Formulation of Protein-Rich Chocolate Chip Cookies Using Cricket (Acheta domesticus) Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Cricket Protein Digestibility and Amino Acid Profile
2.3. Wheat Flour and Cricket Powder Functional Properties
2.4. Proximal Analysis of Flours and Chocolate Chip Cookies
2.5. Rheological Properties of Cricket Cookie Dough
2.6. Cricket Chocolate Chip Cookies Preparation
2.7. Physicochemical Characteristics of Cricket Chocolate Chip Cookies
2.8. Consumer Study
2.9. Statistical Analysis
3. Results and Discussion
3.1. Cricket Protein Digestibility and Amino Acid Profile
3.2. Functional Properties of Cricket Powder and Wheat Flour
3.3. Proximal Analysis of Cricket Powder, Wheat Flour, and Chocolate Chip Cookies
3.4. Rheological Properties of Cricket Cookie Dough
3.5. Physicochemical Properties of Chocolate Chip Cookies
3.6. Sensory Characteristics of Chocolate Chip Cookies
3.7. Effects of Beneficial Information on Overall Liking and Purchase Intent
3.8. Effects of Beneficial Information on Consumer Emotional Responses
3.9. Overall Product Differences and Discriminating Sensory and Emotional Attributes
3.10. Predicting Purchase Intent Using Logistic Regression Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huis, A.; Dicke, M.; Loon, J. Insects to feed the world. J. Insects Food Feed. 2015, 1, 3–5. [Google Scholar] [CrossRef]
- Deroy, O.; Reade, B.; Spence, C. The insectivore’s dilemma, and how to take the West out of it. Food Qual. Prefer. 2015, 44, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.; Shin, J.; Kim, Y. An Exploration and Investigation of Edible Insect Consumption: The Impacts of Image and Description on Risk Perceptions and Purchase Intent. Psychol. Mark. 2016, 33, 94–112. [Google Scholar] [CrossRef]
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup, P.; Merino, G.; Hemre, G.; Williams, M. Feeding 9 billion by 2050—Putting fish back on the menu. Food Secur. 2015, 7, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Fombong, F.T.; Kinyuru, J.; Ng’ang’a, J.; Ayieko, M.; Tanga, C.M.; Broeck, J.V.; Van der Borght, M. Affordable Processing of Edible Orthopterans Provides a Highly Nutritive Source of Food Ingredients. Foods 2021, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Bukkens, S. The nutritional value of edible insects. Ecol. Food Nutr. 1997, 36, 287–319. [Google Scholar] [CrossRef]
- Maiyo, N.C.; Khamis, F.M.; Okoth, M.W.; Abung, G.O.; Subramanian, S.; Egonyu, J.P.; Xavier, C.; Ekesi, S.; Omuse, E.R.; Nakimbugwe, D.; et al. Nutritional Quality of Four Novel Porridge Products Blended with Edible Cricket (Scapsipedus icipe) Meal for Food. Foods 2022, 11, 1047. [Google Scholar] [CrossRef]
- Murugu, D.K.; Onyango, A.; Ndiritu, A.K.; Osuga, I.M.; Xavier, C.; Nakimbugwe, D.; Tanga, C.M. From Farm to Fork: Crickets as Alternative Source of Protein, Minerals, and Vitamins. Front. Nutr. 2021, 8, 704002. [Google Scholar] [CrossRef]
- Vasilica, B.T.B.; Chis, M.S.; Alexa, E.; Pop, C.; Paucean, A.; Man, S.; Igual, M.; Haydie, K.M.; Dalma, K.E.; Stanila, S.; et al. The Impact of Insect Flour on Sourdough Fermentation-Fatty Acids, Amino-Acids, Minerals and Volatile Profile. Insects 2022, 13, 576. [Google Scholar] [CrossRef]
- Nissen, L.; Samaei, S.P.; Babini, E.; Gianotti, A. Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. Food Chem. 2020, 333, 127410. [Google Scholar] [CrossRef]
- Tinus, T.; Damour, M.; van Riel, V.; Sopade, P. Particle size-starch–protein digestibility relationships in cowpea (Vigna unguiculata). J. Food Eng. 2012, 113, 254–264. [Google Scholar] [CrossRef]
- Osimani, A.; Garofalo, C.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Pasquini, M.; Mozzon, M.; Raffaelli, N.; Ruschioni, S.; et al. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. Eur. Food Res. Technol. 2017, 243, 1157–1171. [Google Scholar] [CrossRef]
- FAO/WHO. Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation; Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO): Rome, Italy, 1991. [Google Scholar]
- AACC. Approved Methods of the American Association of Cereal Chemists, 10th ed.; AACC: St. Paul, MN, USA, 2000. [Google Scholar]
- Yasumatsu, K.; Sawada, K.; Moritaka, S.; Misaki, M.; Toda, J.; Wada, T.; Ishii, K. Whipping and Emulsifying Properties of Soybean Products. Agric. Biol. Chem. 1972, 36, 719–727. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists, 11th ed.; AACC International: St. Paul, MN, USA, 2009. [Google Scholar]
- ISO 27971:2015; Cereals and Cereal Products—Common Wheat (Triticum aestivum L.)—Determination of Alveograph Properties of Dough at Constant Hydration from Commercial or Test Flours and Test Milling Methodology. ISO: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/63535.html (accessed on 13 August 2022).
- Standard 115/1; Method for Using the Brabender Farinograph. International Association for Cereal Science and Technology: Vienna, Austria, 1992.
- Castro, M.; Chambers IV, E.; Carbonell-Barrachina, A.; Noguera-Artiaga, L.; Vidal-Quintanar, R.; Burgos-Hernandez, A. Consumer acceptability in the USA, Mexico, and Spain of chocolate chip cookies made with partial insect powder replacement. J. Food Sci. 2020, 85, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Kumbhar, B.; Chakraborty, S.; Yadav, P. process parameter optimization for textural properties of ready-to-eat extruded snack food from millet and legume pieces blends. J. Texture Stud. 2009, 48, 167–174. [Google Scholar] [CrossRef]
- King, S.; Meiselman, H. Development of a method to measure consumer emotions associated with foods. Food Qual. Prefer. 2010, 21, 168–177. [Google Scholar] [CrossRef]
- Dierenfeld, E.; King, J. Digestibility and mineral availability of phoenix worms, Hermetia illucens, ingested by mountain chicken frogs, Leptodactylus fallax. J. Herpetol. Med. Surg. 2008, 18, 100–105. [Google Scholar] [CrossRef]
- Yi, L.; Van Boekel, M.; Boeren, S.; Lakemond, C. Protein identification and in vitro digestion of fractions from Tenebrio molitor. Eur. Food Res. Technol. 2016, 242, 1285–1297. [Google Scholar] [CrossRef] [Green Version]
- Fontes, T.; de Oliveira, K.; Gomes Almeida, I.; Maria Orlando, T.; Rodrigues, P.; Costa, D.; Rosa, P. Digestibility of Insect Meals for Nile Tilapia Fingerlings. Animals 2019, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Miech, P.; Lindberg, J.; Berggren, Å.; Chhay, T.; Jansson, A. Apparent faecal digestibility and nitrogen retention in piglets fed whole and peeled Cambodian field cricket meal. J. Insects Food Feed. 2017, 3, 279–287. [Google Scholar] [CrossRef]
- Norhidayah, M.T. Cricket Meal as an Alternative to Fishmeal in Diets for African Catfish (Clarias gariepinus)/Norhidayah Mohd Taufek. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2016. [Google Scholar]
- Stone, A.; Tanaka, T.; Nickerson, M. Protein quality and physicochemical properties of commercial cricket and mealworm powders. J. Food Sci. Technol. 2019, 56, 3355–3363. [Google Scholar] [CrossRef] [PubMed]
- Adebowale, Y.; Adebowale, K.; Oguntokun, M. Evaluation of nutritive properties of the large african criket (Gryllidae Sp). Pakistan J. Sci. 2005, 48, 274–278. [Google Scholar]
- Marono, S.; Piccolo, G.; Loponte, R.; Meo, C.; Attia, Y.; Nizza, A.; Bovera, F. In Vitro Crude Protein Digestibility of Tenebrio Molitor and Hermetia Illucens Insect Meals and its Correlation with Chemical Composition Traits. Ital. J. Anim. Sci. 2015, 14, 3889. [Google Scholar] [CrossRef] [Green Version]
- Poelaert, C.; Francis, F.; Alabi, T.; Megido, R.; Crahay, B.; Bindelle, J.; Beckers, Y. Protein value of two insects, subjected to various heat treatments, using growing rats and the protein digestibility-corrected amino acid score. J. Insects Food Feed. 2018, 4, 77–87. [Google Scholar] [CrossRef]
- Chandra, S. Assessment of functional properties of different flours. Afr. J. Agric. Res. 2013, 8, 4849–4852. [Google Scholar]
- Tomić, J.; Torbica, A.; Popović, L.; Strelec, I.; Vaštag, ž.; Pojić, M.; Rakita, S. Albumins characterization in relation to rheological properties and enzymatic activity of wheat flour dough. J. Food Sci. Technol. 2013, 17, 805–816. [Google Scholar]
- Peters, J.; Vergeldt, F.; Boom, R.; van der Goot, A. Water-binding capacity of protein-rich particles and their pellets. Food Hydrocoll. 2017, 65, 144–156. [Google Scholar] [CrossRef]
- Amagliani, L.; Silva, J.; Saffon, M.; Dombrowski, J. On the foaming properties of plant proteins: Current status and futureopportunities. Trends Food Sci. Technol. 2021, 118, 261–272. [Google Scholar] [CrossRef]
- Lam, R.; Nickerson, M. Food proteins: A review on their emulsifying properties using a structure–function approach. Food Chem. 2013, 141, 975–984. [Google Scholar] [CrossRef]
- Marshall, W. Effect of degree of milling of brown rice and particle size of milled rice on starch gelatinization. Cereal Chem. 1992, 69, 632–636. [Google Scholar]
- Khuenpet, K.; Pakasap, C.; Vatthanakul, S.; Kitthawee, S. Effect of larval-stage mealworm (Tenebrio molitor) powder on qualities of bread. Int. J. Agric. Technol. 2020, 16, 283–296. [Google Scholar]
- Aleman, R.; Morris, A.; Prinyawiwatkul, W.; Moncada, M.; King, J. Physicochemical properties of Frontière rice flour and its application in a gluten-free cupcake. Cereal Chem. 2021, 99, 303–315. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N.; et al. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- 21CFR137.105, U.S. Code of Federal Reulations. Title 21, Volume 2: Food and Drugs. Part 137: Cereal Flours and Related Products. 1 April 2020. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=137.105 (accessed on 30 August 2022).
- De Casto, R.J.S.; Ohara, A.; dos Santos Aguilar, J.G.; Domingues, M.A.F. Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends Food Sci. Technol. 2018, 76, 82–89. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Magala, M. Effect of lentil and bean flours on rheological and baking properties of wheat dough. Chem. Pap. 2013, 67, 398–407. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Bonaccorsi, G.; Lorini, C.; Cini, E. Assessment of the rheological properties and bread characteristics obtained by innovative protein sources (Cicer arietinum, Acheta domesticus, Tenebrio molitor): Novel food or potential improvers for wheat flour? LWT 2020, 118, 108867. [Google Scholar] [CrossRef]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Nutritional, sensory, and texture quality of bread and cookie enriched with house cricket (Acheta domesticus) powder. J. Food Process Preserv. 2020, 44, e14601. [Google Scholar] [CrossRef]
- Haber, M.; Mishyna, M.; Martinez, J.; Benjamin, O. The influence of grasshopper (Schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties. LWT 2019, 115, 108395. [Google Scholar] [CrossRef]
- Djouadi, A.; Sales, J.R.; Carvalho, M.O.; Raymundo, A. Development of Healthy Protein-Rich Crackers Using Tenebrio molitor Flour. Foods 2022, 11, 702. [Google Scholar] [CrossRef]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as Ingredients for Bakery Goods. A Comparison Study of H. Illucens, A. Domestica and T. Molitor Flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Encina-Zelada, C.R.; Cadavez, V.; Monteiro, F.; Teixeira, J.A.; Gonzales-Barron, U. Combined Effect of Xanthan Gum and Water Content on Physicochemical and Textural Properties of Gluten-Free Batter and Bread. Food Res. Int. 2018, 111, 544–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanmandlu, M.; Jha, D.; Sharma, R. Color image enhancement by fuzzy intensification. Pattern Recognit Lett. 2003, 24, 81–87. [Google Scholar] [CrossRef]
- Ardoin, R.; Marx, B.; Boeneke, C.; Prinyawiwatkul, W. Effects of cricket powder on selected physical properties and US consumer perceptions of whole-wheat snack crackers. Int. J. Food Sci. Technol. 2021, 56, 4070–4080. [Google Scholar] [CrossRef]
- Gurdian, C.; Torrico, D.; Li, B.; Tuuri, G.; Prinyawiwatkul, W. Effect of Disclosed Information on Product Liking, Emotional Profile, and Purchase Intent: A Case of Chocolate Brownies Containing Edible-Cricket Protein. Foods 2021, 10, 1769. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jervis, S.; Drake, M. Examining Extrinsic Factors that Influence Product Acceptance: A Review. J. Food Sci. 2015, 80, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Schouteten, J.; Steur, H.; Pelsmaeker, S.; Lagast, S.; Bourdeaudhuij, I.; Gellynck, X. An integrated method for the emotional conceptualization and sensory characterization of food products: The EmoSensory ® Wheel. Int. Food Res. J. 2015, 78, 96–107. [Google Scholar] [CrossRef]
- Barbera, F.; Verneau, F.; Amato, M.; Grunert, K. Understanding Westerners’ disgust for the eating of insects: The role of food neophobia and implicit associations. Food Qual. Prefer. 2018, 64, 120–125. [Google Scholar] [CrossRef]
- Verneau, F.; Barbera, F.; Kolle, S.; Amato, M.; Giudice, T.; Grunert, K. The effect of communication and implicit associations on consuming insects: An experiment in Denmark and Italy. Appetite 2016, 106, 30–36. [Google Scholar] [CrossRef]
- Sipponen, M.; Mäkinen, O.; Rommi, K.; Heiniö, R.-L.; Holopainen-Mantila, U.; Hokkanen, S.; Hakala, T.K.; Nordlund, E. Biochemical and sensory characteristics of the cricket and mealworm fractions from supercritical carbon dioxide extraction and air classification. Eur. Food Res. Technol. 2017, 244, 19–29. [Google Scholar] [CrossRef]
- Cardello, A.; Meiselman, H.; Schutz, H.; Craig, C.; Given, Z.; Lesher, L.L.; Eicher, S. Measuring emotional responses to foods and food names using questionnaires. Food Qual. Prefer. 2012, 24, 243–250. [Google Scholar] [CrossRef]
- Mohamad, R.; Ahmad, R.; Nuh, F.; Kasa, J. Consumer purchasing intent of brown rice cookies developed by MARDI. Magnesium 2012, 336, 31–36. [Google Scholar]
- Lassen, A.; Lehmann, C.; Andersen, E.; Werther, M.N.; Thorsen, A.V.; Trolle, E.; Gross, G.; Tetens, I. Gender differences in purchase intentions and reasons for meal selection among fast food customers—Opportunities for healthier and more sustainable fast food. Food Qual. Prefer. 2016, 47, 123–129. [Google Scholar] [CrossRef]
- Kim, M.; Lopetcharat, K.; Gerard, P.; Drake, M. Consumer Awareness of Salt and Sodium Reduction and Sodium Labeling. J. Food Sci. 2012, 77, S307–S313. [Google Scholar] [CrossRef] [PubMed]
Sample | Moisture (%) | Ash (%) | Protein (%) | Fat (%) | Carbohydrates (%) | In Vitro Protein Digestibility (%) |
---|---|---|---|---|---|---|
CPN/A | 7.1 ± 2.74 | 3.9 ± 0.09 | 60.7 ± 5.28 | 13.4 ± 5.34 | 7.7 ± 1.35 | 87.7 ± 0.13 |
WFN/A | 10.0 ± 2.57 | 0.8 ± 0.07 | 5.2 ± 2.11 | 3.1 ± 0.23 | 80.7 ± 1.35 | Not measured |
CCC-CP 0% | 10.9 ± 0.54 c | 2.9 ± 0.03 a | 3.9 ± 0.45 d | 33.8 ± 1.34 a | 48.1 ± 1.33 a | Not measured |
CCC-CP 5% | 12.1 ± 0.91 bc | 2.8 ± 0.02 ab | 8.9 ± 0.27 c | 31.5 ± 1.05 b | 44.4 ± 1.89 b | Not measured |
CCC-CP 7.5% | 13.5 ± 0.82 b | 2.6 ± 0.03 bc | 11.9 ± 0.32 b | 30.2 ± 1.34 bc | 41.3 ± 1.33 c | Not measured |
CCC-CP 10% | 15.1 ± 1.30 a | 2.5 ± 0.02 c | 13.3 ± 0.29 a | 28.5 ± 1.07 c | 39.8 ± 1.89 c | Not measured |
Amino Acid | AC ** | CAS ** |
---|---|---|
Essential Amino acid His | 1.6 ± 0.12 | 1.3 ± 0.16 |
Ile | 1.2 ± 0.07 | 1.6 ± 0.11 |
Leu | 4.9 ± 0.05 | 1.2 ± 0.19 |
Lys | 3.9± 0.07 | 1.1 ± 0.14 |
Met * | 1.5 ± 0.11 | 1.4 ± 0.09 * |
Phe + | 2.6 ± 0.12 | 1.0 ± 0.20 + |
Thr + | 0.7 ± 0.07 | 1.2 ± 0.20 + |
Val | 3.5 ± 0.14 | 1.4 ± 0.21 |
Non-Essential AA Ala | 5.1 ± 0.13 | N/A |
Arg | 4.4 ± 0.10 | N/A |
Asp | 5.7 ± 0.15 | N/A |
Cys * | 0.7 ± 0.05 | 1.4 ± 0.09 * |
Glu | 7.5 ± 0.09 | N/A |
Gly | 3.4 ± 0.05 | N/A |
Pro | 4.1 ± 0.08 | N/A |
Ser | 4.5 ± 0.04 | N/A |
Tyr | 2.2 ± 0.06 | N/A |
Sample | WAC (%) | OAC (%) | FC (%) | FS (%) | PS (%) | EC (%) |
---|---|---|---|---|---|---|
Control (0%) | 137.5 ± 11.32 a | 143.7 ± 7.61 a | 15.9 ± 4.74 c | 1.9 ± 0.04 d | 20.3 ± 0.32 a | 47.3 ± 3.11 c |
CP (5%) | 144.3 ± 8.71 ab | 140.5 ± 6.83 a | 20.4 ± 5.34 b | 4.5 ± 0.07 c | 21.1 ± 0.54 a | 52.8 ± 5.34 bc |
CP (7.5%) | 148.6 ± 9.54 bc | 144.7 ± 5.13 a | 22.8 ± 3.73 b | 7.1 ± 0.13 b | 21.8 ± 0.74 a | 55.2 ± 8.59 ab |
CP (10%) | 155.9 ± 6.65 c | 137.5 ± 7.14 a | 24.7 ± 6.92 a | 10.7 ± 0.05 a | 23.5 ± 0.17 b | 60.5 ± 7.77 a |
CPN/A (100%) | 175.2 ± 5.87 | 140.4 ± 5.83 | 74.4 ± 9.36 | 80.5 ± 5.35 | 30.5 ± 0.94 | 77.7 ± 5.55 |
Sample | * WA (%) | * DDT (Min) | * DS (Min) | * DSS (UB) | * DT (mmH2O) × 10−4 | * DE (mm) | * SI (mm) | * DEN (J * 104) | * DT/DE (Ratio) |
---|---|---|---|---|---|---|---|---|---|
Control (0%) | 58.5 ± 0.44 b | 2.7 ± 0.76 b | 7.5 ± 0.71 c | 61.5 ± 7.48 a | 81.7 ± 2.46 d | 87.5 ± 6.47 a | 20.7 ± 1.27 a | 255.3 ± 5.28 b | 0.91 ± 0.14 b |
CP (5%) | 59.3 ± 0.58 b | 2.9 ± 0.42 b | 7.9 ± 1.02 b | 50.3 ± 5.01 b | 88.5 ± 2.90 c | 82.7 ± 2.46 a | 19.1 ± 1.07 a | 260.4 ± 4.69 ab | 1.0 ± 0.15 b |
CP (7.5%) | 61.6 ± 0.65 a | 3.0 ± 0.70 ab | 8.5 ± 0.53 b | 50.0 ± 7.23 b | 91.3 ± 3.71 b | 79.9 ± 1.57 ab | 18.6 ± 1.05 ab | 260.9 ± 7.54 ab | 1.1 ± 0.13 ab |
CP (10%) | 62.9 ± 0.54 a | 3.2 ± 0.37 a | 8.8 ± 0.34 a | 51.7 ± 2.96 b | 99.3 ± 6.35 a | 77.1 ± 5.73 b | 17.5 ± 1.14 b | 264.5 ± 5.31 a | 1.3 ± 0.16 a |
Attribute | CP Replacement Levels | |||
---|---|---|---|---|
Control (0%) | T2 (5%) | T3 (7.5%) | T4 (10%) | |
Physical–Chemical Properties | ||||
L* | 65.34 ± 1.2 a | 61.48 ± 1.4 b | 58.82 ± 1.5 c | 54.95 ± 1.7 d |
a* | 10.05 ± 0.6 a | 6.47 ± 0.5 b | 6.08 ± 0.2 b | 5.55 ± 0.4 c |
b* | 26.58 ± 0.5 a | 16.85 ± 1.4 b | 14.33 ± 1.1 b | 10.83 ± 2.3 c |
Chroma | 28.41 ± 0.5 a | 18.05 ± 0.9 b | 15.56 ± 0.7 c | 12.17 ± 1.3 d |
∆E | N/A | 11.05 ± 0.7 c | 14.43 ± 0.8 b | 19.39 ± 0.5 a |
Water activity (Aw) | 0.15 ± 0.02 a | 0.16 ± 0.01 a | 0.13 ± 0.02 a | 0.14 ± 0.01 a |
Hardness (g force) | 7721.07 ± 48.6 a | 5583.93 ± 32.9 b | 3591.75 ± 62.7 c | 1945 ± 20.1 d |
Sensory Characteristics | ||||
Color | 7.05 ± 1.5 a | 6.81 ± 1.4 ab | 6.41 ± 1.3 b | 5.95 ± 1.9 b |
Aroma | 6.94 ± 1.6 a | 6.47 ± 1.5 ab | 6.34 ± 2.0 b | 5.77 ± 1.7 c |
Flavor | 6.74 ± 1.5 a | 6.55 ± 1.7 b | 6.23 ± 1.2 c | 5.37 ± 2.1 d |
Texture | 6.49 ± 1.8 a | 6.47 ± 1.3 a | 6.21 ± 1.5 ab | 6.05 ± 1.1 b |
Overall liking | ||||
Before | 6.23 ± 1.5 a | 6.05 ± 1.8 a | 5.77 ± 1.5 b | 5.24 ± 2.0 c |
After | 6.75 ± 1.6 a | 6.59 ± 1.9 a+ | 5.98 ± 1.4 b | 5.12 ± 1.6 c |
Purchase intent ( % ) | ||||
Before | 62.75 | 58.50 | 52.75 | 46.50 |
After | 61.50 | 65.25 + | 55.00 | 43.50 |
Attribute | Can 1 | Can 2 | Can 3 | |
---|---|---|---|---|
A | ||||
Texture | 0.318 | 0.103 | 0.311 | |
Aroma | 0.254 | 0.255 | 0.207 | |
Flavor | 0.669 | 0.195 | 0.437 | |
Color | 0.081 | 0.122 | 0.019 | |
B | ||||
Adventurous | Before | −0.018 | 0.021 | 0.012 |
After | 0.127 | 0.012 | 0.125 | |
Good | Before | −0.010 | 0.037 | −0.002 |
After | −0.485 | 0.117 | 0.025 | |
Satisfied | Before | 0.098 | 0.085 | 0.055 |
After | 0.186 | 0.028 | 0.109 | |
Worried | Before | −0.054 | −0.058 | 0.038 |
After | −0.085 | 0.108 | 0.101 | |
Interested | Before | 0.003 | 0.048 | −0.134 |
After | −0.145 | 0.084 | 0.086 | |
Disgusted | Before | −0.078 | −0.134 | 0.094 |
After | −0.046 | 0.154 | 0.132 | |
Happy | Before | 0.104 | 0.115 | 0.067 |
After | 0.126 | 0.117 | −0.173 | |
Overall liking | Before | 0.614 | 0.069 | 0.157 |
After | 0.595 | 0.088 | 0.163 | |
Cumulative variance explained | 0.338 | 0.307 | 0.643 | |
MANOVA Wilks’ p-value | 0.029 |
Attributes | Before | After | ||
---|---|---|---|---|
Pr > X2 | Odds Ratio | Pr > X2 | Odds Ratio | |
Overall liking | <0.001 | 1.294 | <0.001 | 1.384 |
Consumption intent | <0.001 | 3.356 | <0.001 | 2.956 |
Gender | 0.036 | 1.576 | 0.027 | 1.745 |
Age | 0.067 | 1.374 | <0.001 | 0.574 |
Education | 0.035 | 0.573 | 0.038 | 0.273 |
Color | 0.463 | 1.743 | N/A | N/A |
Flavor | 0.038 | 1.384 | N/A | N/A |
Aroma | 0.086 | 0.694 | N/A | N/A |
Texture | 0.183 | 1.956 | N/A | N/A |
Happy | 0.047 | 1.856 | N/A | N/A |
Interested | 0.184 | 1.783 | 0.081 | 1.447 |
Good | 0.583 | 1.285 | 0.383 | 0.581 |
Adventurous | 0.194 | 0.573 | 0.184 | 0.294 |
Disgusted | 0.059 | 1.394 | 0.097 | 1.180 |
Satisfied | 0.098 | 0.293 | 0.294 | 1.845 |
Worried | 0.105 | 0.482 | 0.210 | 0.593 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleman, R.S.; Marcia, J.; Pournaki, S.K.; Borrás-Linares, I.; Lozano-Sanchez, J.; Fernandez, I.M. Formulation of Protein-Rich Chocolate Chip Cookies Using Cricket (Acheta domesticus) Powder. Foods 2022, 11, 3275. https://doi.org/10.3390/foods11203275
Aleman RS, Marcia J, Pournaki SK, Borrás-Linares I, Lozano-Sanchez J, Fernandez IM. Formulation of Protein-Rich Chocolate Chip Cookies Using Cricket (Acheta domesticus) Powder. Foods. 2022; 11(20):3275. https://doi.org/10.3390/foods11203275
Chicago/Turabian StyleAleman, Ricardo S., Jhunior Marcia, Shirin Kazemzadeh Pournaki, Isabel Borrás-Linares, Jesus Lozano-Sanchez, and Ismael Montero Fernandez. 2022. "Formulation of Protein-Rich Chocolate Chip Cookies Using Cricket (Acheta domesticus) Powder" Foods 11, no. 20: 3275. https://doi.org/10.3390/foods11203275
APA StyleAleman, R. S., Marcia, J., Pournaki, S. K., Borrás-Linares, I., Lozano-Sanchez, J., & Fernandez, I. M. (2022). Formulation of Protein-Rich Chocolate Chip Cookies Using Cricket (Acheta domesticus) Powder. Foods, 11(20), 3275. https://doi.org/10.3390/foods11203275