Effects of Chitosan and Duck Fat-Based Emulsion Coatings on the Quality Characteristics of Chicken Meat during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Coating Solution and Coating of Chicken Meat
2.3. Apparent Viscosity of Coating Solution
2.4. Coating Rate of Samples
2.5. pH and Color Measurements of Chicken Meat
2.6. Warner–Bratzler Shear Force (WBSF)
2.7. Lipid Oxidation
2.8. Volatile Basic Nitrogen (VBN)
2.9. Microbiological Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Apparent Viscosity of Coating Solution and Coating Rate
3.2. pH and Color of Coated Chicken Meat
3.3. Warner–Bratzler Shear Force of Coated Chicken Meat
3.4. TBARS Values and VBN of Coated Chicken Meat
3.5. Growth of Microorganisms on Coated Chicken Meat
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latou, E.; Mexis, S.; Badeka, A.; Kontakos, S.; Kontominas, M. Combined effect of chitosan and modified atmosphere packaging for shelf life extension of chicken breast fillets. LWT—Food Sci. Technol. 2014, 55, 263–268. [Google Scholar] [CrossRef]
- Anang, D.; Rusul, G.; Bakar, J.; Ling, F.H. Effects of lactic acid and lauricidin on the survival of Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157: H7 in chicken breast stored at 4 C. Food Control 2007, 18, 961–969. [Google Scholar] [CrossRef]
- Langroodi, A.M.; Tajik, H.; Mehdizadeh, T.; Moradi, M.; Kia, E.M.; Mahmoudian, A. Effects of sumac extract dipping and chitosan coating enriched with Zataria multiflora Boiss oil on the shelf-life of meat in modified atmosphere packaging. LWT—Food Sci. Technol. 2018, 98, 372–380. [Google Scholar] [CrossRef]
- Bravin, B.; Peressini, D.; Sensidoni, A. Development and application of polysaccharide–lipid edible coating to extend shelf-life of dry bakery products. J. Food Eng. 2006, 76, 280–290. [Google Scholar] [CrossRef]
- Xiong, Y.; Kamboj, M.; Ajlouni, S.; Fang, Z. Incorporation of salmon bone gelatine with chitosan, gallic acid and clove oil as edible coating for the cold storage of fresh salmon fillet. Food Control 2021, 125, 107994. [Google Scholar] [CrossRef]
- Yousuf, B.; Sun, Y.; Wu, S. Lipid and Lipid-containing Composite Edible Coatings and Films. Food Rev. Int. 2021, 1–24. [Google Scholar] [CrossRef]
- Ren, K.; Fei, T.; Metzger, K.; Wang, T. Coating performance and rheological characteristics of novel soybean oil-based wax emulsions. Ind. Crops Prod. 2019, 140, 111654. [Google Scholar] [CrossRef]
- Lehtinen, O.-P.; Nugroho, R.W.N.; Lehtimaa, T.; Vierros, S.; Hiekkataipale, P.; Ruokolainen, J.; Sammalkorpi, M.; Österberg, M. Effect of temperature, water content and free fatty acid on reverse micelle formation of phospholipids in vegetable oil. Colloids Surf. B Biointerfaces 2017, 160, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Vargas, M.; Albors, A.; Chiralt, A. Application of chitosan-sunflower oil edible films to pork meat hamburgers. Procedia Food Sci. 2011, 1, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.-M.; Yune, J.H.; Kim, T.-K.; Kim, Y.J.; Kwon, H.C.; Jeong, C.H.; Choi, Y.-S.; Han, S.G. Physicochemical properties and oxidative stability of duck fat-added margarine for reducing the use of fully hydrogenated soybean oil. Food Chem. 2021, 363, 130260. [Google Scholar] [CrossRef]
- Qiao, Y.; Huang, J.; Chen, Y.; Chen, H.; Zhao, L.; Huang, M.; Zhou, G. Meat quality, fatty acid composition and sensory evaluation of Cherry Valley, Spent Layer and Crossbred ducks. Anim. Sci. J. 2017, 88, 156–165. [Google Scholar] [CrossRef]
- Gong, Y.; Weber, P.F.; Richards, M.P. Characterizing quality of rendered duck fat compared to other fats and oils. J. Food Qual. 2007, 30, 169–186. [Google Scholar] [CrossRef]
- Shin, D.-M.; Do Hyun Kim, J.H.Y.; Kwon, H.C.; Kim, H.J.; Seo, H.G.; Han, S.G. Oxidative stability and quality characteristics of duck, chicken, swine and bovine skin fats extracted by pressurized hot water extraction. Food Sci. Anim. Resour. 2019, 39, 446. [Google Scholar] [CrossRef] [Green Version]
- Kang, E.S.; Kim, H.J.; Han, S.G.; Seo, H.G. Duck oil-loaded nanoemulsion inhibits senescence of angiotensin II-treated vascular smooth muscle cells by upregulating SIRT1. Food Sci. Anim. Resour. 2020, 40, 106. [Google Scholar] [CrossRef] [Green Version]
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [Green Version]
- Nawade, B.; Mishra, G.P.; Radhakrishnan, T.; Dodia, S.M.; Ahmad, S.; Kumar, A.; Kumar, A.; Kundu, R. High oleic peanut breeding: Achievements, perspectives, and prospects. Trends Food Sci. Technol. 2018, 78, 107–119. [Google Scholar] [CrossRef]
- Taqi, A.; Askar, K.A.; Nagy, K.; Mutihac, L.; Stamatin, L. Effect of different concentrations of olive oil and oleic acid on the mechanical properties of albumen (egg white) edible films. Afr. J. Biotechnol. 2011, 10, 12963–12972. [Google Scholar]
- Ray, C.L.; Gawenis, J.A.; Greenlief, C.M. A New Method for Olive Oil Screening Using Multivariate Analysis of Proton NMR Spectra. Molecules 2022, 27, 213. [Google Scholar] [CrossRef]
- Umaraw, P.; Verma, A.K. Comprehensive review on application of edible film on meat and meat products: An eco-friendly approach. Crit. Rev. Food Sci. Nutr. 2017, 57, 1270–1279. [Google Scholar] [CrossRef]
- Kumarihami, H.P.C.; Kim, Y.-H.; Kwack, Y.-B.; Kim, J.; Kim, J.G. Application of chitosan as edible coating to enhance storability and fruit quality of Kiwifruit: A Review. Sci. Hortic. 2022, 292, 110647. [Google Scholar] [CrossRef]
- Yüksel, Ç.; Atalay, D.; Erge, H.S. The effects of chitosan coating and vacuum packaging on quality of fresh-cut pumpkin slices during storage. J. Food Processing Preserv. 2022, e16365. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Tajik, H.; Rohani, S.M.R.; Moradi, M.; Hashemi, M.; Aliakbarlu, J. Effect of functional chitosan coating and gamma irradiation on the shelf-life of chicken meat during refrigerated storage. Radiat. Phys. Chem. 2017, 141, 103–109. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, M.; Warner, R.D.; Fang, Z. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control 2020, 110, 107018. [Google Scholar] [CrossRef]
- Jasour, M.S.; Ehsani, A.; Mehryar, L.; Naghibi, S.S. Chitosan coating incorporated with the lactoperoxidase system: An active edible coating for fish preservation. J. Sci. Food Agric. 2015, 95, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Wardy, W.; Torrico, D.D.; Jirangrat, W.; No, H.K.; Saalia, F.K.; Prinyawiwatkul, W. Chitosan-soybean oil emulsion coating affects physico-functional and sensory quality of eggs during storage. LWT—Food Sci. Technol. 2011, 44, 2349–2355. [Google Scholar] [CrossRef]
- Sathivel, S. Chitosan and protein coatings affect yield, moisture loss, and lipid oxidation of pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. J. Food Sci. 2005, 70, e455–e459. [Google Scholar] [CrossRef]
- Shin, D.-M.; Hwang, K.-E.; Lee, C.-W.; Kim, T.-K.; Park, Y.-S.; Han, S.G. Effect of Swiss chard (Beta vulgaris var. cicla) as nitrite replacement on color stability and shelf-life of cooked pork patties during refrigerated storage. Food Sci. Anim. Resour. 2017, 37, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.-K.; Hwang, K.-E.; Lee, M.-A.; Paik, H.-D.; Kim, Y.-B.; Choi, Y.-S. Quality characteristics of pork loin cured with green nitrite source and some organic acids. Meat Sci. 2019, 152, 141–145. [Google Scholar] [CrossRef]
- Hwang, J.-K.; Shin, H.-H. Rheological properties of chitosan solutions. Korea-Aust. Rheol. J. 2000, 12, 175–179. [Google Scholar]
- Park, S.-Y.; Kim, H.-Y. Fried pork loin batter quality with the addition of various dietary fibers. J. Anim. Sci. Technol. 2021, 63, 137. [Google Scholar] [CrossRef]
- Abdul-Hamid, A.; Luan, Y.S. Functional properties of dietary fibre prepared from defatted rice bran. Food Chem. 2000, 68, 15–19. [Google Scholar] [CrossRef]
- Liu, L.; Wang, B.; Gao, Y.; Bai, T.-c. Chitosan fibers enhanced gellan gum hydrogels with superior mechanical properties and water-holding capacity. Carbohydr. Polym. 2013, 97, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Tsafrakidou, P.; Sameli, N.; Bosnea, L.; Chorianopoulos, N.; Samelis, J. Assessment of the spoilage microbiota in minced free-range chicken meat during storage at 4 C in retail modified atmosphere packages. Food Microbiol. 2021, 99, 103822. [Google Scholar] [CrossRef]
- Yaghoubi, M.; Ayaseh, A.; Alirezalu, K.; Nemati, Z.; Pateiro, M.; Lorenzo, J.M. Effect of chitosan coating incorporated with Artemisia fragrans essential oil on fresh chicken meat during refrigerated storage. Polymers 2021, 13, 716. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chang, W.; Chen, M.; Xu, F.; Ma, J.; Zhong, F. Tailoring physicochemical properties of chitosan films and their protective effects on meat by varying drying temperature. Carbohydr. Polym. 2019, 212, 150–159. [Google Scholar] [CrossRef]
- Kuswandi, B.; Nurfawaidi, A. On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control 2017, 82, 91–100. [Google Scholar] [CrossRef]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Seideman, S.; Cross, H.; Smith, G.; Durland, P. Factors associated with fresh meat color: A review. J. Food Qual. 1984, 6, 211–237. [Google Scholar] [CrossRef]
- Zhang, H.; He, P.; Kang, H.; Li, X. Antioxidant and antimicrobial effects of edible coating based on chitosan and bamboo vinegar in ready to cook pork chops. LWT—Food Sci. Technol. 2018, 93, 470–476. [Google Scholar] [CrossRef]
- Yu, L.; Lee, E.; Jeong, J.; Paik, H.; Choi, J.; Kim, C. Effects of thawing temperature on the physicochemical properties of pre-rigor frozen chicken breast and leg muscles. Meat Sci. 2005, 71, 375–382. [Google Scholar] [CrossRef]
- Sujiwo, J.; Kim, D.; Jang, A. Relation among quality traits of chicken breast meat during cold storage: Correlations between freshness traits and torrymeter values. Poult. Sci. 2018, 97, 2887–2894. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F.; Desilva, C.; Amarowicz, R. Antioxidant activity of extracts of defatted seeds of niger (Guizotia abyssinica). J. Am. Oil Chem. Soc. 2003, 80, 443–450. [Google Scholar] [CrossRef]
- Rezaei, F.; Shahbazi, Y. Shelf-life extension and quality attributes of sauced silver carp fillet: A comparison among direct addition, edible coating and biodegradable film. LWT—Food Sci. Technol. 2018, 87, 122–133. [Google Scholar] [CrossRef]
- Yu, H.H.; Kim, Y.J.; Park, Y.J.; Shin, D.-M.; Choi, Y.-S.; Lee, N.-K.; Paik, H.-D. Application of mixed natural preservatives to improve the quality of vacuum skin packaged beef during refrigerated storage. Meat Sci. 2020, 169, 108219. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, J.; Wang, W.; Li, Y.; Wu, J.; Huang, H.; Gao, X.; Jiang, W. Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles. J. Food Eng. 2011, 102, 163–169. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Dominguez, R.; Pateiro, M.; Saraiva, J.A.; Franco, D. Main groups of microorganisms of relevance for food safety and stability: General aspects and overall description. In Innovative Technologies for Food Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 53–107. [Google Scholar]
- Zwirzitz, B.; Wetzels, S.U.; Dixon, E.D.; Fleischmann, S.; Selberherr, E.; Thalguter, S.; Quijada, N.M.; Dzieciol, M.; Wagner, M.; Stessl, B. Co-occurrence of Listeria spp. and spoilage associated microbiota during meat processing due to cross-contamination events. Front. Microbiol. 2021, 12, 632935. [Google Scholar] [CrossRef] [PubMed]
- Kanatt, S.R.; Rao, M.; Chawla, S.; Sharma, A. Effects of chitosan coating on shelf-life of ready-to-cook meat products during chilled storage. LWT—Food Sci. Technol. 2013, 53, 321–326. [Google Scholar] [CrossRef]
Parameter | Treatment 1) | Storage Period (Days) | |||||
---|---|---|---|---|---|---|---|
0 | 3 | 5 | 7 | 10 | 15 | ||
pH | NC | 5.99 ± 0.01 Ad | 5.92 ± 0.01 Ae | 5.98 ± 0.02 Ad | 6.20 ± 0.01 Aa | 6.14 ± 0.01 Ab | 6.03 ± 0.01 Ac |
DFC0 | 5.86 ± 0.01 Cd | 5.86 ± 0.03 Bd | 5.92 ± 0.01 Bc | 5.85 ± 0.01 Cd | 6.08 ± 0.01 Ba | 6.00 ± 0.01 Bb | |
DFC0.5 | 5.88 ± 0.01 Bb | 5.90 ± 0.01 Ab | 5.84 ± 0.01 Dc | 5.92 ± 0.01 Ba | 5.94 ± 0.01 Da | 5.89 ± 0.02 Cb | |
DFC1 | 5.81 ± 0.01 Ee | 5.85 ± 0.01 Bc | 5.87 ± 0.03 Cb | 5.86 ± 0.01 Cbc | 5.90 ± 0.01 Ea | 5.81 ± 0.01 Dd | |
DFC2 | 5.87 ± 0.01 Ccd | 5.90 ± 0.01 Abc | 5.94 ± 0.01 Bab | 5.83 ± 0.06 Cd | 5.97 ± 0.03 Ca | 5.79 ± 0.01 Ee | |
SOC2 | 5.84 ± 0.01 De | 5.87 ± 0.01 Bcd | 5.97 ± 0.01 Ab | 5.85 ± 0.02 Cde | 5.98 ± 0.01 Ca | 5.88 ± 0.01 Cc | |
L* | NC | 58.68 ± 2.90 Ba | 57.51 ± 5.34 Bab | 57.46 ± 2.38 Bab | 56.26 ± 2.91 Bab | 56.17 ± 4.85 Bab | 54.79 ± 2.61 Bb |
DFC0 | 62.00 ± 3.37 Aa | 61.17 ± 2.48 Aa | 60.32 ± 3.75 Aab | 58.39 ± 2.84 ABbc | 58.33 ± 2.15 ABbc | 57.34 ± 3.09 Ac | |
DFC0.5 | 61.84 ± 2.25 Aa | 59.91 ± 4.53 ABab | 59.87 ± 3.28 Aab | 59.42 ± 3.41 Aab | 58.46 ± 3.48 ABb | 58.06 ± 2.51 Ab | |
DFC1 | 62.04 ± 5.08 Aa | 61.81 ± 3.38 Aa | 60.73 ± 3.06 Aab | 60.31 ± 3.32 Aab | 59.67 ± 1.79 Aab | 58.89 ± 1.62 Ab | |
DFC2 | 62.38 ± 3.18 Aa | 62.12 ± 2.24 Aa | 60.52 ± 3.56 Aab | 59.82 ± 2.80 Ab | 59.49 ± 2.93 Ab | 59.04 ± 3.96 Ab | |
SOC2 | 61.78 ± 4.73 Aa | 59.91 ± 3.33 ABab | 59.71 ± 1.64 Aab | 58.53 ± 4.10 ABb | 57.66 ± 3.92 ABb | 57.51 ± 5.34 Ab | |
a* | NC | 3.44 ± 0.63 a | 3.14 ± 0.55 ab | 2.93 ± 0.97 abc | 2.50 ± 0.76 bc | 2.17 ± 0.50 cd | 1.37 ± 0.50 Bd |
DFC0 | 3.53 ± 0.50 a | 3.07 ± 0.33 ab | 3.01 ± 0.7 ab | 2.77 ± 0.58 bc | 2.13 ± 0.57 cd | 1.62 ± 0.49 Bd | |
DFC0.5 | 3.57 ± 0.54 a | 3.10 ± 0.55 ab | 2.79 ± 0.45 ab | 2.78 ± 0.60 ab | 2.37 ± 0.67 bc | 1.83 ± 0.66 Bc | |
DFC1 | 3.59 ± 0.38 | 3.10 ± 0.55 | 2.82 ± 0.65 | 2.95 ± 0.16 | 2.67 ± 0.64 | 2.49 ± 0.48 A | |
DFC2 | 3.55 ± 0.58 a | 3.35 ± 0.69 b | 2.95 ± 0.39 bc | 3.01 ± 0.50 bc | 2.82 ± 0.22 bc | 2.70 ± 0.52 Ac | |
SOC2 | 3.58 ± 0.68 | 3.19 ± 0.53 | 2.88 ± 0.56 | 2.83 ± 0.79 | 2.71 ± 0.66 | 2.54 ± 0.56 A | |
b* | NC | 11.07 ± 1.18 b | 11.57 ± 2.01 b | 11.94 ± 0.79 b | 12.28 ± 1.36 b | 12.71 ± 1.24 ab | 14.17 ± 1.22 Aa |
DFC0 | 11.05 ± 2.04 | 11.88 ± 2.26 | 12.07 ± 0.53 | 12.12 ± 1.31 | 12.41 ± 1.99 | 12.97 ± 0.80 AB | |
DFC0.5 | 11.18 ± 2.02 | 11.95 ± 1.51 | 12.14 ± 1.63 | 12.70 ± 1.78 | 12.71 ± 1.99 | 13.08 ± 1.22 AB | |
DFC1 | 10.93 ± 2.06 | 10.54 ± 1.42 | 10.97 ± 1.25 | 11.35 ± 2.30 | 11.13 ± 2.36 | 11.68 ± 1.49 B | |
DFC2 | 10.81 ± 2.19 | 10.92 ± 1.12 | 11.01 ± 2.24 | 11.09 ± 0.96 | 11.11 ± 2.37 | 11.33 ± 0.68 B | |
SOC2 | 10.87 ± 1.44 | 10.70 ± 1.97 | 10.96 ± 1.98 | 11.15 ± 1.79 | 11.55 ± 2.36 | 11.84 ± 1.94 B |
Parameter (Log CFU/g) | Treatment 1) | Storage Period (Day) | |||||
---|---|---|---|---|---|---|---|
0 | 3 | 5 | 7 | 10 | 15 | ||
TVC | NC | 3.52 ± 0.06 e | 5.43 ± 0.11 BCd | 6.78 ± 0.04 Bc | 8.71 ± 0.02 Aa | 8.66 ± 0.05 Aa | 8.15 ± 0.01 Ab |
DFC0 | 3.52 ± 0.06 e | 5.97 ± 0.02 Ad | 6.81 ± 0.05 Bc | 7.62 ± 0.02 Bb | 8.39 ± 0.22 Ba | 8.24 ± 0.05 Aa | |
DFC0.5 | 3.52 ± 0.06 f | 5.67 ± 0.02 ABe | 7.83 ± 0.02 Ad | 6.66 ± 0.26 Cc | 7.46 ± 0.09 Cb | 8.18 ± 0.04 Aa | |
DFC1 | 3.52 ± 0.06 e | 5.32 ± 0.28 Cd | 5.13 ± 0.02 Dd | 6.50 ± 0.01 Cc | 7.66 ± 0.03 Ca | 6.93 ± 0.04 Bb | |
DFC2 | 3.52 ± 0.06 c | 4.10 ± 0.17 Db | 4.02 ± 0.03 Eb | 4.24 ± 0.34 Eb | 6.32 ± 0.02 Ea | 6.15 ± 0.21 Ca | |
SOC2 | 3.52 ± 0.06 f | 5.24 ± 0.06 BCd | 5.48 ± 0.01 Cc | 4.85 ± 0.01 De | 7.14 ± 0.04 Da | 6.78 ± 0.01 Bb | |
E. coli | NC | 3.19 ± 0.06 e | 3.72 ± 0.34 ABd | 4.18 ± 0.07 Bc | 5.23 ± 0.12 Bb | 7.98 ± 0.04 Aa | 7.85 ± 0.09 Ba |
DFC0 | 3.19 ± 0.06 f | 3.93 ± 0.04 Ae | 4.57 ± 0.10 Ad | 6.24 ± 0.02 Ac | 7.90 ± 0.02 Ab | 8.11 ± 0.06 Aa | |
DFC0.5 | 3.19 ± 0.06 e | 3.91 ± 0.19 Ad | 3.83 ± 0.09 Dd | 4.71 ± 0.10 Cc | 6.49 ± 0.02 Bb | 7.49 ± 0.02 Ca | |
DFC1 | 3.19 ± 0.06 e | 3.54 ± 0.09 ABCd | 3.92 ± 0.11 CDc | 4.07 ± 0.16 Dc | 6.58 ± 0.01 Ba | 6.32 ± 0.09 Eb | |
DFC2 | 3.19 ± 0.06 d | 3.20 ± 0.01 Ccd | 3.35 ± 0.01 Ecd | 3.39 ± 0.12 Ec | 4.36 ± 0.12 Db | 5.10 ± 0.04 Fa | |
SOC2 | 3.19 ± 0.06 e | 3.48 ± 0.01 BCd | 4.07 ± 0.01 BCc | 3.93 ± 0.21 Dc | 4.68 ± 0.06 Cb | 7.30 ± 0.06 Da | |
Coliform | NC | 3.10 ± 0.01 e | 3.72 ± 0.34 ABd | 4.15 ± 0.02 Bc | 5.19 ± 0.06 Bb | 7.95 ± 0.06 Aa | 7.83 ± 0.08 Ba |
DFC0 | 3.10 ± 0.01 f | 4.16 ± 0.02 Ae | 4.71 ± 0.04 Ad | 6.13 ± 0.07 Ac | 7.95 ± 0.03 Ab | 8.08 ± 0.02 Aa | |
DFC0.5 | 3.10 ± 0.01 e | 3.80 ± 0.14 Ad | 3.86 ± 0.01 Cd | 4.69 ± 0.03 Cc | 6.41 ± 0.05 Bb | 7.42 ± 0.17 Ca | |
DFC1 | 3.10 ± 0.01 f | 3.81 ± 0.05 Ae | 3.93 ± 0.07 Cd | 4.18 ± 0.01 Dc | 6.57 ± 0.01 Ba | 6.36 ± 0.05 Db | |
DFC2 | 3.10 ± 0.01 c | 3.15 ± 0.21 Bc | 3.41 ± 0.01 Dc | 3.24 ± 0.34 Ec | 4.16 ± 0.17 Db | 5.14 ± 0.02 Ea | |
SOC2 | 3.10 ± 0.01 d | 3.76 ± 0.40 Ac | 4.13 ± 0.01 Bc | 3.78 ± 0.25 Dc | 4.76 ± 0.01 Cb | 7.41 ± 0.05 Ca | |
Yeast and molds | NC | N.D. | 1.00 ± 0.10 Cc | 3.77 ± 0.04 Ab | 4.17 ± 0.01 Aab | 4.75 ± 0.01 Aab | 5.47 ± 0.03 Aa |
DFC0 | N.D. | 3.04 ± 0.01 Ad | 3.88 ± 0.02 Ac | 3.85 ± 0.01 Bc | 4.95 ± 0.07 Ab | 5.32 ± 0.03 Ba | |
DFC0.5 | N.D. | 2.15 ± 0.21 Bc | 3.63 ± 0.19 Ab | 3.66 ± 0.26 BCb | 3.69 ± 0.30 Cb | 4.65 ± 0.03 Ca | |
DFC1 | N.D. | 2.24 ± 0.34 Bc | 3.55 ± 0.03 Ab | 3.86 ± 0.06 Bb | 4.24 ± 0.05 Ba | 4.50 ± 0.03 Da | |
DFC2 | N.D. | 1.15 ± 0.36 Cb | 2.35 ± 0.49 Bab | 2.39 ± 0.12 Dab | 3.57 ± 0.05 Ca | 3.77 ± 0.03 Fa | |
SOC2 | N.D. | 2.60 ± 0.01 Bd | 3.78 ± 0.04 Ab | 3.41 ± 0.02 Cc | 3.82 ± 0.02 Cb | 4.01 ± 0.01 Ea | |
Listeria spp. | NC | N.D. | N.D. | N.D. | 2.81 ± 0.47 Ab | 2.39 ± 0.12 Ab | 4.12 ± 0.23 Aa |
DFC0 | N.D. | N.D. | 2.48 ± 0.01 Ab | 2.94 ± 0.34 Aab | 2.82 ± 0.31 Ab | 3.35 ± 0.16 Ba | |
DFC0.5 | N.D. | N.D. | 1.00 ± 0.10 Bbc | 3.38 ± 0.33 Aa | 2.15 ± 0.21 Aab | 3.35 ± 0.49 Ba | |
DFC1 | N.D. | N.D. | N.D. | N.D. | 1.24 ± 0.15 ABb | 3.93 ± 0.04 ABa | |
DFC2 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
SOC2 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, D.-M.; Kim, Y.-J.; Yune, J.-H.; Kim, D.-H.; Kwon, H.-C.; Sohn, H.; Han, S.-G.; Han, J.-H.; Lim, S.-J.; Han, S.-G. Effects of Chitosan and Duck Fat-Based Emulsion Coatings on the Quality Characteristics of Chicken Meat during Storage. Foods 2022, 11, 245. https://doi.org/10.3390/foods11020245
Shin D-M, Kim Y-J, Yune J-H, Kim D-H, Kwon H-C, Sohn H, Han S-G, Han J-H, Lim S-J, Han S-G. Effects of Chitosan and Duck Fat-Based Emulsion Coatings on the Quality Characteristics of Chicken Meat during Storage. Foods. 2022; 11(2):245. https://doi.org/10.3390/foods11020245
Chicago/Turabian StyleShin, Dong-Min, Yea-Ji Kim, Jong-Hyeok Yune, Do-Hyun Kim, Hyuk-Cheol Kwon, Hyejin Sohn, Seo-Gu Han, Jong-Hyeon Han, Su-Jin Lim, and Sung-Gu Han. 2022. "Effects of Chitosan and Duck Fat-Based Emulsion Coatings on the Quality Characteristics of Chicken Meat during Storage" Foods 11, no. 2: 245. https://doi.org/10.3390/foods11020245
APA StyleShin, D.-M., Kim, Y.-J., Yune, J.-H., Kim, D.-H., Kwon, H.-C., Sohn, H., Han, S.-G., Han, J.-H., Lim, S.-J., & Han, S.-G. (2022). Effects of Chitosan and Duck Fat-Based Emulsion Coatings on the Quality Characteristics of Chicken Meat during Storage. Foods, 11(2), 245. https://doi.org/10.3390/foods11020245