10.3390/foods11131972