Prebiotic, Antipathogenic Bacteria and Hypocholesterolemia Properties of Fermented Rice Bran Extracts Derived from Black Rice and Germinated Brown Rice
Abstract
:1. Introduction
2. Results
2.1. Comparison of Biochemical Components between Nonfermented and Fermented Rice Bran by Derivative FT-IR Spectra
2.2. Lactic Acid Bacteria Growth Promoting of Fermented Rice Bran Extracts
2.3. Pathogenic Bacteria Growth Inhibition of Nonfermented and Fermented Rice Bran Extracts
2.4. Effect of the Fermented Rice Bran on Biofilm Formation
2.5. Toxicity of the Fermented Rice Bran Extracts In Vitro Study
2.6. Toxicity in Acute or Chronic Manner of the Fermented Rice Bran Extracts In Vivo Study
3. Discussion
4. Materials and Methods
4.1. Preparation of the Rice Bran Extracts
4.2. Chemical Composition Profile by Attenuated Total Reflection–Fourier Transform Infrared Spectroscopy (ATR-FTIR)
4.3. Prebiotic Property on L. delbrueckii Growth Using Broth Dilution Technique and the Potential of Hydrogen Ion (pH) Measurement
4.4. Antimicrobial Activity Assays
4.4.1. Agar Well Diffusion and Broth Microdilution Technique
4.4.2. Biofilm Formation by Scanning Electron Microscopy (SEM)
4.5. Safety and Toxicity Assays
4.5.1. Toxicity Test of Human Peripheral Blood Mononuclear Cells (PBMCs) in In Vitro Model
4.5.2. Study Population in In Vivo Model
4.5.3. Acute Toxicity Test
4.5.4. Chronic Toxicity Test
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhattacharjee, P.; Singhal, R.S.; Kulkarni, P.R. Basmati rice: A review. Int. J. Food Sci. Technol. 2002, 37, 1–12. [Google Scholar] [CrossRef]
- Roohinejad, S.; Mirhosseini, H.; Saari, N.; Shuhaimi, M.; Alias, I.; Meor Hussin, A.S.; Abdul Hamid, A.; Abd Manap, Y. Evaluation of GABA, Crude Protein and Amino Acid Composition from Different Varieties of Malaysian’s Brown Rice. Aust. J. Crop Sci. 2009, 3, 184–190. [Google Scholar]
- Atungulu, G.G.; Pan, Z. Rice industrial processing worldwide and impact on macro- and micronutrient content, stability, and retention. Ann. N. Y. Acad. Sci. 2014, 1324, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Goufo, P.; Trindade, H. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, gamma-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A.J.; Ollila, C.A.; Kumar, A.; Borresen, E.C.; Raina, K.; Agarwal, R.; Ryan, E.P. Chemopreventive properties of dietary rice bran: Current status and future prospects. Adv. Nutr. 2012, 3, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Pengkumsri, N.; Sivamaruthi, B.S.; Sirilun, S.; Suwannalert, P.; Rodboon, T.; Prasitpuriprecha, C.; Peerajan, S.; Butrungrod, W.; Chaiyasut, C. Dietary supplementation of Thai black rice bran extract and yeast beta-glucan protects the dextran sodium sulphate mediated colitis induced rat. RSC Adv. 2017, 7, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Phetpornpaisan, P.; Tippayawat, P.; Jay, M.; Sutthanut, K. A local Thai cultivar glutinous black rice bran: A source of functional compounds in immunomodulation, cell viability and collagen synthesis, and matrix metalloproteinase-2 and -9 inhibition. J. Funct. Foods 2014, 7, 650–661. [Google Scholar] [CrossRef]
- Kannappan, R.; Yadav, V.R.; Aggarwal, B.B. gamma-Tocotrienol but not gamma-tocopherol blocks STAT3 cell signaling pathway through induction of protein-tyrosine phosphatase SHP-1 and sensitizes tumor cells to chemotherapeutic agents. J. Biol. Chem. 2010, 285, 33520–33528. [Google Scholar] [CrossRef] [Green Version]
- Phutthaphadoong, S.; Yamada, Y.; Hirata, A.; Tomita, H.; Hara, A.; Limtrakul, P.; Iwasaki, T.; Kobayashi, H.; Mori, H. Chemopreventive effect of fermented brown rice and rice bran (FBRA) on the inflammation-related colorectal carcinogenesis in ApcMin/+ mice. Oncol. Rep. 2010, 23, 53–59. [Google Scholar]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Carlson, J.L.; Erickson, J.M.; Lloyd, B.B.; Slavin, J.L. Health Effects and Sources of Prebiotic Dietary Fiber. Curr. Dev. Nutr. 2018, 2, nzy005. [Google Scholar] [CrossRef] [Green Version]
- George Kerry, R.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.-S.; Das, G. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef]
- Khangwal, I.; Shukla, P. Prospecting prebiotics, innovative evaluation methods, and their health applications: A review. 3 Biotech 2019, 9, 187. [Google Scholar] [CrossRef]
- Nouvenne, A.; Ticinesi, A.; Tana, C.; Prati, B.; Catania, P.; Miraglia, C.; De’ Angelis, G.L.; Di Mario, F.; Meschi, T. Digestive disorders and Intestinal microbiota. Acta Biomed. 2018, 89, 47–51. [Google Scholar] [CrossRef]
- Nabavi, S.; Rafraf, M.; Somi, M.H.; Homayouni-Rad, A.; Asghari-Jafarabadi, M. Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. J. Dairy Sci. 2014, 97, 7386–7393. [Google Scholar] [CrossRef]
- Teng, G.; Liu, Z.; Liu, Y.; Wu, T.; Dai, Y.; Wang, H.; Wang, W. Probiotic Escherichia coli Nissle 1917 Expressing Elafin Protects Against Inflammation and Restores the Gut Microbiota. Front. Microbiol. 2022, 13, 819336. [Google Scholar] [CrossRef]
- Yang, X.; Twitchell, E.; Li, G.; Wen, K.; Weiss, M.; Kocher, J.; Lei, S.; Ramesh, A.; Ryan, E.P.; Yuan, L. High protective efficacy of rice bran against human rotavirus diarrhea via enhancing probiotic growth, gut barrier function, and innate immunity. Sci. Rep. 2015, 5, 15004. [Google Scholar] [CrossRef]
- Zubaidah, E.; Nurcholis, M.; Wulan, S.N.; Kusuma, A. Comparative Study on Synbiotic Effect of Fermented Rice Bran by Probiotic Lactic Acid Bacteria Lactobacillus casei and Newly Isolated Lactobacillus plantarum B2 in Wistar Rats. APCBEE Procedia 2012, 2, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Lei, M.; Samina, N.; Chen, L.; Liu, C.; Yin, T.; Yan, X.; Wu, C.; He, H.; Yi, C. Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran. Food Chem. 2020, 330, 127156. [Google Scholar] [CrossRef]
- Pino, A.; Nicosia, F.D.; Agolino, G.; Timpanaro, N.; Barbagallo, I.; Ronsisvalle, S.; Caggia, C.; Randazzo, C.L. Formulation of germinated brown rice fermented products functionalized by probiotics. Innov. Food Sci. Emerg. Technol. 2022, 80, 103076. [Google Scholar] [CrossRef]
- Shuvo, A.A.S.; Rahman, M.S.; Al-Mamum, M.; Islam, K.M.S. Cholesterol reduction and feed efficiency enhancement in broiler through the inclusion of nutritionally improved fermented rice bran. J. Appl. Poult. Res. 2022, 31, 100226. [Google Scholar] [CrossRef]
- Yi, C.; Xu, L.; Luo, C.; He, H.; Ai, X.; Zhu, H. In vitro digestion, fecal fermentation, and gut bacteria regulation of brown rice gel prepared from rice slurry backfilled with rice bran. Food Hydrocoll. 2022, 133, 107986. [Google Scholar] [CrossRef]
- Jeyaraj, E.J.; Nathan, S.; Lim, Y.Y.; Choo, W.S. Antibiofilm properties of Clitoria ternatea flower anthocyanin-rich fraction towards Pseudomonas aeruginosa. Access Microbiol. 2022, 4, 000343. [Google Scholar] [CrossRef]
- Li, Z.; Lee, J.; Cho, M.H. Antioxidant, antibacterial, tyrosinase inhibitory, and biofilm inhibitory activities of fermented rice bran broth with effective microorganisms. Biotechnol. Bioprocess Eng. 2010, 15, 139–144. [Google Scholar] [CrossRef]
- Hill, H.D.; Mirkin, C.A. The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat. Protoc. 2006, 1, 324–336. [Google Scholar] [CrossRef]
- Alauddin, M.; Shirakawa, H.; Koseki, T.; Kijima, N.; Ardiansyah; Budijanto, S.; Islam, J.; Goto, T.; Komai, M. Fermented rice bran supplementation mitigates metabolic syndrome in stroke-prone spontaneously hypertensive rats. BMC Complement. Altern. Med. 2016, 16, 442. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.H.; Lim, S.T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef]
- Lin, Y.T.; Pao, C.C.; Wu, S.T.; Chang, C.Y. Effect of different germination conditions on antioxidative properties and bioactive compounds of germinated brown rice. BioMed Res. Int. 2015, 2015, 608761. [Google Scholar] [CrossRef] [Green Version]
- Kittibunchakul, S.; Yuthaworawit, N.; Whanmek, K.; Suttisansanee, U.; Santivarangkna, C. Health beneficial properties of a novel plant-based probiotic drink produced by fermentation of brown rice milk with GABA-producing Lactobacillus pentosus isolated from Thai pickled weed. J. Funct. Foods 2021, 86, 104710. [Google Scholar] [CrossRef]
- Kazarian, S.G.; Chan, K.L. ATR-FTIR spectroscopic imaging: Recent advances and applications to biological systems. Analyst 2013, 138, 1940–1951. [Google Scholar] [CrossRef]
- Mirabella, F.M. Internal Reflection Spectroscopy. Appl. Spectrosc. Rev. 1985, 21, 45–178. [Google Scholar] [CrossRef]
- Russo, P.; Lopez, P.; Capozzi, V.; de Palencia, P.F.; Duenas, M.T.; Spano, G.; Fiocco, D. Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int. J. Mol. Sci. 2012, 13, 6026–6039. [Google Scholar] [CrossRef]
- Macek, B.; Mijakovic, I.; Olsen, J.V.; Gnad, F.; Kumar, C.; Jensen, P.R.; Mann, M. The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol. Cell. Proteom. 2007, 6, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Lerma, J.; Asensio-Grau, A.; Garcia-Hernandez, J.; Heredia, A.; Andres, A. Exploring the Impact of Solid-State Fermentation on Macronutrient Profile and Digestibility in Chia (Salvia hispanica) and Sesame (Sesamum Indicum) Seeds. Foods 2022, 11, 410. [Google Scholar] [CrossRef]
- Achinewhu, S.C. The effect of fermentation on carbohydrate and fatty acid composition of African oil bean seed (Pentaclethra macrophylla). Food Chem. 1986, 19, 105–116. [Google Scholar] [CrossRef]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [Green Version]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Mack, D.R.; Michail, S.; Wei, S.; McDougall, L.; Hollingsworth, M.A. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. 1999, 276, G941–G950. [Google Scholar] [CrossRef]
- Naidu, A.S.; Bidlack, W.R.; Clemens, R.A. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 1999, 39, 13–126. [Google Scholar] [CrossRef]
- Wallace, T.D.; Bradley, S.; Buckley, N.D.; Green-Johnson, J.M. Interactions of lactic acid bacteria with human intestinal epithelial cells: Effects on cytokine production. J. Food Prot. 2003, 66, 466–472. [Google Scholar] [CrossRef]
- Kondo, S.; Teongtip, R.; Srichana, D.; Itharat, A. Antimicrobial activity of rice bran extracts for diarrheal disease. J. Med. Assoc. Thail. = Chotmaihet Thangphaet 2011, 94 (Suppl. S7), S117–S121. [Google Scholar]
- Hugo, A.A.; De Antoni, G.L.; Pérez, P.F. Lactobacillus delbrueckii subsp lactis (strain CIDCA 133) resists the antimicrobial activity triggered by molecules derived from enterocyte-like Caco-2 cells. Lett. Appl. Microbiol. 2010, 50, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Toba, T.; Yoshioka, E.; Itoh, T. Lacticin, a bacteriocin produced by Lactobacillus delbrueckii subsp. lactis. Lett. Appl. Microbiol. 1991, 12, 43–45. [Google Scholar] [CrossRef]
- Morgan, S.M.; O’Connor, P.M.; Cotter, P.D.; Ross, R.P.; Hill, C. Sequential actions of the two component peptides of the lantibiotic lacticin 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob. Agents Chemother. 2005, 49, 2606–2611. [Google Scholar] [CrossRef] [Green Version]
- Dischinger, J.; Basi Chipalu, S.; Bierbaum, G. Lantibiotics: Promising candidates for future applications in health care. Int. J. Med. Microbiol. 2014, 304, 51–62. [Google Scholar] [CrossRef]
- Chandki, R.; Banthia, P.; Banthia, R. Biofilms: A microbial home. J. Indian Soc. Periodontol. 2011, 15, 111–114. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Brito, M.; Plaza-Diaz, J.; Munoz-Quezada, S.; Gomez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Bersch, K.L.; DeMeester, K.E.; Zagani, R.; Chen, S.; Wodzanowski, K.A.; Liu, S.; Mashayekh, S.; Reinecker, H.-C.; Grimes, C.L. Bacterial Peptidoglycan Fragments Differentially Regulate Innate Immune Signaling. ACS Cent. Sci. 2021, 7, 688–696. [Google Scholar] [CrossRef]
- Bloemen, J.G.; Venema, K.; van de Poll, M.C.; Olde Damink, S.W.; Buurman, W.A.; Dejong, C.H. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin. Nutr. 2009, 28, 657–661. [Google Scholar] [CrossRef]
- Vaskonen, T.; Mervaala, E.; Krogerus, L.; Karppanen, H. Supplementation of plant sterols and minerals benefits obese Zucker rats fed an atherogenic diet. J. Nutr. 2002, 132, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zawistowski, J.; Kopeć, A.; Kitts, D. Effects of a black rice extract (Oryza sativa L. indica) on cholesterol levels and plasma lipid parameters in Wistar Kyoto rats. J. Funct. Foods 2009, 1, 50–56. [Google Scholar]
- Pereira, D.I.; Gibson, G.R. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Environ. Microbiol. 2002, 68, 4689–4693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imam, M.U.; Ishaka, A.; Ooi, D.-J.; Zamri, N.D.M.; Sarega, N.; Ismail, M.; Esa, N.M. Germinated brown rice regulates hepatic cholesterol metabolism and cardiovascular disease risk in hypercholesterolaemic rats. J. Funct. Foods 2014, 8, 193–203. [Google Scholar] [CrossRef]
- Cicero, A.F.; Gaddi, A. Rice bran oil and gamma-oryzanol in the treatment of hyperlipoproteinaemias and other conditions. Phytother. Res. 2001, 15, 277–289. [Google Scholar] [CrossRef]
- Ho, J.N.; Son, M.E.; Lim, W.C.; Lim, S.T.; Cho, H.Y. Anti-obesity effects of germinated brown rice extract through down-regulation of lipogenic genes in high fat diet-induced obese mice. Biosci. Biotechnol. Biochem. 2012, 76, 1068–1074. [Google Scholar] [CrossRef] [Green Version]
- Iimure, T.; Kihara, M.; Hirota, N.; Zhou, T.; Hayashi, K.; Ito, K. A method for production of γ-amino butyric acid (GABA) using barley bran supplemented with glutamate. Food Res. Int. 2009, 42, 319–323. [Google Scholar] [CrossRef]
- Lee, S.M.; Lim, H.J.; Chang, J.W.; Hurh, B.-S.; Kim, Y.-S. Investigation on the formations of volatile compounds, fatty acids, and γ-lactones in white and brown rice during fermentation. Food Chem. 2018, 269, 347–354. [Google Scholar] [CrossRef]
- Liao, W.-C.; Wang, C.-Y.; Shyu, Y.-T.; Yu, R.-C.; Ho, K.-C. Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J. Funct. Foods 2013, 5, 1108–1115. [Google Scholar] [CrossRef]
- Oh, S.-J.; Kim, H.S.; Lim, S.-T.; Reddy, C.K. Enhanced accumulation of gamma-aminobutyric acid in rice bran using anaerobic incubation with various additives. Food Chem. 2019, 271, 187–192. [Google Scholar] [CrossRef]
- Park, E.-J.; Garcia, C.V.; Youn, S.-J.; Park, C.-D.; Lee, S.-P. Fortification of γ-aminobutyric acid and bioactive compounds in Cucurbita moschata by novel two-step fermentation using Bacillus subtilis and Lactobacillus plantarum. LWT 2019, 102, 22–29. [Google Scholar] [CrossRef]
- Wandee, R.; Sutthanut, K.; Songsri, J.; Sonsena, S.; Krongyut, O.; Tippayawat, P.; Tukummee, W.; Rittirod, T. Tamarind Seed Coat: A Catechin-Rich Source with Anti-Oxidation, Anti-Melanogenesis, Anti-Adipogenesis and Anti-Microbial Activities. Molecules 2022, 27, 5319. [Google Scholar] [CrossRef]
- OECD. Test No. 420: Acute Oral Toxicity—Fixed Dose Procedure; OECD: Paris, France, 2002. [Google Scholar] [CrossRef]
- OECD. Test No. 452: Chronic Toxicity Studies; OECD: Paris, France, 2018. [Google Scholar] [CrossRef]
(A) Parameters | Male (n = 5 in each group) | |||||||
Vehicle | Untreated | Doses of H7F (mg/kg) | Doses of G13F (mg/kg) | |||||
500 | 1000 | 2000 | 500 | 1000 | 2000 | |||
RBC (106/µL) | 9.04 ± 0.49 | 8.75 ± 0.84 | 8.05 ± 2.04 | 8.80 ± 0.06 | 8.16 ± 1.42 | 9.16 ± 1.29 | 9.07 ± 0.61 | 9.04 ± 0.60 |
HGB (g/dL) | 15.90 ± 0.32 | 14.96 ± 1.22 | 14.16 ± 3.57 | 15.55 ± 0.66 | 14.73 ± 2.55 | 15.88 ± 1.71 | 15.60 ± 0.58 | 15.60 ± 0.42 |
HCT (%) | 48.26 ± 1.62 | 44.76 ± 3.78 | 41.04 ± 10.63 | 45.10 ± 2.16 | 42.18 ± 7.61 | 44.48 ± 4.38 | 43.96 ± 1.59 | 44.38 ± 1.62 |
WBC (103/µL) | 3.16 ± 1.63 | 2.43 ± 1.80 | 3.71 ± 1.78 | 4.63 ± 1.59 | 4.15 ± 1.39 | 5.03 ± 1.69 | 6.08 ± 1.08 a,b | 6.13 ± 1.01 a,b |
PLT (103/µL) | 502.8 ± 327.2 | 482.0 ± 156.1 | 587.6 ± 193.2 | 565.0 ± 235.4 | 558.8 ± 378.4 | 838.6 ± 120.2 b | 719.0 ± 99.4 b | 826.8 ± 124.2 b |
MPV (fL) | 8.0 ± 0.30 | 7.6 ± 0.10 | 7.7 ± 0.36 | 7.7 ± 0.14 | 7.6 ± 0.31 | 7.6 ± 0.20 | 7.4 ± 0.13 | 7.5 ± 0.11 |
NE (%) | 15.62 ± 3.64 | 22.82 ± 18.06 | 17.70 ± 8.87 | 15.48 ± 4.67 | 12.23 ± 3.35 | 15.42 ± 4.41 | 12.14 ± 3.08 | 12.18 ± 2.25 |
LY (%) | 76.42 ± 5.46 | 70.80 ± 15.27 | 77.52 ± 7.35 | 77.48 ± 3.49 | 83.50 ± 2.65 | 77.72 ± 4.07 | 83.50 ± 3.36 | 82.80 ± 4.03 |
MO (%) | 4.88 ± 3.66 | 4.16 ± 2.42 | 2.84 ± 1.80 | 3.63 ± 1.56 | 3.28 ± 1.67 | 5.14 ± 0.42 | 2.90 ± 0.88 | 3.68 ± 1.99 |
EO (%) | 3.04 ± 3.33 | 2.12 ± 1.90 | 1.86 ± 1.23 | 3.23 ± 1.9 | 0.93 ± 0.25 | 1.66 ± 0.50 | 1.44 ± 0.30 | 1.28 ± 0.33 |
BA (%) | 0.00 ± 0.00 | 0.10 ± 0.14 | 0.08 ± 0.11 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.06 ± 0.13 | 0.02 ± 0.05 | 0.06 ± 0.09 |
MCV (fL) | 53.44 ± 1.17 | 51.16 ± 0.65 | 50.92 ± 0.87 | 51.50 ± 2.23 | 51.73 ± 2.73 | 48.76 ± 1.94 | 48.54 ± 1.12 | 49.22 ± 2.40 |
MCH (pg) | 17.62 ± 0.63 | 17.10 ± 0.28 | 17.58 ± 0.28 | 17.75 ± 0.65 | 18.05 ± 0.31 | 17.40 ± 0.55 | 17.22 ± 0.55 | 17.30 ± 0.81 |
MCHC (g/dL) | 32.98 ± 0.46 | 33.42 ± 0.24 | 34.54 ± 0.58 | 34.48 ± 0.49 | 34.95 ± 1.49 | 35.68 ± 0.40 | 35.50 ± 0.37 | 35.18 ± 0.56 |
RDW (%) | 21.88 ± 0.84 | 21.76 ± 1.22 | 20.20 ± 3.43 | 20.88 ± 0.41 | 20.70 ± 2.98 | 22.42 ± 2.24 | 21.92 ± 1.20 | 22.32 ± 1.18 |
(B) Parameters | Female (n = 5 in each group) | |||||||
Vehicle | Untreated | Doses of H7F (mg/kg) | Doses of G13F (mg/kg) | |||||
500 | 1000 | 2000 | 500 | 1000 | 2000 | |||
RBC (106/µL) | 8.06 ± 1.78 | 7.57 ± 1.10 | 8.37 ± 0.34 | 8.19 ± 0.30 | 7.94 ± 1.06 | 8.04 ± 0.33 | 7.72 ± 0.76 | 8.33 ± 0.35 |
HGB (g/dL) | 15.30 ± 2.69 | 13.92 ± 1.96 | 15.44 ± 0.71 | 15.28 ± 0.50 | 14.62 ± 2.02 | 15.00 ± 0.86 | 14.10 ± 1.57 | 15.56 ± 0.72 |
HCT (%) | 43.62 ± 8.36 | 41.14 ± 5.50 | 44.06 ± 2.35 | 43.86 ± 1.59 | 42.56 ± 5.50 | 43.26 ± 2.32 | 41.00 ± 40.00 | 44.66 ± 1.85 |
WBC (103/µL) | 1.85 ± 0.67 | 1.97 ± 1.77 | 2.83 ± 1.71 | 2.90 ± 0.89 | 3.27 ± 0.98 a | 3.46 ± 1.02 a | 2.26 ± 0.68 | 2.96 ± 1.17 |
PLT (103/µL) | 514.6 ± 283.2 | 484.4 ± 402.4 | 560.0 ± 49.7 | 575.4 ± 235.4 | 568.8 ± 238.2 | 682.2 ± 133.4 | 722.0 ± 91.5 | 703.8 ± 110.8 |
MPV (fL) | 7.8 ± 0.54 | 7.4 ± 0.28 | 7.3 ± 0.3 | 7.4 ± 0.23 | 7.4 ± 0.48 | 7.4 ± 0.15 | 7.5 ± 0.23 | 7.4 ± 0.13 |
NE (%) | 14.87 ± 7.74 | 12.62 ± 7.00 | 8.52 ± 2.25 | 7.45 ± 2.95 | 12.42 ± 2.79 | 14.80 ± 9.93 | 20.23 ± 5.24 | 11.78 ± 3.41 |
LY (%) | 76.53 ± 6.74 | 80.52 ± 11.81 | 85.20 ± 7.12 | 82.12 ± 3.74 | 76.90 ± 8.88 | 81.48 ± 9.62 | 75.50 ± 3.47 | 82.86 ± 5.38 |
MO (%) | 3.73 ± 0.84 | 2.00 ± 1.59 | 2.90 ± 1.72 | 4.68 ± 1.53 | 5.26 ± 3.79 | 2.52 ± 1.56 | 2.23 ± 1.72 | 4.12 ± 2.20 |
EO (%) | 4.86 ± 4.80 | 4.76 ± 4.52 | 3.34 ± 4.02 | 4.40 ± 6.53 | 5.30 ± 3.34 | 1.16 ± 0.49 | 2.03 ± 0.32 | 1.30 ± 0.60 |
BA (%) | 0.82 ± 1.65 | 0.10 ± 0.14 | 0.04 ± 0.09 | 0.54 ± 1.00 | 0.12 ± 0.16 | 0.04 ± 0.09 | 0.00 ± 0.00 | 0.12 ± 0.16 |
MCV (fL) | 54.38 ± 1.61 | 54.50 ± 1.90 | 52.64 ± 1.64 | 53.58 ± 1.60 | 53.64 ± 0.17 | 53.82 ± 0.99 | 53.17 ± 0.96 | 53.68 ± 2.16 |
MCH (pg) | 19.36 ± 4.04 | 18.40 ± 0.38 | 18.46 ± 0.43 | 18.66 ± 0.35 | 18.42 ± 0.71 | 18.64 ± 0.45 | 18.23 ± 0.35 | 18.70 ± 0.59 |
MCHC (g/dL) | 35.52 ± 6.82 | 33.82 ± 0.96 | 35.08 ± 0.40 | 34.86 ± 0.54 | 34.34 ± 0.49 | 34.70 ± 0.25 | 34.37 ± 0.55 | 34.82 ± 0.47 |
RDW (%) | 18.48 ± 2.75 | 17.38 ± 2.12 | 18.52 ± 1.10 | 18.78 ± 0.55 | 18.28 ± 1.57 | 18.04 ± 1.27 | 18.37 ± 0.84 | 19.00 ± 0.55 |
(A) Parameters | Male(n = 5 in each group) | |||||||
Vehicle | Untreated | Doses of H7F (mg/kg) | Doses of G13F (mg/kg) | |||||
500 | 1000 | 2000 | 500 | 1000 | 2000 | |||
BUN (mg/dL) | 20.34 ± 0.78 | 26.32 ± 2.84 | 23.36 ± 1.62 | 17.50 ± 1.10 | 20.23 ± 2.63 | 26.3 ± 0.55 | 24.58 ± 0.40 | 25.48 ± 0.95 |
Cr (mg/dL) | 0.32 ± 0.03 | 0.31 ± 0.06 | 0.30 ± 0.02 | 0.29 ± 0.05 | 0.27 ± 0.04 | 0.28 ± 0.29 | 0.31 ± 0.02 | 0.27 ± 0.03 |
Na (mmol/L) | 145.6 ± 2.97 | 145.0 ± 1.00 | 142.0 ± 2.12 | 144.8 ± 1.71 | 144.5 ± 1.92 | 141.2 ± 1.92 | 142.2 ± 0.84 | 141.8 ± 2.28 |
K (mmol/L) | 5.89 ± 0.26 | 5.60 ± 0.12 | 5.72 ± 0.58 | 5.69 ± 0.27 | 5.52 ± 0.70 | 6.06 ± 0.85 | 5.58 ± 0.33 | 6.35 ± 1.03 |
Cl (mmol/L) | 97.3 ± 3.30 | 97.3 ± 2.32 | 96.0 ± 1.66 | 98.8 ± 1.50 | 99.5 ± 0.93 | 97.8 ± 1.35 | 97.7 ± 1.04 | 97.2 ± 1.88 |
HCO3- (mmol/L) | 24.8 ± 3.35 | 27.8 ± 1.30 | 26.4 ± 2.19 | 27.5 ± 0.58 | 26.0 ± 0.82 | 27.8 ± 1.64 | 28.8 ± 1.30 | 26.4 ± 0.55 |
Cholesterol (mg/dL) | 113.8 ± 25.28 | 90.8 ± 7.79 | 74.8 ± 8.87 a,b | 81.5 ± 11.27 | 76.2 ± 6.34 a,b | 90.8 ± 9.01 | 78.6 ± 5.32 a,b | 81.6 ± 14.77 |
Triglyceride (mg/dL) | 235.0 ± 82.85 | 181.8 ± 31.15 | 150.2 ± 34.27 | 175.7 ± 40.96 | 185.8 ± 55.87 | 182.4 ± 32.55 | 174.2 ± 42.10 | 167.2 ± 38.47 |
Total protein (g/dL) | 6.66 ± 0.43 | 6.42 ± 0.18 | 6.32 ± 0.30 | 6.25 ± 0.17 | 6.38 ± 0.34 | 6.22 ± 0.34 | 6.16 ± 0.17 | 6.38 ± 0.32 |
Albumin (g/dL) | 4.16 ± 0.40 | 4.32 ± 0.13 | 4.04 ± 0.25 | 4.23 ± 0.22 | 4.23 ± 0.29 | 4.02 ± 0.26 | 4.10 ± 0.12 | 4.22 ± 0.23 |
Total bilirubin (mg/dL) | 0.08 ± 0.02 | 0.07 ± 0.01 | 0.08 ± 0.02 | 0.10 ± 0.03 | 0.10 ± 0.02 | 0.09 ± 0.29 | 0.08 ± 0.02 | 0.07 ± 0.02 |
ALT (U/L) | 76.6 ± 55.32 | 99.6 ± 21.78 | 66.4 ± 25.23 | 44.2 ± 16.64 | 47.2 ± 5.74 | 73.8 ± 19.31 | 86.4 ± 48.52 | 55.2 ± 12.09 |
AST (U/L) | 121.6 ± 39.87 | 162.0 ± 31.68 | 109.6 ± 15.63 | 147.2 ± 30.87 | 143.0 ± 23.02 | 136.2 ± 39.15 | 135.6 ± 20.31 | 87.4 ± 26.54 |
ALP (U/L) | 97.8 ± 16.68 | 79.0 ± 19.33 | 79.2 ± 16.45 | 62.0 ± 8.76 | 94.0 ± 28.04 | 98.2 ± 26.78 | 74.4 ± 5.77 | 69.8 ± 6.50 |
(B) Parameters | Female (n = 5 in each group) | |||||||
Vehicle | Untreated | Doses of H7F (mg/kg) | Doses of G13F (mg/kg) | |||||
500 | 1000 | 2000 | 500 | 1000 | 2000 | |||
BUN (mg/dL) | 20.48 ± 1.86 | 19.26 ± 1.86 | 12.38 ± 1.73 | 21.12 ± 3.78 | 15.04 ± 3.25 | 26.94 ± 1.66 | 26.77 ± 5.33 | 24.64 ± 2.29 |
Cr (mg/dL) | 0.32 ± 0.01 | 0.33 ± 0.07 | 0.33 ± 0.05 | 0.35 ± 0.05 | 0.31 ± 0.05 | 0.33 ± 0.03 | 0.25 ± 0.02 | 0.34 ± 0.05 |
Na (mmol/L) | 141.4 ± 1.14 | 145.4 ± 1.34 | 143.2 ± 1.30 | 141.6 ± 1.50 | 141.8 ± 2.59 | 141.2 ± 1.30 | 141.0 ± 0.70 | 144.0 ± 1.00 |
K (mmol/L) | 4.93 ± 0.36 | 5.07 ± 0.33 | 4.84 ± 0.23 | 5.22 ± 0.16 | 5.79 ± 0.94 | 5.87 ± 0.22 | 5.66 ± 0.59 | 5.46 ± 0.17 |
Cl (mmol/L) | 98.3 ± 0.66 | 100.9 ± 1.22 | 102.8 ± 0.89 | 98.9 ± 1.64 | 101.7 ± 1.90 | 98.7 ± 1.14 | 100.0 ± 1.83 | 100.8 ± 1.51 |
HCO3- (mmol/L) | 28.2 ± 0.84 | 26.2 ± 1.30 | 26.2 ± 1.30 | 26.6 ± 0.89 | 24.8 ± 3.42 | 27.4 ± 1.82 | 27.0 ± 1.40 | 27.0 ± 1.23 |
Cholesterol (mg/dL) | 80.6 ± 13.85 | 79.8 ± 18.42 | 80.2 ± 18.31 | 84.4 ± 15.24 | 89.2 ± 19.72 | 82.6 ± 8.79 | 99.3 ± 33.56 | 89.4 ± 21.13 |
Triglyceride (mg/dL) | 187.2 ± 49.78 | 166.4 ± 26.12 | 125.8 ± 40.68 | 152.4 ± 45.10 | 128.4 ± 49.92 | 139.2 ± 35.27 | 124.3 ± 57.29 | 153.8 ± 50.49 |
Total protein (g/dL) | 6.40 ± 0.17 | 6.62 ± 0.61 | 6.08 ± 0.15 | 6.40 ± 0.43 | 6.24 ± 0.40 | 6.28 ± 0.32 | 6.57 ± 0.35 | 6.36 ± 0.21 |
Albumin (g/dL) | 4.48 ± 0.11 | 4.58 ± 0.35 | 4.38 ± 0.13 | 4.44 ± 0.33 | 4.34 ± 0.23 | 4.58 ± 0.26 | 4.83 ± 0.15 | 4.60 ± 0.14 |
Total bilirubin (mg/dL) | 0.07 ± 0.02 | 0.07 ± 0.02 | 0.09 ± 0.02 | 0.08 ± 0.03 | 0.09 ± 0.02 | 0.06 ± 0.01 | 0.07 ± 0.04 | 0.04 ± 0.01 |
ALT (U/L) | 41.0 ± 7.45 | 42.2 ± 21.98 | 34.6 ± 18.19 | 40.4 ± 7.37 | 30.6 ± 6.19 | 43.2 ± 0.09 | 45.0 ± 2.20 | 44.6 ± 3.58 |
AST (U/L) | 113.0 ± 19.53 | 126.0 ± 47.21 | 57.0 ± 21.24 | 86.2 ± 13.95 | 71.8 ± 21.23 | 114.2 ± 28.72 | 98.0 ± 29.10 | 115.0 ± 42.86 |
ALP (U/L) | 34.6 ± 7.16 | 33.4 ± 8.96 | 22.0 ± 1.52 | 32.2 ± 4.49 | 30.0 ± 13.29 | 58.4 ± 17.14 | 47.0 ± 10.58 | 59.8 ± 29.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutthanut, K.; Tippayawat, P.; Srijampa, S.; Phoksawat, W.; Vachirodom, P.; Wandee, R. Prebiotic, Antipathogenic Bacteria and Hypocholesterolemia Properties of Fermented Rice Bran Extracts Derived from Black Rice and Germinated Brown Rice. Foods 2022, 11, 3704. https://doi.org/10.3390/foods11223704
Sutthanut K, Tippayawat P, Srijampa S, Phoksawat W, Vachirodom P, Wandee R. Prebiotic, Antipathogenic Bacteria and Hypocholesterolemia Properties of Fermented Rice Bran Extracts Derived from Black Rice and Germinated Brown Rice. Foods. 2022; 11(22):3704. https://doi.org/10.3390/foods11223704
Chicago/Turabian StyleSutthanut, Khaetthareeya, Patcharaporn Tippayawat, Sukanya Srijampa, Wisitsak Phoksawat, Pornchanan Vachirodom, and Roongrawee Wandee. 2022. "Prebiotic, Antipathogenic Bacteria and Hypocholesterolemia Properties of Fermented Rice Bran Extracts Derived from Black Rice and Germinated Brown Rice" Foods 11, no. 22: 3704. https://doi.org/10.3390/foods11223704
APA StyleSutthanut, K., Tippayawat, P., Srijampa, S., Phoksawat, W., Vachirodom, P., & Wandee, R. (2022). Prebiotic, Antipathogenic Bacteria and Hypocholesterolemia Properties of Fermented Rice Bran Extracts Derived from Black Rice and Germinated Brown Rice. Foods, 11(22), 3704. https://doi.org/10.3390/foods11223704