The Lipid-Soluble Bioactive Substances of Fagopyrum esculentum Varieties under Different Tillage and Nitrogen Fertilisation
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents and Standards
2.2. Plant Material and Experimental Design
2.3. Sterols, Tocopherols, Squalene, and Cholesterol Contents
2.4. Statistical Analysis
3. Results
3.1. Buckwheat Grain Yield
3.2. The Effect of Varieties, Plow Tillage, and Nitrogen on Phytosterol Content
3.3. The Effect of Varieties, Plow Tillage, and Nitrogen on Tocopherol Content
3.4. The Effect of Varieties, Plow Tillage, and Nitrogen on Squalene and Cholesterol Content
4. Discussion
4.1. Buckwheat Grain Yield
4.2. The Effect of Varieties, Plow Tillage, and Nitrogen on Phytosterol Content
4.3. The Effect of Varieties, Plow Tillage, and Nitrogen on Tocopherol Content
4.4. The Effect of Varieties, Plow Tillage, and Nitrogen on Squalene and Cholesterol Content
4.5. Principal Component Analysis (Plow Tillage, Fertiliser, Varieties)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diowksz, A.; Sadowska, A. Impact of sourdough and transglutaminase on gluten-free buckwheat bread quality. Food Biosci. 2021, 43, 101309. [Google Scholar] [CrossRef]
- Dziedzic, K.; Górecka, D.; Marques, A.; Rudzińska, M.; Podolska, G. Content of phytosterols in raw and roasted buckwheat groats and by-products. Czech J. Food Sci. 2016, 33, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Kreft, M. Buckwheat phenolic metabolites in health and disease. Nutr. Res. Rev. 2016, 29, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krkošková, B.; Mrázová, Z. Prophylactic components of buckwheat. Food Res. Int. 2005, 38, 561–568. [Google Scholar] [CrossRef]
- Kreft, I.; Zhou, M.; Golob, A.; Germ, M.; Likar, M.; Dziedzic, K.; Luthar, Z. Breeding buckwheat for nutritional quality. Breed. Sci. 2020, 70, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacolla, G.; Rinaldi, M.; Savino, M.; Russo, M.; Caranfa, D.; Cucci, G. Effects of organic fertilization from wet olive pomace on emmer wheat (Triticum dicoccum Shrank) grain yield and composition. J. Cereal Sci. 2021, 102, 103369. [Google Scholar] [CrossRef]
- Doolette, C.L.; Read, T.L.; Howell, N.R.; Cresswell, T.; Lombi, E. Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: A 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers. Sci. Total Environ. 2020, 749, 142369. [Google Scholar] [CrossRef]
- Le Cadre, E.; de Oliveira, A.B.; Arkoun, M.; Yvin, J.C.; Hinsinger, P. Nitrogen fertilization of intercropped cereal-legume: A potassium, sulfur, magnesium and calcium plant acquisition dataset. Data Brief 2022, 40, 107816. [Google Scholar] [CrossRef] [PubMed]
- Qaswar, M.; Li, D.; Huang, J.; Han, T.; Ahmed, W.; Ali, S.; Khan, M.N.; Khan, Z.H.; Xu, Y.; Li, Q.; et al. Dynamics of organic carbon and nitrogen in deep soil profile and crop yields under long-term fertilization in wheat-maize cropping system. J. Integr. Agric. 2022, 21, 826–839. [Google Scholar] [CrossRef]
- Shi, M.; Wang, X.; Wang, H.; Guo, Z.; Wang, R.; Hui, X.; Wang, S.; Kopittke, P.M.; Wang, Z. High phosphorus fertilization changes the speciation and distribution of manganese in wheat grains grown in a calcareous soil. Sci. Total Environ. 2021, 787, 147608. [Google Scholar] [CrossRef] [PubMed]
- Anna, M.G.; Ewa, A.C.; Jadwiga, S.-T.; Anthony, R.D.; Karolina, M.F.; Jarosław, G. Effects of long-term tillage practices on the quality of soil under winter wheat. Plant Soil Environ. 2017, 63, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organisation of the United Nations. Food and Agriculture Data, FAOSTAT. 2022. Available online: https://www.fao.org/statistics/en/ (accessed on 28 September 2022).
- Kolarić, L.; Popović, V.; Živanović, L.; Ljubičić, N.; Stevanović, P.; Šarčević Todosijević, L.; Simić, D.; Ikanović, J. Buckwheat Yield Traits Response as Influenced by Row Spacing, Nitrogen, Phosphorus, and Potassium Management. Agronomy 2021, 11, 2371. [Google Scholar] [CrossRef]
- Schulte auf’m Erley, G.; Kaul, H.-P.; Kruse, M.; Aufhammer, W. Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. Eur. J. Agron. 2005, 22, 95–100. [Google Scholar] [CrossRef]
- Winkler-Moser, J.K.; Breyer, L. Composition and oxidative stability of crude oil extracts of corn germ and distillers grains. Ind. Crops Prod. 2011, 33, 572–578. [Google Scholar] [CrossRef]
- AOCS Official Methods of Analysis Ch 6-91; American Oil Chemists Society, AOCS Press: Champaigne, IL, USA, 1997.
- Makran, M.; Faubel, N.; López-García, G.; Cilla, A.; Barberá, R.; Alegría, A.; Garcia-Llatas, G. Sterol bioaccessibility in a plant sterol-enriched beverage using the INFOGEST digestion method: Influence of gastric lipase, bile salts and cholesterol esterase. Food Chem. 2022, 382, 132305. [Google Scholar] [CrossRef]
- Racette, S.B.; Deusinger, S.S.; Inman, C.L.; Burlis, T.L.; Highstein, G.R.; Buskirk, T.D.; Steger-May, K.; Peterson, L.R. Worksite Opportunities for Wellness (WOW): Effects on cardiovascular disease risk factors after 1 year. Prev. Med. 2009, 49, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziedzic, K.; Szwengiel, A.; Górecka, D.; Rudzińska, M.; Korczak, J.; Walkowiak, J. The effect of processing on the phytosterol content in buckwheat groats and by-products. J. Cereal Sci. 2016, 69, 25–31. [Google Scholar] [CrossRef]
- Raguindin, P.F.; Adam Itodo, O.; Stoyanov, J.; Dejanovic, G.M.; Gamba, M.; Asllanaj, E.; Minder, B.; Bussler, W.; Metzger, B.; Muka, T.; et al. A systematic review of phytochemicals in oat and buckwheat. Food Chem. 2021, 338, 127982. [Google Scholar] [CrossRef] [PubMed]
- Alignan, M.; Roche, J.; Bouniols, A.; Cerny, M.; Mouloungui, Z.; Merah, O. Effects of genotype and sowing date on phytostanol–phytosterol content and agronomic traits in wheat under organic agriculture. Food Chem. 2009, 117, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.-M.; Yong, S.-J.; Lee, J.; Kim, S.-H. Effect of genotype and cultivation location on β-sitosterol and α-, β-, γ-, and δ-tocopherols in sorghum. Food Res. Int. 2013, 51, 971–976. [Google Scholar] [CrossRef]
- Gholami Zali, A.; Ehsanzadeh, P.; Szumny, A.; Matkowski, A. Genotype-specific response of Foeniculum vulgare grain yield and essential oil composition to proline treatment under different irrigation conditions. Ind. Crops Prod. 2018, 124, 177–185. [Google Scholar] [CrossRef]
- Verardo, V.; Gómez-Caravaca, A.M.; Gori, A.; Losi, G.; Caboni, M.F. Bioactive lipids in the butter production chain from Parmigiano Reggiano cheese area: Bioactive lipids in the butter production chain. J. Sci. Food Agric. 2013, 93, 3625–3633. [Google Scholar] [CrossRef] [PubMed]
- Houx, J.H.; Wiebold, W.J.; Fritschi, F.B. Long term tillage treatment effects on corn grain nutrient composition and yield. Field Crops Res. 2016, 191, 33–40. [Google Scholar] [CrossRef]
- Gao, L.; Xia, M.; Wan, C.; Jia, Y.; Yang, L.; Wang, M.; Wang, P.; Yang, Q.; Yang, P.; Gao, X.; et al. Analysis of synthesis, accumulation and physicochemical properties of Tartary buckwheat starches affected by nitrogen fertilizer. Carbohydr. Polym. 2021, 273, 118570. [Google Scholar] [CrossRef] [PubMed]
- Kalinova, J.; Vrchotova, N. The influence of organic and conventional crop management, variety and year on the yield and flavonoid level in common buckwheat groats. Food Chem. 2011, 127, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Givens, D.I.; Davies, T.W.; Laverick, R.M. Effect of variety, nitrogen fertiliser and various agronomic factors on the nutritive value of husked and naked oats grain. Anim. Feed. Sci. Technol. 2004, 113, 169–181. [Google Scholar] [CrossRef]
- Verardo, V.; Riciputi, Y.; Sorrenti, G.; Ornaghi, P.; Marangoni, B.; Caboni, M.F. Effect of nitrogen fertilisation rates on the content of fatty acids, sterols, tocopherols and phenolic compounds, and on the oxidative stability of walnuts. LWT—Food Sci. Technol. 2013, 50, 732–738. [Google Scholar] [CrossRef]
Varieties | Dose of N (kg/ha) | Total Phytosterol Content (μg/g) | Total Tocopherol Content (μg/g) | Squalene (μg/g) | Cholesterol (μg/g) |
---|---|---|---|---|---|
No-plow tillage | |||||
Kora | 0 | 1213 defg ± 7 | 37.37 de ± 0.11 | 18.50 jk ± 0.82 | 5.01 d ± 0.02 |
50 | 1800 a ± 78 | 47.12 ab ± 1.12 | 57.65 a ± 1.68 | 3.11 e ± 0.11 | |
100 | 1307 de ± 57 | 40.64 bcd ± 0.49 | 36.68 defg ± 1.20 | 1.73 ghi ± 0.25 | |
Panda | 0 | 1176 efghi ± 71 | 20.12 j ± 0.29 | 37.55 cde ± 1.68 | 2.08 fghi ± 0.19 |
50 | 1193 defgh ± 75 | 34.26 def ± 0.89 | 32.83 efgh ± 1.02 | 2.71 ef ± 0.30 | |
100 | 1103 ghi ± 42 | 25.91 hij ± 0.65 | 46.38 b ± 0.75 | 1.60 hi ± 0.07 | |
Smuga | 0 | 1052 hij ± 34 | 47.74 a ± 9.58 | 8.42 m ± 3.66 | 10.03 a ± 0.99 |
50 | 1102 ghi ± 66 | 44.59 abc ± 1.25 | 30.91 fgh ± 1.56 | 1.60 hi ± 0.01 | |
100 | 917 j ± 30 | 37.82 de ± 0.42 | 30.49 ghi ± 0.83 | 1.29 i ± 0.05 | |
PA-15 (Korona) | 0 | 1119 ghi ± 32 | 35.41 def ± 0.93 | 15.06 kl ± 6.20 | 2.43 efgh ± 0.24 |
50 | 1208 defg ± 41 | 36.64 def ± 0.53 | 34.80 efg ± 0.45 | 3.19 e ± 0.26 | |
100 | 1462 c ± 9 | 51.10 a ± 0.58 | 44.95 b ± 0.77 | 2.65 ef ± 0.32 | |
Plow tillage | |||||
Kora | 0 | 1627 b ± 56 | 34.12 def ± 1.04 | 41.39 bcd ± 0.98 | 5.64 d ± 0.47 |
50 | 1198 defgh ± 53 | 36.80 de ± 0.79 | 24.46 ij ± 1.75 | 2.69 ef ± 0.01 | |
100 | 1138 efghi ± 53 | 38.53 cde ± 0.48 | 43.42 bc ± 1.32 | 8.66 b ± 0.46 | |
Panda | 0 | 1192 defgh ± 78 | 34.62 def ± 0.2 | 33.47 efgh ± 0.49 | 2.61 def ± 0.15 |
50 | 1287 def ± 49 | 35.13 def ± 1.04 | 27.65 hi ± 2.46 | 1.58 hi ± 0.06 | |
100 | 1341 cd ± 5 | 33.89 ef ± 0.18 | 30.68 fgh ± 1.92 | 6.89 c ± 0.09 | |
Smuga | 0 | 1118 ghi ± 60 | 30.31 fgh ± 1.13 | 20.37 jk ± 0.48 | 2.45 efgh ± 0.10 |
50 | 1033 ij ± 15 | 37.91 de ± 0.33 | 28.64 hi ± 0.65 | 1.64 hi ± 0.15 | |
100 | 1183 efghi ± 30 | 34.09 ef ± 0.49 | 45.95 b ± 0.65 | 7.73 c ± 0.23 | |
PA-15 (Korona) | 0 | 1093 ghi ± 21 | 26.97 ghi ± 0.36 | 10.36 lm ± 1.44 | 2.14 fghi ± 0.09 |
50 | 1150 efghi ± 58 | 32.58 efg ± 0.58 | 28.17 hi ± 1.66 | 1.98 fghi ± 0.16 | |
100 | 1211 defg ± 20 | 22.05 ij ± 0.68 | 35.45 defg ± 1.36 | 2.20 fgh ± 0.01 |
Varieties | Dose of N (kg/ha) | β-Sitosterol (μg/g) | d5-Avenasterol (μg/g) | Campesterol (μg/g) | Stigmasterol (μg/g) | 5,24-Stigmastadienol (μg/g) | 7-Stigmastenol (μg/g) | d7-Avenasterol (μg/g) |
---|---|---|---|---|---|---|---|---|
No-plow tillage | ||||||||
Kora | 0 | 869 cdefgh ± 8 | 112 fgh ± 1 | 100.6 cde ± 0.7 | 27.9 cdefg ± 0.3 | 15.5 c ± 0.2 | 40.9 defg ± 0.5 | 9.6 defgh ± 0.7 |
50 | 1302 a ± 59 | 161 a ± 7 | 147.3 a ± 4.5 | 43.3 a ± 3.4 | 26.6 a ± 1.9 | 60.1 a ± 2.2 | 12.8 abc ± 0.5 | |
100 | 943 cd ± 44 | 121 def ± 5 | 103.1 cd ± 3.6 | 29.1 cdef ± 1.2 | 15.4 c ± 0.6 | 43.0 cdef ± 1.7 | 11.7 abcdef ± 0.4 | |
Panda | 0 | 872 cdefg ± 56 | 105 ghijk ± 7 | 89.6 fghij ± 5.0 | 26.1 efgh ± 1.8 | 14.4 cdef ± 0.6 | 39.2 fgh ± 2.0 | 9.2 fgh ± 1.3 |
50 | 863 cdefgh ± 56 | 114 efg ± 8 | 91.1 efghi ± 4.7 | 28.5 cdef ± 1.7 | 13.9 cdef ± 1.1 | 38.7 fgh ± 2.7 | 10.3 cdefgh ± 0.5 | |
100 | 812 efghi ± 34 | 103 ghijkl ± 4 | 81.0 ijk ± 2.6 | 25.7 fgh ± 0.8 | 11.7 efgh ± 0.2 | 33.7 hi ± 0.3 | 9.6 defgh ± 0.6 | |
Smuga | 0 | 755 hij ± 26 | 90 lmn ± 2 | 78.6 jk ± 2.5 | 20.6 j ± 1.3 | 10.5 h ± 1.0 | 38.8 fgh ± 0.5 | 10.5 bcdefgh ± 2.1 |
50 | 780 ghi ± 47 | 98 hijklm ± 7 | 85.2 ghijk ± 4.1 | 26.8 defgh ± 1.8 | 12.9 cdefgh ± 0.9 | 42.6 cdefg ± 3.2 | 12.5 abcd ± 1.2 | |
100 | 653 j ± 22 | 82 n ± 3 | 66.9 l ± 1.6 | 22.9 hij ± 1.8 | 10.4 h ± 0.1 | 32.3 i ± 1.2 | 11.6 abcdef ± 0.6 | |
PA-15 (Korona) | 0 | 820 efghi ± 28 | 87 nm ± 1 | 87.2 fghij ± 2.4 | 23.8 ghij ± 1.0 | 15.0 c ± 0.9 | 40.0 efg ± 0.5 | 11.4 abcdefg ± 1.0 |
50 | 885 cdefg ± 33 | 104 ghijkl ± 3 | 95.1 defg ± 2.7 | 26.3 efgh ± 0.9 | 13.9 cdefg ± 0.6 | 38.3 fghi ± 0.9 | 9.3 efgh ± 0.5 | |
100 | 1070 b ± 5 | 127 cde ± 1 | 108.8 c ± 0.7 | 31.3 bc ± 0.6 | 14.2 cdef ± 0.6 | 46.8 bcd ± 0.5 | 13.0 abc ± 0.6 | |
Plow tillage | ||||||||
Kora | 0 | 1203 a ± 43 | 143 b ± 5 | 129.2 b ± 4.9 | 35.8 b ± 1.0 | 18.7 b ± 0.6 | 50.7 b ± 0.9 | 13.3 ab ± 0.5 |
50 | 860 cdefghi ± 39 | 116 defg ± 5 | 93.4 defgh ± 4.5 | 25.8 fgh ± 1.3 | 14.9 cd ± 0.4 | 41.0 defg ± 1.2 | 10.6 bcdefgh ± 0.5 | |
100 | 815 efghi ± 39 | 109 fghij ± 5 | 85.3 ghijk ± 3.3 | 25.3 fghi ± 1.2 | 13.6 cdefg ± 0.6 | 39.2 fgh ± 1.7 | 13.0 abc ± 1.1 | |
Panda | 0 | 866 cdefgh ± 57 | 110 fghij ± 7 | 85.2 ghijk ± 4.2 | 29.3 cdef ± 1.4 | 13.5 cdefg ± 2.0 | 41.7 defg ± 4.2 | 12.2 abcde ± 2.2 |
50 | 925 cde ± 33 | 131 bcd ± 6 | 96.1 def ± 3.3 | 29.2 cdef ± 2.2 | 15.3 c ± 1.4 | 45.3 bcde ± 2.8 | 10.9 bcdefg ± 0.3 | |
100 | 964 bc ± 2 | 138 bc ± 1 | 97.4 def ± 0.6 | 32.2 bc ± 0.2 | 14.6 cde ± 0.7 | 48.3 bc ± 1.1 | 13.2 abc ± 0.0 | |
Smuga | 0 | 817 efghi ± 45 | 98 hijklm ± 5 | 82.2 ijk ± 4.2 | 25.1 fghij ± 1.9 | 12.0 defgh ± 1.2 | 42.0 defg ± 2.7 | 11.3 abcdefg ± 1.4 |
50 | 746 ij ± 11 | 95 jklmn ± 2 | 75.4 kl ± 0.4 | 21.0 ij ± 0.5 | 11.5 fgh ± 0.2 | 36.9 ghi ± 0.9 | 9.5 efg ± 0.2 | |
100 | 850 cdefghi ± 23 | 111 fghi ± 3 | 87.5 fghij ± 2.1 | 27.8 cdefg ± 0.6 | 12.7 cdefgh ± 0.3 | 45.5 bcde ± 0.9 | 14.2 a ± 0.8 | |
PA-15 (Korona) | 0 | 806 fghi ± 11 | 92 klmn ± 5 | 83.4 hijk ± 2.9 | 25.0 fghij ± 1.2 | 11.0 gh ± 0.9 | 40.1 efg ± 1.8 | 9.2 fgh ± 0.6 |
50 | 846 defghi ± 42 | 96 ijklmn ± 6 | 91.1 efghi ± 3.8 | 26.2 efgh ± 1.2 | 12.0 defgh ± 1.4 | 37.9 fghi ± 3.2 | 7.7 h ± 0.3 | |
100 | 897 cdef ± 15 | 104 ghijkl ± 2 | 97.0 def ± 1.9 | 30.5 cde ± 1.5 | 13.2 cdefgh ± 0.6 | 39.0 fgh ± 0.8 | 8.5 gh ± 0.5 |
Varieties | Dose of N (kg/ha) | α-Tocopherol (μg/g) | β-Tocopherol Content (μg/g) | δ-Tocopherol (μg/g) | γ-Tocopherol(μg/g) |
---|---|---|---|---|---|
No-plow tillage | |||||
Kora | 0 | 0.57 bcd ± 0.01 | 0.23 abc ± 0.05 | 2.53 c ± 0.34 | 34.04 defg ± 0.28 |
50 | 0.57 bcde ± 0.07 | 0.31 a ± 0.08 | 4.89 a ± 0.21 | 41.36 b ± 0.85 | |
100 | 0.37 fgh ± 0.02 | 0.17 cd ± 0.00 | 2.77 c ± 0.03 | 37.33 c ± 0.50 | |
Panda | 0 | 0.14 ij ± 0.05 | 0.18 bcd ± 0.04 | 2.24 d ± 0.16 | 17.56 n ± 0.32 |
50 | 0.41 efgh ± 0.08 | 0.16 cd ± 0.00 | 2.48 d ± 0.04 | 31.21 hij ± 0.83 | |
100 | 0.26 hi ± 0.01 | 0.16 cd ± 0.04 | 1.63 e ± 0.14 | 23.86 l ± 0.50 | |
Smuga | 0 | Nd j | Nd e | 2.08 bcde ± 1.22 | 40.35 b ± 1.17 |
50 | 0.80 a ± 0.10 | 0.21 abc ± 0.02 | 3.04 b ± 0.11 | 40.53 b ± 1.03 | |
100 | 0.75 ab ± 0.05 | 0.14 cd ± 0.02 | 1.95 d ± 0.20 | 34.98 de ± 0.59 | |
PA-15 (Korona) | 0 | 0.60 bcd ± 0.05 | 0.17 cd ± 0.04 | 2.32 d ± 0.15 | 32.31 fghi ± 0.89 |
50 | 0.45 defg ± 0.05 | 0.14 cd ± 0.00 | 2.85 c ± 0.02 | 33.19 efgh ± 0.53 | |
100 | 0.68 abc ± 0.04 | 0.23 abc ± 0.05 | 3.01 b ± 0.10 | 47.18 a ± 0.68 | |
Plow tillage | |||||
Kora | 0 | 0.45 defgh ± 0.05 | 0.28 ab ± 0.02 | 2.65 bcd ± 0.40 | 30.75 ij ± 0.82 |
50 | 0.62 abcd ± 0.11 | 0.18 bcd ± 0.05 | 2.25 d ± 0.19 | 33.75 defg ± 0.47 | |
100 | 0.56 cdef ± 0.03 | 0.18 bcd ± 0.03 | 2.25 d ± 0.34 | 35.53 cd ± 0.19 | |
Panda | 0 | 0.68 abc ± 0.03 | 0.16 cd ± 0.03 | 1.62 e ± 0.13 | 32.16 fghi ± 0.12 |
50 | 0.32 gh ± 0.07 | 0.19 bcd ± 0.01 | 2.36 d ± 0.18 | 32.26 fghi ± 0.79 | |
100 | 0.34 gh ± 0.09 | 0.15 cd ± 0.02 | 1.70 e ± 0.05 | 31.69 ghij ± 0.18 | |
Smuga | 0 | 0.53 cdef ± 0.08 | 0.17 bcd ± 0.05 | 2.09 d ± 0.21 | 27.51 k ± 1.12 |
50 | 0.69 abc ± 0.03 | 0.15 cd ± 0.02 | 2.35 d ± 0.11 | 34.72 de ± 0.36 | |
100 | 0.63 abcd ± 0.06 | 0.15 cd ± 0.02 | 1.52 e ± 0.06 | 31.79 ghij ± 0.58 | |
PA-15 (Korona) | 0 | 0.62 abcd ± 0.08 | 0.10 de ± 0.00 | 1.68 e ± 0.01 | 24.58 l ± 0.29 |
50 | 0.62 abcd ± 0.04 | 0.14 cd ± 0.01 | 2.09 d ± 0.10 | 29.73 j ± 0.46 | |
100 | 0.27 hi ± 0.05 | 0.18 bcd ± 0.02 | 1.39 e ± 0.14 | 20.22 m ± 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic, K.; Kurek, S.; Podolska, G.; Drzymała-Czyż, S.; Mildner-Szkudlarz, S.; Sun, W.; Walkowiak, J. The Lipid-Soluble Bioactive Substances of Fagopyrum esculentum Varieties under Different Tillage and Nitrogen Fertilisation. Foods 2022, 11, 3801. https://doi.org/10.3390/foods11233801
Dziedzic K, Kurek S, Podolska G, Drzymała-Czyż S, Mildner-Szkudlarz S, Sun W, Walkowiak J. The Lipid-Soluble Bioactive Substances of Fagopyrum esculentum Varieties under Different Tillage and Nitrogen Fertilisation. Foods. 2022; 11(23):3801. https://doi.org/10.3390/foods11233801
Chicago/Turabian StyleDziedzic, Krzysztof, Szymon Kurek, Grażyna Podolska, Sławomira Drzymała-Czyż, Sylwia Mildner-Szkudlarz, Wei Sun, and Jarosław Walkowiak. 2022. "The Lipid-Soluble Bioactive Substances of Fagopyrum esculentum Varieties under Different Tillage and Nitrogen Fertilisation" Foods 11, no. 23: 3801. https://doi.org/10.3390/foods11233801
APA StyleDziedzic, K., Kurek, S., Podolska, G., Drzymała-Czyż, S., Mildner-Szkudlarz, S., Sun, W., & Walkowiak, J. (2022). The Lipid-Soluble Bioactive Substances of Fagopyrum esculentum Varieties under Different Tillage and Nitrogen Fertilisation. Foods, 11(23), 3801. https://doi.org/10.3390/foods11233801