Development of Simplified Models for Non-Destructive Hyperspectral Imaging Monitoring of S-ovalbumin Content in Eggs during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Egg Samples
2.2. Hyperspectral Images Acquisition and Calibration
2.3. Determination of S-ovalbumin
2.4. Spectral Data Extraction
2.5. Spectral Pre-Prcossing
2.6. Modeling
2.6.1. PLSR
2.6.2. LSSVM
2.7. Feature Wavelength Selection
2.8. Visualization of S-ovalbumin Content
3. Results and Discussion
3.1. S-ovalbumin Analysis
3.2. Spectral Feature Analysis
3.3. Prediction of S-ovalbumin Content Based on Feature Wavelengths
3.4. Visualization of S-ovalbumin Contents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, X.; Gao, F.; Zhu, K. Effect of fresh egg white addition on the quality characteristics and protein aggregation of oat noodles. Food Chem. 2020, 330, 127319. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, S.; Jafari, S.M.; Babajafari, S.; Niakousari, M.; Mazloomi, S.M. Different food hydrocolloids and biopolymers as egg replacers: A review of their influences on the batter and cake quality. Food Hydrocoll. 2022, 128, 107611. [Google Scholar] [CrossRef]
- Mann, K.; Mann, M. In-depth analysis of the chicken egg white proteome using an LTQ orbitrap velos. Proteome Sci. 2011, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyamoto, T.; Takahashi, N.; Sekine, M.; Ogawa, T.; Hidaka, M.; Homma, H.; Masaki, H. Transition of serine residues to the D-form during the conversion of ovalbumin into heat stable S-ovalbumin. J. Pharm. Biomed. Anal. 2015, 116, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Qiu, N.; Ma, M.; Jin, Y.; Yang, H.; Geng, F.; Sun, S. Estimation of egg freshness using S-ovalbumin as an indicator. Poult. Sci. 2012, 913, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, M.; Takahashi, N.; Hirose, M. Crystal structure of S-ovalbumin as a non-loop-inserted thermostabilized serpin form. J. Biol. Chem. 2003, 27837, 35524–35530. [Google Scholar] [CrossRef] [Green Version]
- Plancken, V.D.I.; Loey, A.V.; Hendrickx, M.E.G. Changes in sulfhydryl content of egg white proteins due to heat and pressure treatment. J. Agric. Food Chem. 2005, 5314, 5726–5733. [Google Scholar] [CrossRef]
- Deleu, L.J.; Wilderjans, E.; Haesendonck, I.V.; Courtin, C.M.; Brijs, K.; Delcour, J.A. Storage induced conversion of ovalbumin into S-ovalbumin in eggs impacts the properties of pound cake and its batter. Food Hydrocoll. 2015, 49, 208–215. [Google Scholar] [CrossRef]
- Lambrecht, M.A.; Rombouts, I.; Nivelle, M.A.; Delcour, J.A. The impact of protein characteristics on the protein network in and properties of fresh and cooked wheat-based noodles. J. Cereal Sci. 2017, 75, 234–242. [Google Scholar] [CrossRef]
- Yaseen, T.; Sun, D.; Cheng, J. Raman imaging for food quality and safety evaluation: Fundamentals and applications. Trends Food Sci. Technol. 2017, 62, 177–189. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, B.; Dong, J.; Lu, B.; Hu, C.; Tang, X. Egg freshness prediction using a comprehensive analysis based on visible near infrared spectroscopy. Spectrosc. Lett. 2020, 537, 512–522. [Google Scholar] [CrossRef]
- Bao, G.; Jia, M.; Xun, Y.; Cai, S.; Yang, Q. Cracked egg recognition based on machine vision. Comput. Electron. Agric. 2019, 158, 159–166. [Google Scholar] [CrossRef]
- Hua, Z.; Yu, Y.; Zhao, C.; Zong, J.; Shi, Y.; Men, H. A feature dimensionality reduction strategy coupled with an electronic nose to identify the quality of egg. J. Food Process Eng. 2021, 44, e13873. [Google Scholar] [CrossRef]
- Sun, L.; Bi, X.; Lin, H.; Zhao, J.; Cai, J. On-line detection of eggshell crack based on acoustic resonance analysis. J. Food Eng. 2013, 1161, 240–245. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, D.; Cheng, W. Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process. J. Food Eng. 2017, 192, 53–60. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.; Pu, H. Model improvement for predicting moisture content MC in pork longissimus dorsi muscles under diverse processing conditions by hyperspectral imaging. J. Food Eng. 2017, 196, 65–72. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.; Pu, H. Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry. Trends Food Sci. Technol. 2017, 67, 93–105. [Google Scholar] [CrossRef]
- Pu, Y.; Sun, D. Vis-NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying. Food Chem. 2015, 188, 271–278. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images. Int. J. Remote Sens. 2020, 41, 2263–2276. [Google Scholar] [CrossRef]
- Yao, K.; Sun, J.; Chen, C.; Xu, M.; Zhou, X.; Cao, Y.; Tian, Y. Nondestructive detection for egg freshness grade based on hyperspectral imaging technology. J. Food Process Eng. 2020, 437, e13422. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, L.Q.; Tu, S.C.; Zhan, G.; Tu, K. Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis. J. Food Eng. 2015, 157, 41–48. [Google Scholar] [CrossRef]
- Feng, Z.; Ding, C.; Li, W.; Cui, D. Detection of blood spots in eggs by hyperspectral transmittance imaging. Int. J. Agric. Biol. Eng. 2019, 126, 209–214. [Google Scholar] [CrossRef]
- Yao, K.; Sun, J.; Chen, C.; Xu, M.; Zhou, X.; Cao, Y.; Tian, Y. Non-destructive detection of egg qualities based on hyperspectral imaging. J. Food Eng. 2022, 325, 111024. [Google Scholar] [CrossRef]
- Jiang, H.; Yoon, S.; Zhuang, H.; Wang, W.; Li, Y.; Lu, C.; Li, N. Non-destructive assessment of final color and pH attributes of broiler breast fillets using visible and near-infrared hyperspectral imaging: A preliminary study. Infrared Phys. Technol. 2018, 92, 309–317. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 2019, 321, 126503. [Google Scholar] [CrossRef]
- Chen, W.; Chen, H.; Feng, Q.; Mo, L.; Hong, S. A hybrid optimization method for sample partitioning in near-infrared analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119182. [Google Scholar] [CrossRef]
- Sun, W.H.; Sun, D.W. Evaluation of spectral imaging for inspection of adulterants in terms of common wheat flour, cassavaflour and cornflour in organic Avatar wheat (Triticum spp.) flour. J. Food Eng. 2017, 200, 59–69. [Google Scholar] [CrossRef]
- Palanti, S.; Alves, A.; Rodrigues, J.; Danti, R. Determination of extractive content in Cupressus sempervirens wood through a NIRS-PLSR model and its correlation with durability. Int. Biodeterior. Biodegrad. 2021, 162, 105247. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Y.; Teng, J.; Wang, X. Hyperspectral analysis of soil organic matter in coal mining regions using wavelets, correlations, and partial least squares regression. Environ. Monit. Assess. 2016, 188, 97. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.; Chen, S.; Tsai, C.; Chuang, Y. Prediction of tea theanine content using near-infrared spectroscopy and flower pollination algorithm. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119657. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Xu, H.; Tang, L. LSSVR ensemble learning with uncertain parameters for crude oil price forecasting. Appl. Soft Comput. 2017, 56, 692–701. [Google Scholar] [CrossRef]
- Nabipour, N.; Qasem, S.N.; Salwana, E.; Baghban, A. Evolving LSSVM and ELM models to predict solubility of non-hydrocarbon gases in aqueous electrolyte systems. Measurement 2022, 164, 107999. [Google Scholar] [CrossRef]
- Cong, S.; Sun, J.; Mao, H.; Wu, X.; Wang, P.; Zhang, X. Non-destructive detection for mold colonies in rice based on hyperspectra and GWO-SVR. J. Sci. Food Agric. 2018, 98, 1453–1459. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, D.; Zeng, X.; Pu, H. Non-destructive and rapid determination of TVB-N content for freshness evaluation of grass carp Ctenopharyngodon idella by hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 2014, 21, 179–187. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Cao, Y. A variable selection method based on mutual information and variance inflation factor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120652. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Du, C.; Shen, Y.; Ma, F.; Zhou, J. A method combining FTIR-ATR and Raman spectroscopy to determine soil organic matter: Improvement of prediction accuracy using competitive adaptive reweighted sampling (CARS). Comput. Electron. Agric. 2021, 191, 106549. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, D.; Pu, H.; Wei, Q. Chemical spoilage extent traceability of two kinds of processed pork meats using one multispectral system developed by hyperspectral imaging combined with effective variable selection methods. Food Chem. 2017, 221, 1989–1996. [Google Scholar] [CrossRef]
- Gielen, R.M.A.M.; De Jong, L.P.; Kerkvliet, H.M.M. Electrooptical blood-spot detection in intact eggs. IEEE Trans. Instrum. Meas. 1979, 28, 177–183. [Google Scholar] [CrossRef]
- Syduzzaman, M.; Rahman, A.; Alin, K.; Fujitani, S.; Kashimori, A.; Suzuki, T.; Ogawa, Y.; Kondo, N. Noninvasive quantification of yolk content using Vis-NIR spectroscopy and its effect on hatching time and gender of broiler chicken. Eng. Agric. Environ. Food 2019, 12, 289–296. [Google Scholar] [CrossRef]
- Kuroki, S.; Kanoo, T.; Itoh, H.; Kamisoyama, H. Nondestructive VIS/NIR spectroscopy estimation of intravitelline vitamin E and cholesterol concentration in hen shell eggs. J. Food Meas. Charact. 2020, 142, 1116–1124. [Google Scholar] [CrossRef]
- Kuroki, S.; Kanoo, T.; Itoh, H.; Ohkawa, Y.; Kamisoyama, H. Nondestructive measurement of yolk viscosity in lightly heated chicken shell eggs. J. Food Eng. 2017, 205, 18–24. [Google Scholar] [CrossRef]
- Bian, X.; Song, Y.; Mwamukonda, M.K.; Fu, Y. Prediction of the sulfur solubility in pure H2S and sour gas by intelligent models. J. Mol. Liq. 2020, 299, 112242. [Google Scholar] [CrossRef]
- Suktanarak, S.; Teerachaichayut, S. Non-destructive quality assessment of hens’ eggs using hyperspectral images. J. Food Eng. 2017, 215, 97–103. [Google Scholar] [CrossRef]
Indexes | Calibration Set | Prediction Set |
---|---|---|
Number of samples | 120 | 60 |
Minimum (%) | 10.95 | 13.45 |
Maximum (%) | 94.48 | 94.24 |
Mean (%) | 61.05 | 60.28 |
Standard deviation (%) | 26.02 | 25.40 |
Range (%) | 83.53 | 80.79 |
Model | Variable Number | Calibration | Cross-Validation | Prediction | |||
---|---|---|---|---|---|---|---|
R2C | RMSEC(%) | R2CV | RMSECV(%) | R2P | RMSEP(%) | ||
LSSVM | 449 | 0.943 | 6.121 | 0.920 | 7.238 | 0.893 | 8.165 |
PLSR | 449 | 0.929 | 6.685 | 0.899 | 8.025 | 0.861 | 9.494 |
LSSVM | 14 | 0.952 | 5.604 | 0.929 | 7.068 | 0.918 | 7.215 |
PLSR | 14 | 0.941 | 6.395 | 0.912 | 7.585 | 0.892 | 8.272 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, K.; Sun, J.; Cheng, J.; Xu, M.; Chen, C.; Zhou, X.; Dai, C. Development of Simplified Models for Non-Destructive Hyperspectral Imaging Monitoring of S-ovalbumin Content in Eggs during Storage. Foods 2022, 11, 2024. https://doi.org/10.3390/foods11142024
Yao K, Sun J, Cheng J, Xu M, Chen C, Zhou X, Dai C. Development of Simplified Models for Non-Destructive Hyperspectral Imaging Monitoring of S-ovalbumin Content in Eggs during Storage. Foods. 2022; 11(14):2024. https://doi.org/10.3390/foods11142024
Chicago/Turabian StyleYao, Kunshan, Jun Sun, Jiehong Cheng, Min Xu, Chen Chen, Xin Zhou, and Chunxia Dai. 2022. "Development of Simplified Models for Non-Destructive Hyperspectral Imaging Monitoring of S-ovalbumin Content in Eggs during Storage" Foods 11, no. 14: 2024. https://doi.org/10.3390/foods11142024
APA StyleYao, K., Sun, J., Cheng, J., Xu, M., Chen, C., Zhou, X., & Dai, C. (2022). Development of Simplified Models for Non-Destructive Hyperspectral Imaging Monitoring of S-ovalbumin Content in Eggs during Storage. Foods, 11(14), 2024. https://doi.org/10.3390/foods11142024