Distinguishing Different Varieties of Oolong Tea by Fluorescence Hyperspectral Technology Combined with Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tea Samples
2.2. Data Acquisition
2.3. Spectral Preprocessing
2.4. Principal Component Analysis
2.5. VIP (Variable Importance for the Projection) in PLS–DA
2.6. Classification Methods
2.7. Evaluation Index
3. Results and Discussions
3.1. Spectral Characteristics
3.2. Division of Calibration Set and Prediction Set
3.3. Data Distribution and Feature Selection
3.4. Establish Classification Models of Oolong Tea
3.5. Characteristic Wavelength Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FHSI | Fluorescence hyperspectral technology |
SNV | Standard normal variation |
MSC | Multiple scatter correction |
PCA | Principal component analysis |
VIP | Variable importance for the projection |
PLS-DA | Partial least squares discriminant analysis |
SVM | Support vector machine |
GC-MS | Gas chromatography-mass spectrometry |
ICP-MS | Inductively coupled plasma mass spectrometry |
ASAP-MS | Atmospheric solids analysis probe-mass spectrometry |
KNN | K-nearest neighbor |
HCA | Hierarchical cluster analysis |
LDA | Linear discriminant analysis |
SIMCA | Soft independent modelling of class analogies |
Vis-NIR | visible near-infrared |
RS | Random selection |
KS | Kennard–Stone |
SPXY | Sample set partitioning based on joint x-y distances |
ANOVA | Analysis of variance |
References
- Zhu, H.; Liu, F.; Ye, Y.; Chen, L.; Liu, J.; Gui, A.; Zhang, J.; Dong, C. Application of machine learning algorithms in quality assurance of fermentation process of black tea—Based on electrical properties. J. Food Eng. 2019, 263, 165–172. [Google Scholar] [CrossRef]
- Zheng, Q.R.; Li, W.F.; Gao, X.X. The effect of storage time on tea Polyphenols, catechin compounds, total flavones and the biological activity of Ya’an Tibetan tea (Camellia sinensis). J. Food Process. Preserv. 2021, 45, e16004. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Wu, X.; Lu, B.; Wu, M.; Dai, C. Grade Identification of Tieguanyin Tea Using Fluorescence Hyperspectra and Different Statistical Algorithms. J. Food Sci. 2019, 84, 2234–2241. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Li, W.; Zhang, H.; Gao, X.; Tan, S. Optimizing synchronous extraction and antioxidant activity evaluation of polyphenols and polysaccharides from Ya’an Tibetan tea (Camellia sinensis). Food Sci. Nutr. 2020, 8, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Xu, L.; Huang, P.; Luo, X.; Wang, P.; Kang, Z. Reliable Identification of Oolong Tea Species: Nondestructive Testing Classification Based on Fluorescence Hyperspectral Technology and Machine Learning. Agriculture 2021, 11, 1106. [Google Scholar] [CrossRef]
- Tan, H.R.; Chan, L.; Lee, H.H.; Xu, Y.Q.; Zhou, W.B. Rapid authentication of Chinese oolong teas using atmospheric solids analysis probe-mass spectrometry (ASAP-MS) combined with supervised pattern recognition models. Food Control 2022, 134, 108736. [Google Scholar] [CrossRef]
- Ge, X.; Sun, J.; Lu, B.; Chen, Q.; Xun, W.; Jin, Y. Classification of oolong tea varieties based on hyperspectral imaging technology and BOSS-LightGBM model. J. Food Process Eng. 2019, 42, e13289. [Google Scholar] [CrossRef]
- Huang, D.; Qiu, Q.; Wang, Y.; Wang, Y.; Lu, Y.; Fan, D.; Wang, X. Rapid Identification of Different Grades of Huangshan Maofeng Tea Using Ultraviolet Spectrum and Color Difference. Molecules 2020, 25, 4665. [Google Scholar] [CrossRef]
- Ning, J.; Sun, J.; Li, S.; Sheng, M.; Zhang, Z. Classification of five Chinese tea categories with different fermentation degrees using visible and near-infrared hyperspectral imaging. Int. J. Food Prop. 2016, 20, 1515–1522. [Google Scholar] [CrossRef] [Green Version]
- Kutyavin, I.V.; Afonina, I.A.; Mills, A.; Gorn, V.V.; Lukhtanov, E.A.; Belousov, E.S.; Singer, M.J.; Walburger, D.K.; Lokhov, S.G.; Gall, A.A.; et al. 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 2000, 28, 655–661. [Google Scholar] [CrossRef]
- Koek, M.M.; van der Kloet, F.M.; Kleemann, R.; Kooistra, T.; Verheij, E.R.; Hankemeier, T. Semi-automated non-target processing in GC x GC-MS metabolomics analysis: Applicability for biomedical studies. Metabolomics 2011, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, L.; Fu, Y.; Huang, J.; Wang, J.; Jin, S.; Yin, J.; Xu, Y. Comparative Analysis of Volatile Compounds in Tieguanyin with Different Types Based on HS-SPME-GC-MS. Foods 2022, 11, 1530. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jin, S.; Guo, Y.L. Exploration of a Method of Distinguishing Different Nongxiang Tieguanyin Tea Grades Based on Aroma Determined by GC-MS Combined with Chemometrics. Molecules 2019, 24, 1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Wang, J.; Zhu, L. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food Chem. 2019, 289, 482–489. [Google Scholar] [CrossRef]
- Li, Y.J.; Lei, J.C.; Yang, J.N.; Liu, R.H. Classification of tieguanyin tea with an electronic tongue and pattern recognition. Anal. Lett. 2014, 47, 2361–2369. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, M.; Agyekum, A.A.; Wu, J.; Chen, Q.; Zuo, M.; El-Seedi, H.R.; Tao, F.; Shi, J.; Ouyang, Q.; et al. Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy. J. Food Eng. 2020, 279, 109955. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Fang, C.H.; Wang, D. Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 66, 568–574. [Google Scholar] [CrossRef]
- Hu, Y.; Kang, Z. The Rapid Non-Destructive Detection of Adulteration and Its Degree of Tieguanyin by Fluorescence Hyperspectral Technology. Molecules 2022, 27, 1196. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, H.; Zhang, S.; Du, Y.; Sheng, Z.; Chu, Y.; Zhang, D.; Guo, L.; Deng, L. Visualization accuracy improvement of spectral quantitative analysis for meat adulteration using Gaussian distribution of regression coefficients in hyperspectral imaging. Optik 2020, 212, 164737. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Li, P.; Zeng, F.; Wang, H. Hyperspectral detection of salted sea cucumber adulteration using different spectral preprocessing techniques and SVM method. LWT 2021, 152, 112295. [Google Scholar] [CrossRef]
- Firmani, P.; De Luca, S.; Bucci, R.; Marini, F.; Biancolillo, A. Near infrared (NIR) spectroscopy-based classification for the authentication of Darjeeling black tea. Food Control 2019, 100, 292–299. [Google Scholar] [CrossRef]
- Ren, G.; Liu, Y.; Ning, J.; Zhang, Z. Assessing black tea quality based on visible–near infrared spectra and kernel-based methods. J. Food Compos. Anal. 2021, 98, 103810. [Google Scholar] [CrossRef]
- Hong, Z.Q.; He, Y. Rapid and Nondestructive Discrimination of Geographical Origins of Longjing Tea using Hyperspectral Imaging at Two Spectral Ranges Coupled with Machine Learning Methods. Appl. Sci. 2020, 10, 1173. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Qu, Y.; Zhang, M.; Guo, X.; Zhang, H. Fluorescence detection of paclobutrazol pesticide residues in apple juice. Optik 2020, 224, 165542. [Google Scholar] [CrossRef]
- Bauer, S.; Leon, F.P. Spectral and geometric aspects of mineral identification by means of hyperspectral fluorescence imaging. Tech. Mess. 2015, 82, 597–605. [Google Scholar] [CrossRef]
- Hyun-kwon, N.; Lu, R. Apple Quality Measurement by using Hyperspectral Reflectance and Fluorescence Scattering. J. Biosyst. Eng. 2009, 34, 37–43. [Google Scholar]
- Kim, M.J.; Lim, J.; Kwon, S.W.; Kim, G.; Kim, M.S.; Cho, B.K.; Baek, I.; Lee, S.H.; Seo, Y.; Mo, C. Geographical Origin Discrimination of White Rice Based on Image Pixel Size Using Hyperspectral Fluorescence Imaging Analysis. Appl. Sci. 2020, 10, 5794. [Google Scholar] [CrossRef]
- Cavalcante, R.M.; Pinheiro, L.S.; Teixeira, C.E.P.; Paiva, B.P.; Fernandes, G.M.; Brandao, D.B.; Frota, F.F.; Filho, F.; Schettini, C.A.F. Marine debris on a tropical coastline: Abundance, predominant sources and fate in a region with multiple activities (Fortaleza, Ceara, northeastern Brazil). Waste Manag. 2020, 108, 13–20. [Google Scholar] [CrossRef]
- Xu, J.L.; Lin, X.; Hugelier, S.; Herrero-Langreo, A.; Gowen, A.A. Spectral imaging for characterization and detection of plastic substances in branded teabags. J. Hazard. Mater. 2021, 418, 126328. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Chaitep, S.; Guo, Z. Simultaneous analysis of main catechins contents in green tea (Camellia sinensis (L.)) by Fourier transform near infrared reflectance (FT-NIR) spectroscopy. Food Chem. 2009, 113, 1272–1277. [Google Scholar] [CrossRef]
- Weng, S.; Guo, B.; Tang, P.; Yin, X.; Pan, F.; Zhao, J.; Huang, L.; Zhang, D. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 230, 118005. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhao, Y.; Zhang, C.; Li, Y.; Bao, Y.; Liu, F. Discrimination of Grape Seeds Using Laser-Induced Breakdown Spectroscopy in Combination with Region Selection and Supervised Classification Methods. Foods 2020, 9, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, B.; Wang, J.; Zhou, B.; Wang, Z.; Huang, Y.; Ma, C.; Li, X. Impact of harvest season on bioactive compounds, amino acids and in vitro antioxidant capacity of white tea through multivariate statistical analysis. LWT 2022, 164, 113655. [Google Scholar] [CrossRef]
- Pons, J.; Bedmar, À.; Núñez, N.; Saurina, J.; Núñez, O. Tea and Chicory Extract Characterization, Classification and Authentication by Non-Targeted HPLC-UV-FLD Fingerprinting and Chemometrics. Foods 2021, 10, 2935. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.-Y.; Wang, S.-T.; Wang, J.-Z.; Cheng, Q.; Wu, X.-J.; Kong, D.-M. Rapid detection of the authenticity and adulteration of sesame oil using excitation-emission matrix fluorescence and chemometric methods. Food Control. 2020, 112, 107145. [Google Scholar] [CrossRef]
- Wang, P.; Liu, J.; Xu, L.; Huang, P.; Luo, X.; Hu, Y.; Kang, Z. Classification of Amanita Species Based on Bilinear Networks with Attention Mechanism. Agriculture 2021, 11, 393. [Google Scholar] [CrossRef]
- Luo, X.; Xu, L.; Huang, P.; Wang, Y.; Liu, J.; Hu, Y.; Wang, P.; Kang, Z. Nondestructive Testing Model of Tea Polyphenols Based on Hyperspectral Technology Combined with Chemometric Methods. Agriculture 2021, 11, 673. [Google Scholar] [CrossRef]
Model | Preprocessing | Variables | Class | Calibration Set | Prediction Set | ||||
---|---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | Accuracy | Precision | Recall | ||||
SVM | RAW | 104 (none selection) | Tie | 95.83% | 100.00% | 96.00% | 100.00% | 88.00% | 100.00% |
Mao | 100.00% | 100.00% | 100.00% | 88.89% | 100.00% | 89.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 100.00% | 92.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Total | 98.96% | 98.00% | 99.00% | 97.22% | 97.00% | 97.25% | |||
43 (VIP > 1) | Tie | 100.00% | 87.00% | 100.00% | 100.00% | 82.00% | 100.00% | ||
Mao | 100.00% | 100.00% | 100.00% | 88.89% | 89.00% | 89.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 71.43% | 100.00% | 71.00% | 80.00% | 100.00% | 80.00% | |||
Total | 92.86% | 96.75% | 92.75% | 92.22% | 92.75% | 92.25% | |||
SNV | 104 (none selection) | Tie | 92.86% | 100.00% | 93.00% | 100.00% | 100.00% | 100.00% | |
Mao | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 100.00% | 80.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Total | 98.21% | 95.00% | 98.25% | 100.00% | 100.00% | 100.00% | |||
33 (VIP > 1) | Tie | 100.00% | 100.00% | 100.00% | 100.00% | 88.00% | 100.00% | ||
Mao | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 100.00% | 100.00% | 100.00% | 86.67% | 100.00% | 87.00% | |||
Total | 100.00% | 100.00% | 100.00% | 96.67% | 97.00% | 96.75% | |||
MSC | 104 (none selection) | Tie | 91.67% | 100.00% | 92.00% | 100.00% | 88.00% | 100.00% | |
Mao | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 100.00% | 83.00% | 91.00% | 86.67% | 100.00% | 87.00% | |||
Total | 97.92% | 95.75% | 95.75% | 96.67% | 97.00% | 96.75% | |||
35 (VIP > 1) | Tie | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | ||
Mao | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Total | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
PLS-DA | RAW | 104 (none selection) | Tie | 100.00% | 92.00% | 100.00% | 95.65% | 100.00% | 96.00% |
Mao | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 84.62% | 100.00% | 85.00% | 100.00% | 91.00% | 100.00% | |||
Total | 96.15% | 98.00% | 96.25% | 98.91% | 97.75% | 99.00% | |||
43 (VIP > 1) | Tie | 96.67% | 97.00% | 97.00% | 96.67% | 97.00% | 97.00% | ||
Mao | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 90.00% | 90.00% | 90.00% | 90.00% | 90.00% | 100.00% | |||
Total | 96.67% | 96.75% | 96.75% | 96.67% | 96.75% | 99.25% | |||
SNV | 104 (none selection) | Tie | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |
Mao | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Total | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
33 (VIP > 1) | Tie | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | ||
Mao | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Total | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
MSC | 104 (none selection) | Tie | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |
Mao | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Total | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
35 (VIP > 1) | Tie | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | ||
Mao | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Huang | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Ben | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | |||
Total | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
Preprocessing Methods | No. | Selected Wavelength |
---|---|---|
RAW | 43 | 479.65; 484.59; 489.54; 494.49; 634.89; 639.95; 645.03; 650.11; 655.2; 660.29; 665.39; 670.49; 675.6; 696.06; 701.17; 706.31; 711.44; 716.58; 726.86; 732.03; 737.17; 742.34; 747.5; 752.65; 872.69; 877.95; 883.22; 888.51; 893.79; 914.95; 930.88; 936.2; 941.5; 946.84; 952.16; 957.5; 962.84; 968.16; 978.86; 984.23; 989.57; 994.94; 1011.05 |
MSC | 35 | 489.54; 604.51; 609.56; 614.61; 619.69; 624.75; 629.81; 634.89; 639.95; 645.03; 650.11; 655.2; 660.29; 665.39; 670.49; 675.6; 680.7; 685.83; 690.94; 696.06; 701.17; 706.31; 711.44; 716.58; 737.17; 742.34; 747.5; 757.85; 763; 768.2; 773.39; 778.55; 783.75; 788.95; 794.15 |
SNV | 33 | 489.54; 609.56; 614.61; 619.69; 624.75; 629.81; 634.89; 639.95; 645.03; 650.11; 655.2; 660.29; 665.39; 670.49; 675.6; 680.7; 690.94; 696.06; 701.17; 706.31; 711.44; 716.58; 742.34; 747.5; 752.65; 757.85; 763; 768.2; 773.39; 778.55; 783.75; 788.95; 794.15; |
Wavelength/nm | 489.54 | 634.89 | 639.95 | 645.03 | 650.11 | 655.2 | 660.29 | 665.39 |
---|---|---|---|---|---|---|---|---|
Tieguanyin | 231.56 ± 24.01 a | 231.77 ± 16.31 a | 231.85 ± 16.18 a | 254.21 ± 16.59 a | 317.14 ± 17.33 a | 484.37 ± 17.93 a | 897.98 ± 20.66 a | 1772.93 ± 25.47 a |
Maoxie | 240.07 ± 14.20 a | 249.03 ± 10.93 a | 253.06 ± 11.19 b | 276.64 ± 11.26 b | 339.49 ± 10.54 b | 507.87 ± 12.00 a | 923.06 ± 15.42 b | 1793.24 ± 26.15 b |
Huangjingui | 234.42 ± 13.73 a | 233.23 ± 10.53 b | 240.62 ± 10.61 c | 266.39 ± 11.15 c | 330.84 ± 11.34 c | 484.58 ± 12.33 b | 845.42 ± 15.34 c | 1584.60 ± 22.11 c |
Benshan | 253.42 ± 29.82 b | 246.92 ± 21.95 b | 250.95 ± 21.97 c | 278.50 ± 21.93 c | 350.06 ± 23.24 d | 528.76 ± 24.87 c | 954.03 ± 29.64 d | 1845.04 ± 51.84 d |
Wavelength/nm | 670.49 | 675.6 | 701.17 | 706.31 | 711.44 | 716.58 | 742.34 | 747.5 |
Tieguanyin | 3058.43 ± 35.10 a | 4015.49 ± 37.25 a | 1421.99 ± 30.72 a | 1389.86 ± 31.68a | 1441.51 ± 34.26 a | 1541.62 ± 36.67 a | 1348.80 ± 44.45 a | 1150.73 ± 41.73 a |
Maoxie | 3074.16 ± 40.44 b | 4062.58 ± 44.93 b | 1496.39 ± 33.07 b | 1471.07 ± 33.73 b | 1534.77 ± 34.12 a | 1650.03 ± 34.87 a | 1443.74 ± 33.87 b | 1247.50 ± 30.70 b |
Huangjingui | 2708.93 ± 35.92 b | 3672.91 ± 43.78 c | 1715.80 ± 29.71 c | 1674.04 ± 29.10 c | 1734.17 ± 29.06 b | 1859.20 ± 30.27 b | 1691.45 ± 45.21 c | 1453.68 ± 40.66 c |
Benshan | 3142.46 ± 87.62 c | 4103.93 ± 99.52 d | 1446.08 ± 57.81 d | 1410.60 ± 59.42 d | 1455.16 ± 64.79 c | 1546.21 ± 71.97 c | 1282.70 ± 66.33 d | 1086.56 ± 57.35 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Wu, Y.; Sun, J.; Geng, J.; Fan, R.; Kang, Z. Distinguishing Different Varieties of Oolong Tea by Fluorescence Hyperspectral Technology Combined with Chemometrics. Foods 2022, 11, 2344. https://doi.org/10.3390/foods11152344
Hu Y, Wu Y, Sun J, Geng J, Fan R, Kang Z. Distinguishing Different Varieties of Oolong Tea by Fluorescence Hyperspectral Technology Combined with Chemometrics. Foods. 2022; 11(15):2344. https://doi.org/10.3390/foods11152344
Chicago/Turabian StyleHu, Yan, Youli Wu, Jie Sun, Jinping Geng, Rongsheng Fan, and Zhiliang Kang. 2022. "Distinguishing Different Varieties of Oolong Tea by Fluorescence Hyperspectral Technology Combined with Chemometrics" Foods 11, no. 15: 2344. https://doi.org/10.3390/foods11152344
APA StyleHu, Y., Wu, Y., Sun, J., Geng, J., Fan, R., & Kang, Z. (2022). Distinguishing Different Varieties of Oolong Tea by Fluorescence Hyperspectral Technology Combined with Chemometrics. Foods, 11(15), 2344. https://doi.org/10.3390/foods11152344