Effects of Pretreatment on the Volatile Composition, Amino Acid, and Fatty Acid Content of Oat Bran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Oat Bran Sample Preparation
2.3. Analysis Methods of Oat Bran
2.3.1. Color Analysis
2.3.2. Electronic Nose Analysis
2.3.3. HS-SPME-GC-MS Analysis
2.3.4. Analysis of Amino Acids Content
2.3.5. Analysis of Fatty Acid Composition
2.3.6. Statistical Analysis
3. Results and Discussion
3.1. Color Analysis of Pretreated Oat Bran
3.2. Electronic Nose Analysis of Oat Bran Samples
3.3. HS-SPME-GC-MS Analysis of Volatile Compounds of Oat Bran
3.4. Effects of Heating Methods on Amino Acids of Oat Bran
3.4.1. Differences in the Contents and Composition of Amino Acids in Oat Bran
3.4.2. Analysis of the Correlation of Amino Acids and Flavor Components in the Pretreated Oat Bran
3.5. Effects of Heating Methods on Fatty Acids of Oat Bran
3.5.1. Differences in the Contents and Composition of Fatty Acids in Oat Bran
3.5.2. Correlation Analysis of Fatty Acids and Flavor Components in the Pretreated Oat Bran
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, M.; Tang, M.; Wang, L.; Cheng, X.; Wu, Y.; Ouyang, J. Endogenous bioactive compounds of naked oats (Avena nuda L.) inhibit α-amylase and α-glucosidase activity. LWT 2021, 149, 111902. [Google Scholar] [CrossRef]
- Dach, A.; Schieberle, P. Characterization of the Key Aroma Compounds in a Freshly Prepared Oat (Avena sativa L.) Pastry by Application of the Sensomics Approach. J. Agric. Food Chem. 2021, 69, 1578–1588. [Google Scholar] [CrossRef] [PubMed]
- Salmenkallio-Marttila, M.; Heiniö, R.-L.; Kaukovirta-Norja, A.; Poutanen, K. Flavor and texture in processing of new oat foods. Cereal Foods World 2011, 56, 21–26. [Google Scholar]
- Zhang, K.; Dong, R.; Hu, X.; Ren, C.; Li, Y. Oat-Based Foods: Chemical Constituents, Glycemic Index, and the Effect of Processing. Foods 2021, 10, 1304. [Google Scholar] [CrossRef] [PubMed]
- Ralla, T.; Salminen, H.; Edelmann, M.; Dawid, C.; Hofmann, T.; Weiss, J. Oat bran extract (Avena sativa L.) from food by-product streams as new natural emulsifier. Food Hydrocoll. 2018, 81, 253–262. [Google Scholar] [CrossRef]
- Tsopmo, A. Processing Oats and Bioactive Components. In Processing and Impact on Active Components in Food; Academic Press: Cambridge, MA, USA, 2015; pp. 361–368. [Google Scholar]
- Tapola, N.; Karvonen, H.; Niskanen, L.; Mikola, M.; Sarkkinen, E. Glycemic responses of oat bran products in type 2 diabetic patients. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 255–261. [Google Scholar] [CrossRef]
- Hu, C.; Sang, S. Triterpenoid Saponins in Oat Bran and Their Levels in Commercial Oat Products. J. Agric. Food Chem. 2020, 68, 6381–6389. [Google Scholar] [CrossRef]
- Moisio, T.; Forssell, P.; Partanen, R.; Damerau, A.; Hill, S.E. Reorganisation of starch, proteins and lipids in extrusion of oats. J. Cereal Sci. 2015, 64, 48–55. [Google Scholar] [CrossRef]
- Thanonkaew, A.; Wongyai, S.; McClements, D.J.; Decker, E.A. Effect of stabilization of rice bran by domestic heating on mechanical extraction yield, quality, and antioxidant properties of cold-pressed rice bran oil (Oryza saltiva L.). LWT-Food Sci. Technol 2012, 48, 231–236. [Google Scholar] [CrossRef]
- Head, D.; Cenkowski, S.; Arntfield, S.; Henderson, K. Storage stability of oat groats processed commercially and with superheated steam. LWT Food Sci. Technol 2011, 44, 261–268. [Google Scholar] [CrossRef]
- Ruge, C.; Changzhong, R.; Zaigui, L. The Effects of Different Inactivation Treatments on the Storage Properties and Sensory Quality of Naked Oat. Food Bioproc. Technol. 2012, 5, 1853–1859. [Google Scholar] [CrossRef]
- Huangfu, W.; Jin, W.; Hu, X. Isolation and preliminary identification of bitter substances in oat processing. J. Food Saf. Qual 2019, 10, 6. [Google Scholar]
- Dar, B.N.; Sharma, S. Total Phenolic Content of Cereal Brans using Conventional and Microwave Assisted Extraction. Am. J. Food Technol. 2011, 6, 1045–1053. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Quirce, S.; Ronda, F.; Melendre, C.; Lazaridou, A.; Biliaderis, C.G. Inactivation of Endogenous Rice Flour β-Glucanase by Microwave Radiation and Impact on Physico-chemical Properties of the Treated Flour. Food Bioprocess Technol. 2016, 9, 1562–1573. [Google Scholar] [CrossRef] [Green Version]
- Keying, Q.; Changzhong, R.; Zaigui, L. An investigation on pretreatments for inactivation of lipase in naked oat kernels using microwave heating. J. Food Eng. 2009, 95, 280–284. [Google Scholar] [CrossRef]
- Harasym, J.; Olędzki, R. Comparison of Conventional and Microwave Assisted Heating on Carbohydrate Content, Antioxidant Capacity and Postprandial Glycemic Response in Oat Meals. Nutrients 2018, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Zhang, M.; Zhang, Y.; Zhang, J.; Wang, C.; Zhang, Y. Effect of steam, microwave, and hot-air drying on antioxidant capacity and in vitro digestion properties of polyphenols in oat bran. J. Food Process. Preserv. 2021, 45, e16013. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, M.L.; Zhang, Y.; Zhang, J.; Zhang, Y.; Wang, C.; Liu, R. Effects of Steaming, Microwaving, and Hot-Air Drying on the Physicochemical Properties and Storage Stability of Oat Bran. J. Food Qual. 2021, 4058645. [Google Scholar] [CrossRef]
- McGorrin, R.J. Key Aroma Compounds in Oats and Oat Cereals. J. Agric. Food Chem. 2019, 67, 13778–13789. [Google Scholar] [CrossRef]
- Pawliszyn, J. Solid-Phase Microextraction: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Sides, A.; Robards, K.; Helliwell, S.; An, M. Changes in the volatile profile of oats induced by processing. J. Agric. Food Chem. 2001, 49, 2125–2130. [Google Scholar] [CrossRef] [PubMed]
- Heydanek, M.G.; McGorrin, R.J. Gas chromatography—Mass spectroscopy investigations on the flavor chemistry of oat groats. J. Agric. Food Chem. 1981, 29, 950–954. [Google Scholar] [CrossRef]
- Heydanek, M.G.; McGorrin, R.J. Oat flavor chemistry: Principles and prospects. In Oats: Chemistry and Technology, 1st ed.; Webster, F.H., Ed.; AACC International: St. Paul, MN, USA, 1986; pp. 335–369. [Google Scholar]
- Gunther-Jordanland, K.; Dawid, C.; Dietz, M.; Hofmann, T. Key phytochemicals contributing to the bitter off-taste of oat (Avena sativa L.). J. Agric. Food Chem. 2016, 64, 9639–9652. [Google Scholar] [CrossRef] [PubMed]
- Kayitesi, E.; Duodu, K.G.; Minnaar, A.; de Kock, H.L. Sensory quality of marama/sorghum composite porridges. J. Sci. Food Agric. 2010, 90, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Pan, S.; Fan, G.; Dong, L.; Ren, J.; Zhu, Y. Evaluation of volatile profile of Sichuan dongcai, a traditional salted vegetable, by SPME-GC-MS and E-nose. LWT-Food Sci. Technol 2015, 64, 528–535. [Google Scholar] [CrossRef]
- Ren, J.N.; Tai, Y.N.; Dong, M.; Shao, J.H.; Yang, S.Z.; Pan, S.Y.; Fan, G. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chem. 2015, 185, 25–32. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, H.; Zhao, C.; Chen, G.; Zou, Y. Amino acid content in rice grains is affected by high temperature during the early grain-filling period. Sci. Rep. 2019, 9, 2700. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Cone, J.W.; Pellikaan, W.F.; Khan, M.A.; Struik, P.C.; Hendriks, W.H. Changes in fatty acid content and composition in silage maize during grain filling. J. Sci. Food Agric. 2011, 91, 1041–1049. [Google Scholar] [CrossRef]
- McDaniel, K.A.; White, B.L.; Dean, L.L.; Sanders, T.H.; Davis, J.P. Compositional and Mechanical Properties of Peanuts Roasted to Equivalent Colors using Different Time/Temperature Combinations. J. Food Sci. 2012, 77, C1293–C1299. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yuan, B.; Yu, P.; Jia, Y.; Zhou, Q.; Sun, J. Flavor characteristics of peanut butter pretreated by radio frequency heating, explosion puffing, microwave, and oven heating. Food Chem. 2022, 394, 133487. [Google Scholar] [CrossRef]
- Hotel, O.; Poli, J.P.; Mer-Calfati, C.; Scorsone, E.; Saada, S. A review of algorithms for SAW sensors e-nose based volatile compound identification. Sens. Actuators B Chem. 2018, 255, 2472–2482. [Google Scholar] [CrossRef]
- Shu, C.K.; Waller, G.R. Volatile components of roasted peanuts: Comparative analyses of the basic fraction. J. Food Sci. 1971, 36, 579–583. [Google Scholar] [CrossRef]
- Tan, H.R.; Lau, H.; Liu, S.Q.; Tan, L.P.; Sakumoto, S.; Lassabliere, B.; Leong, K.-C.; Sun, J.; Yu, B. Characterisation of key odourantsin Japanese green tea using gas chromatography-olfactometry and gas chromatography-mass spectrometry. LWT-Food Sci. Technol. 2019, 108, 221–232. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.; Huang, A. A metabolomics-based approach investigates volatile flavor formation and characteristic compounds of the Dahe black pig dry-cured ham. Meat Sci. 2019, 158, 107904. [Google Scholar] [CrossRef]
- Lykomitros, D.; Fogliano, V.; Capuano, E. Flavor of Roasted Peanuts (Arachis hypogaea)—Part I: Effect of Raw Material and Processing Technology on Flavor, Colorand Fatty Acid Composition of Peanuts. Food Res. Int. 2016, 89, 860–869. [Google Scholar] [CrossRef]
- Jin, Y.; Yuan, X.; Liu, J.; Wen, J.; Cui, H.; Zhao, G. Inhibition of cholesterol biosynthesis promotes the production of 1-octen-3-ol through mevalonic acid. Food Res Int. 2022, 158, 111392. [Google Scholar] [CrossRef] [PubMed]
- Klensporf, D.; Jelen, H.H. Effect of heat treatment on the flavor of oat flakes. J. Cereal Sci. 2008, 48, 656–661. [Google Scholar] [CrossRef]
- Zhou, M.; Robards, K.; Glennie-Holmes, M.; Helliwell, S. Contribution of volatiles to the flavor of oatmeal. J. Sci. Food Agric. 2000, 80, 247–254. [Google Scholar] [CrossRef]
- Choi, S.M.; Lee, D.-J.; Kim, J.-Y.; Lim, S.-T. Volatile composition and sensory characteristics of onion powders prepared by convective drying. Food Chem. 2017, 231, 386–392. [Google Scholar] [CrossRef]
- Rajkumar, G.; Shanmugam, S.; de Sousa Galvâo, M.; Sandes, R.D.D.; Neta, M.T.S.L.; Narain, N.; Mujumdar, A.S. Comparative evaluation of physical properties and volatiles profile of cabbages subjected to hot air and freeze drying. LWT-Food Sci. Technol. 2017, 80, 501–509. [Google Scholar] [CrossRef]
- Giri, A.; Osako, K.; Ohshima, T. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing. Food Chem. 2010, 120, 621–631. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, L.; Lv, Y. Effects of Roasting, Steaming and Extrusion on the Flavor and Bitterness of Quinoa. Food Sci. 2020, 41, 7. [Google Scholar]
- Pei, F.; Shi, Y.; Gao, X.; Wu, F.; Mariga, A.M.; Yang, W.; Zhao, L.; An, X.; Xin, Z.; Yang, F.; et al. Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying. Food Chem. 2014, 165, 547–554. [Google Scholar] [CrossRef]
- Biel, W.; Bobko, K.; Maciorowski, R. Chemical composition and nutritive value of husked and naked oats grain. J. Cereal Sci. 2009, 49, 413–418. [Google Scholar] [CrossRef]
- Contreras, C.; Tjellström, H.; Beaudry, R.M. Relationships between free and esterified fatty acids and LOX-derived volatiles during ripening in apple. Postharvest Biol. Technol 2016, 112, 105–113. [Google Scholar] [CrossRef]
OB | S-OB | M-OB | HA-OB | |
---|---|---|---|---|
L* value | 75.01 ± 0.37 c | 75.16 ± 0.29 c | 78.85 ± 0.13 b | 80.24 ± 0.53 a |
a* value | 3.45 ± 0.08 b | 3.92 ± 0.12 a | 3.21 ± 0.04 c | 2.80 ± 0.04 d |
b* value | 15.01 ± 0.17 b | 15.95 ± 0.21 a | 14.87 ± 0.13 b | 14.38 ± 0.13 c |
Serial Number | Volatile Compound | Retention Time (min) | CAS | Molecular Formula | Relative Content/(%) | |||
---|---|---|---|---|---|---|---|---|
OB | S-OB | M-OB | HA-OB | |||||
Aldehydes(14) | ||||||||
VFC1 | Butanal | 1.27 | 123-72-8 | C4H8O | ND | ND | 0.14 ± 0.01 | ND |
VFC2 | 3-Methylbutanal | 1.65 | 590-86-3 | C5H10O | 0.45 ± 0.02 | ND | 0.50 ± 0.01 | ND |
VFC3 | 2-Methylbutanal | 1.69 | 96-17-3 | C5H10O | 0.30 ± 0.01 | ND | 0.32 ± 0.02 | 0.22 ± 0.01 |
VFC4 | Pentanal | 1.93 | 110-62-3 | C5H10O | 1.33 ± 0.31 | 1.14 ± 0.02 | 1.55 ± 0.14 | 1.64 ± 0.14 |
VFC5 | Hexanal | 3.14 | 66-25-1 | C6H12O | 44.98 ± 3.25 | 36.49 ± 2.98 | 49.31 ± 2.15 | 54.38 ± 1.98 |
VFC6 | (E)-Hex-2-enal | 4.14 | 6728-26-3 | C6H10O | 0.47 ± 0.02 | 0.41 ± 0.02 | 0.33 ± 0.01 | 0.64 ± 0.01 |
VFC7 | Heptanal | 5.22 | 111-71-7 | C7H14O | 0.97 ± 0.03 | 1.24 ± 0.14 | 1.30 ± 0.21 | 1.15 ± 0.02 |
VFC8 | (E)-Hept-2-enal | 6.63 | 57266-86-1 | C7H12O | 1.31 ± 0.0.1 | 1.05 ± 0.02 | 1.36 ± 0.05 | ND |
VFC9 | (E)-2-Octenal | 9.48 | 2548-87-0 | C8H14O | 2.37 ± 0.02 | 3.22 ± 0.17 | 2.52 ± 0.10 | 1.83 ± 0.13 |
VFC10 | Nonanal | 10.85 | 124-19-6 | C9H18O | 3.80 ± 0.03 | 5.76 ± 0.21 | 5.96 ± 0.18 | 5.43 ± 0.11 |
VFC11 | Decanal | 13.77 | 112-31-2 | C10H20O | 0.28 ± 0.01 | 0.52 ± 0.01 | 0.28 ± 0.01 | 0.24 ± 0.01 |
VFC12 | (2E,4E)-Nona-2,4-dienal | 13.96 | 5910-87-2 | C9H14O | 0.64 ± 0.01 | 0.59 ± 0.01 | 0.54 ± 0.02 | ND |
VFC13 | (E,E)-2,4-Decadienal | 16.78 | 25152-84-5 | C10H16O | 2.11 ± 0.09 | ND | 0.79 ± 0.01 | 2.60 ± 0.08 |
VFC14 | 4-Dodecoxybenzaldehyde | 18.98 | 24083-19-0 | C19H30O2 | ND | 1.26 ± 0.06 | ND | ND |
Total | 59.01 ± 3.80 | 51.68 ± 3.64 | 64.76 ± 2.91 | 68.13 ± 2.49 | ||||
Esters(12) | ||||||||
VFC15 | Ethenyl hexanoate | 7.4 | 3050-69-9 | C8H14O2 | 0.31 ± 0.01 | 0.68 ± 0.05 | ND | 1.69 ± 0.13 |
VFC16 | Benzyl N-aminocarbamate | 9.05 | 5331-43-1 | C8H10N2O2 | 0.68 ± 0.02 | 1.08 ± 0.04 | ND | ND |
VFC17 | Phosphonofluoridic acid, methyl-, octyl ester | 9.54 | 144313-52-0 | C9H20FO2P | 1.74 ± 0.11 | 3.88 ± 0.18 | ND | ND |
VFC18 | Acetic acid, 2-ethylhexyl ester | 12.21 | 103-09-3 | C10H20O2 | 1.63 ± 0.15 | ND | 2.66 ± 0.19 | 1.45 ± 0.15 |
VFC19 | Acetoxyacetic acid, nonyl ester | 12.79 | 1000308-31-4 | C13H24O4 | ND | 0.33 ± 0.05 | ND | ND |
VFC20 | Formic acid, 2-ethylhexyl ester | 14.71 | 1000368-94-7 | C9H18O2 | ND | 1.25 ± 0.09 | 0.80 ± 0.02 | ND |
VFC21 | Acetic acid, 2-phenylethyl ester | 15.19 | 103-45-7 | C10H12O2 | 0.22 ± 0.01 | ND | ND | ND |
VFC22 | Oxalic acid, allyl pentadecyl ester | 17.99 | 1000309-24-3 | C20H36O4 | ND | ND | ND | 1.26 ± 0.14 |
VFC23 | Propanoic acid, 3-chloro-, 4-formylphenyl ester | 19.98 | 1000142-41-5 | C10H9ClO3 | ND | 0.34 ± 0.01 | ND | ND |
VFC24 | Phenol, 2,6-bis(1,1-dimethylethyl)-4-methyl-, methylcarbamate | 21.82 | 6881 | C17H27NO2 | 0.16 ± 0.02 | ND | ND | ND |
VFC25 | Oxalic acid, allyl pentadecyl ester | 25.08 | 1000309-24-3 | C20H36O4 | 0.16 ± 0.03 | ND | ND | ND |
VFC26 | Decanoic acid, ethyl ester | 33.81 | 110-38-3 | C12H24O2 | 0.35 ± 0.01 | ND | ND | ND |
Total | 5.25 ± 0.36 | 7.56 ± 0.42 | 3.46 ± 0.21 | 4.40 ± 0.42 | ||||
Alcohols(10) | ||||||||
VFC27 | Heptan-1-ol | 7.02 | 111-70-6 | C7H16O | 0.72 ± 0.02 | 0.68 ± 0.04 | 0.95 ± 0.14 | 0.68 ± 0.02 |
VFC28 | 1-Octen-3-ol | 7.27 | 3391-86-4 | C8H16O | 3.42 ± 0.14 | 2.06 ± 0.11 | 2.17 ± 0.32 | 2.64 ± 0.11 |
VFC29 | 2-Ethylhexan-1-ol | 8.67 | 104-76-7 | C8H18O | 5.23 ± 0.22 | 9.04 ± 0.24 | 5.96 ± 0.41 | ND |
VFC30 | Octa-3,5-dien-2-ol | 8.95 | 69668-82-2 | C8H14O | 1.8 ± 0.16 | ND | 1.33 ± 0.05 | ND |
VFC31 | Octan-1-ol | 9.87 | 111-87-5 | C8H18O | ND | 2.01 ± 0.05 | 1.35 ± 0.06 | 1.50 ± 0.09 |
VFC32 | 3,5-Dimethylcyclohexan-1-ol | 10.53 | 5441-52-1 | C8H16O | ND | 0.74 ± 0.01 | ND | 0.86 ± 0.02 |
VFC33 | (Z)-4,5-Dimethylhept-2-en-3-ol | 10.53 | 55956-37-1 | C9H18O | 2.90 ± 0.14 | ND | ND | ND |
VFC34 | 4-Ethylcyclohexan-1-ol | 16.2 | 4534-74-1 | C8H16O | 0.47 ± 0.03 | ND | ND | ND |
VFC35 | 4,4,6-Trimethyl-cyclohex-2-en-1-ol | 17.47 | 1000144-64-7 | C9H16O | 2.12 ± 0.08 | ND | ND | ND |
VFC36 | 2,4,7,9-Tetramethyldec-5-yne-4,7-diol | 19.43 | 126-86-3 | C14H26O2 | 1.28 ± 0.07 | 0.57 ± 0.03 | 0.46 ± 0.02 | 0.28 ± 0.01 |
Total | 17.94 ± 0.86 | 15.10 ± 0.48 | 12.22 ± 1.00 | 5.96 ± 0.25 | ||||
Ketones (5) | ||||||||
VFC37 | 5-Methylhexan-2-one | 4.95 | 110-12-3 | C7H14O | 0.63 ± 0.02 | 0.65 ± 0.01 | 0.69 ± 0.05 | 0.63 ± 0.03 |
VFC38 | (2,5-Dioxopyrrolidin-1-yl) benzoate | 6.7 | 23405-15-4 | C11H9NO4 | 1.19 ± 0.11 | 1.70 ± 0.05 | 0.56 ± 0.01 | ND |
VFC39 | (E)-Oct-3-en-2-one | 8.95 | 1669-44-9 | C8H14O | ND | 1.40 ± 0.08 | ND | ND |
VFC40 | 1-(2-Hydroxy-5-methylphenyl)ethanone | 16.71 | 1450-72-2 | C9H10O2 | ND | 0.26 ± 0.01 | ND | ND |
VFC41 | 2-Pentylcyclopentanone | 17.44 | 1000191-05-3 | C10H18O | ND | 1.33 ± 0.13 | 1.72 ± 0.06 | ND |
Total | 1.82 ± 0.13 | 5.34 ± 0.28 | 2.97 ± 0.12 | 0.63 ± 0.03 | ||||
Acids(5) | ||||||||
VFC42 | Acetic acid | 1.31 | 64-19-7 | C2H4O2 | 0.53 ± 0.01 | ND | ND | ND |
VFC43 | Octanoic acid | 12.79 | 124-07-2 | C8H16O2 | 0.44 ± 0.02 | ND | ND | ND |
VFC44 | Nonanoic acid | 15.48 | 112-05-0 | C9H18O2 | 0.13 ± 0.01 | ND | ND | ND |
VFC45 | n-Decanoic acid | 32.55 | 334-48-5 | C10H20O2 | ND | 0.34 ± 0.02 | ND | ND |
VFC46 | Pyridine-2-carboxylic acid | 2.5 | 98-98-6 | C6H5NO2 | ND | ND | 0.25 ± 0.01 | ND |
Total | 1.10 ± 0.04 | 0.34 ± 0.02 | 0.25 ± 0.01 | 0 | ||||
Amines(4) | ||||||||
VFC47 | (1R)-1-Cyclohexylethanamine | 1.02 | 5913-13-3 | C8H17N | 0.82 ± 0.02 | 1.16 ± 0.07 | 1.21 ± 0.06 | ND |
VFC48 | 2-Hydroxypropanamide | 1.11 | 2043-43-8 | C3H7NO2 | 0.22 ± 0.01 | 0.43 ± 0.02 | 0.11 ± 0.01 | ND |
VFC49 | N-methylmethanamine | 1.09 | 124-40-3 | C2H7N | ND | ND | ND | 0.15 ± 0.05 |
VFC50 | 1-Methoxypropan-2-amine | 1.14 | 37143-54-7 | C4H11NO | ND | ND | ND | 0.30 ± 0.01 |
Total | 1.04 ± 0.03 | 1.59 ± 0.09 | 1.32 ± 0.07 | 0.45 ± 0.06 | ||||
Alkanes(11) | ||||||||
VFC51 | 2-Pentyloxirane | 5.32 | 5063-65-0 | C7H14O | 0.33 ± 0.01 | ND | 0.36 ± 0.02 | 0.45 ± 0.02 |
VFC52 | Dodecane | 13.61 | 112-40-3 | C12H26 | 0.67 ± 0.02 | ND | 0.86 ± 0.08 | ND |
VFC53 | Tridecane | 16.37 | 629-50-5 | C13H28 | 0.80 ± 0.02 | 1.83 ± 0.14 | 0.53 ± 0.01 | ND |
VFC54 | Hexadecane | 21.48 | 544-76-3 | C16H34 | 0.16 ± 0.01 | ND | ND | ND |
VFC55 | 2-Phenoxyethoxybenzene | 28.3 | 104-66-5 | C14H14O2 | 1.70 ± 0.08 | 1.25 ± 0.11 | 0.79 ± 0.02 | 0.31 ± 0.01 |
VFC56 | 2,4,6-Trimethyloctane | 13.6 | 62016-37-9 | C11H24 | ND | 2.47 ± 0.15 | ND | 0.48 ± 0.02 |
VFC57 | 2,3-Dimethyloxirane | 1.36 | 3266-23-7 | C4H8O | ND | ND | 0.24 ± 0.01 | ND |
VFC58 | Pentylcyclopropane | 9.87 | 2511-91-3 | C8H16 | ND | ND | 2.00 ± 0.14 | ND |
VFC59 | 3,7-Dimethyldecane | 18.98 | 17312-54-8 | C12H26 | ND | ND | 0.55 ± 0.01 | ND |
VFC60 | 2-(Oxiran-2-ylmethyl)-3-[3-(oxiran-2-yl)propyl]oxirane | 9.802 | 52338-90-6 | C10H16O3 | 0.27 ± 0.01 | ND | ND | ND |
VFC61 | 3,3-Dimethylhexane | 16.34 | 563-16-6 | C8H18 | ND | ND | ND | 0.29 ± 0.01 |
Total | 3.93 ± 0.15 | 5.55 ± 0.40 | 5.33 ± 0.29 | 1.53 ± 0.06 | ||||
Pyrazines(2) | ||||||||
VFC62 | 2,5-Dimethylpyrazine | 5.5 | 123-32-0 | C6H8N2 | 0.52 ± 0.03 | 0.96 ± 0.02 | 0.39 ± 0.02 | ND |
VFC63 | 2-Ethyl-3,5-dimethylpyrazine | 10.13 | 13925-07-0 | C8H12N2 | ND | 0.85 ± 0.04 | 0.49 ± 0.01 | ND |
Total | 0.52 ± 0.03 | 1.81 ± 0.06 | 0.88 ± 0.03 | 0 | ||||
Furan(1) | ||||||||
VFC64 | 2-Pentylfuran | 7.61 | 3777-69-3 | C9H14O | 1.28 ± 0.12 | 2.40 ± 0.17 | 3.05 ± 0.11 | 2.37 ± 0.13 |
Total | 1.28 ± 0.12 | 2.40 ± 0.17 | 3.05 ± 0.11 | 2.37 ± 0.13 |
Amino Acids | Amino Acid Content (g/100 g) | |||
---|---|---|---|---|
OB | S-OB | M-OB | HA-OB | |
Sweet amino acids | ||||
Ala | 1.09 ± 0.01 a | 1.04 ± 0.01 a | 1.05 ± 0.01 a | 1.06 ± 0.04 a |
Gly | 1.12 ± 0.01 a | 1.02 ± 0.01 b | 1.05 ± 0.02 ab | 1.04 ± 0.04 ab |
Ser | 0.98 ± 0.01 a | 0.92 ± 0.01 a | 0.93 ± 0.02 a | 0.94 ± 0.03 a |
Thr * | 0.71 ± 0.01 a | 0.68 ± 0.01 a | 0.69 ± 0.01 a | 0.70 ± 0.02 a |
Pro | 1.12 ± 0.06 ab | 1.19 ± 0.04 a | 1.11 ± 0.02 ab | 1.03 ± 0.04 b |
Total | 5.02 ± 0.10 a | 4.85 ± 0.08 a | 4.83 ± 0.08 a | 4.77 ± 0.17 a |
Umami amino acids | ||||
Glu | 4.00 ± 0.04 a | 3.87 ± 0.03 b | 3.85 ± 0.06 b | 3.75 ± 0.1 b |
Asp | 1.63 ± 0.01 a | 1.55 ± 0.01 a | 1.56 ± 0.03 a | 1.59 ± 0.05 a |
Total | 5.63 ± 0.05 a | 5.42 ± 0.04 a | 5.41 ± 0.09 a | 5.34 ± 0.15 a |
Bitter amino acids | ||||
Val * | 1.04 ± 0.01 a | 0.99 ± 0 a | 1.00 ± 0.22 a | 1.00 ± 0.04 a |
Met * | 0.16 ± 0.05 ab | 0.07 ± 0.01 a | 0.21 ± 0.08 b | 0.04 ± 0.04 b |
Leu * | 1.53 ± 0.02 a | 1.46 ± 0.01 ab | 1.45 ± 0.02 ab | 1.45 ± 0.05 b |
Ile * | 0.65 ± 0.02 a | 0.60 ± 0 b | 0.61 ± 0 b | 0.62 ± 0.03 b |
Phe * | 1 ± 0.01 a | 0.97 ± 0.03 a | 0.95 ± 0.01 a | 0.98 ± 0.04 a |
His | 0.48 ± 0.03 a | 0.42 ± 0.01 b | 0.43 ± 0.01 b | 0.44 ± 0.01 b |
Arg * | 1.22 ± 0.02 a | 1.15 ± 0.01 b | 1.20 ± 0.02 ab | 1.17 ± 0.05 b |
Total | 6.08 ± 0.16 a | 5.66 ± 0.07 a | 5.85 ± 0.36 a | 5.70 ± 0.26 a |
Tasteless amino acids | ||||
Lys * | 0.82 ± 0.00 a | 0.75 ± 0.01 a | 0.79 ± 0.02 a | 0.78 ± 0.03 a |
Tyr | 0.55 ± 0.03 a | 0.51 ± 0.01 a | 0.57 ± 0 a | 0.56 ± 0.03 a |
Total | 1.37 ± 0.03 a | 1.26 ± 0.02 a | 1.36 ± 0.02 a | 1.34 ± 0.06 a |
Other amino acids | ||||
Cys | 0.56 ± 0.01 a | 0.52 ± 0.01 a | 0.52 ± 0.01 a | 0.25 ± 0.20 b |
Total | 0.56 ± 0.01 a | 0.52 ± 0.01 a | 0.52 ± 0.01 a | 0.25 ± 0.20 b |
Essential amino acids | 6.39 ± 0.15 a | 5.94 ± 0.08 a | 6.13 ± 0.37 a | 6.01 ± 0.26 a |
Sum of amino acids | 18.66 ± 0.35 a | 17.71 ± 0.22 a | 17.97 ± 0.56 a | 17.40 ± 0.84 a |
Essential Amino Acids/Sum of amino acids | 34.24 ± 0.16 a | 33.54 ± 0.04 b | 34.08 ± 0.10 a | 34.55 ± 0.17 a |
Fatty Acid Composition | Fatty Acid Composition (% of Total Fatty Acids) | |||
---|---|---|---|---|
OB | S-OB | M-OB | HA-OB | |
Palmitic acid (C16:0) | 17.28 ± 0.04 a | 16.96 ± 0.05 b | 17.38 ± 0.08 a | 17.24 ± 0.02 a |
Stearic acid (C18:0) | 1.60 ± 0.01 b | 1.60 ± 0.01 b | 1.65 ± 0.01 a | 1.63 ± 0.01 ab |
Saturated fatty acid | 18.88 ± 0.05 a | 18.56 ± 0.06 b | 19.03 ± 0.08 a | 18.87 ± 0.03 a |
Oleic acid (C18:1) | 46.98 ± 0.15 a | 45.97 ± 0.04 b | 46.49 ± 0.15 a | 46.58 ± 0.13 a |
Linoleic acid (C18:2) | 31.38 ± 0.14 b | 32.69 ± 0.11 a | 31.65 ± 0.07 b | 31.76 ± 0.16 b |
linolenic acids (C18:3) | 0.96 ± 0.01 a | 0.94 ± 0.00 a | 0.96 ± 0.01 a | 0.96 ± 0.01 a |
Unsaturated fatty acid | 79.32 ± 0.31 b | 79.60 ± 0.16 a | 79.11 ± 0.22 b | 79.30 ± 0.30 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Zhang, M.; Zhang, Y.; Zhang, Y.; Guo, X.; Huo, R. Effects of Pretreatment on the Volatile Composition, Amino Acid, and Fatty Acid Content of Oat Bran. Foods 2022, 11, 3070. https://doi.org/10.3390/foods11193070
Bai X, Zhang M, Zhang Y, Zhang Y, Guo X, Huo R. Effects of Pretreatment on the Volatile Composition, Amino Acid, and Fatty Acid Content of Oat Bran. Foods. 2022; 11(19):3070. https://doi.org/10.3390/foods11193070
Chicago/Turabian StyleBai, Xue, Meili Zhang, Yuanyuan Zhang, Yakun Zhang, Xinyue Guo, and Rui Huo. 2022. "Effects of Pretreatment on the Volatile Composition, Amino Acid, and Fatty Acid Content of Oat Bran" Foods 11, no. 19: 3070. https://doi.org/10.3390/foods11193070
APA StyleBai, X., Zhang, M., Zhang, Y., Zhang, Y., Guo, X., & Huo, R. (2022). Effects of Pretreatment on the Volatile Composition, Amino Acid, and Fatty Acid Content of Oat Bran. Foods, 11(19), 3070. https://doi.org/10.3390/foods11193070