Chemical and Enzymatic Characterization of Leaves from Spanish Table Olive Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Analysis of Phenolic Compounds
2.3. Moisture
2.4. Analysis of Triterpenic Acids
2.5. Analysis of Reducing Sugars
2.6. Quantification of Enzymatic Activity
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of Olive Leaves
3.2. Enzymatic Activity in Olive Leaves
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vergara-Barberán, M.; Lerma-García, M.J.; Herrero-Martínez, J.M.; Simó-Alfonso, E.F. Use of an enzyme-assisted method to improve protein extraction from olive leaves. Food Chem. 2015, 169, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Lama-Muñoz, A.; Contreras, M.M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem. 2020, 320, 126626. [Google Scholar] [CrossRef] [PubMed]
- Lama-Muñoz, A.; Contreras, M.M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Characterization of the lignocellulosic and sugars composition of different olive leaves cultivars. Food Chem. 2020, 329, 127153. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Romero, C.; García, P.; Brenes, M. Characterization of bioactive compounds in commercial olive leaf extracts, and olive leaves and their infusions. Food Funct. 2019, 10, 4716–4724. [Google Scholar] [CrossRef] [Green Version]
- Lorini, A.; Aranha, B.C.; Antunes, B.D.F.; Otero, D.M.; Jacques, A.C.; Zambiazi, R.C. Metabolic profile of olive leaves of different cultivars and collection times. Food Chem. 2021, 345, 128758. [Google Scholar] [CrossRef]
- Nenadis, N.; Papoti, V.T.; Tsimidou, M.Z. Bioactive ingredients in olive leaves. In Olives and Olive Oil in Health and Disease Prevention. Part 1. General Aspects of Olives and Olive Oil, 2nd ed.; Preedy, V., Watson, R., Eds.; Academic Press: Oxford, UK, 2021; Chapter 5; pp. 65–78. [Google Scholar]
- Rufino-Palomares, E.E.; Pérez-Jiménez, A.; García-Salguero, L.; Mokhtari, K.; Reyes-Zurita, F.J.; Peragón-Sánchez, J.; Lupiáñez, J.A. Nutraceutical role of polyphenols and triterpenes present in the extracts of fruits and leaves of Olea europaea as antioxidants, anti-infectives and anticancer agents on healthy growth. Molecules 2022, 27, 2341. [Google Scholar] [CrossRef]
- Lozano-Mena, G.; Sánchez-González, M.; Juan, M.E.; Planas, J.M. Maslinic acid, a natural phytoalexin-type triterpene from olives- A promising nutraceutical? Molecules 2014, 19, 11538–11559. [Google Scholar] [CrossRef] [Green Version]
- Cláudio, A.F.M.; Cognigni, A.; de Faria, E.L.P.; Silvestre, A.J.D.; Zirbs, R.; Freire, M.G.; Bica, K. Valorization of olive tree leaves: Extraction of oleanolic acid using aqueous solutions of surface-active ionic liquids. Sep. Purif. Technol. 2018, 204, 30–37. [Google Scholar] [CrossRef]
- Romani, A.; Mulas, S.; Heimler, D. Polyphenols and secoiridoids in raw material (Olea europaea, L. leaves) and commercial food supplements. Eur. Food Res. Technol. 2017, 243, 429–435. [Google Scholar] [CrossRef]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Romero, C.; Medina, E.; Mateo, M.A.; Brenes, M. Quantification of bioactive compounds in Picual and Arbequina olive leaves and fruit. J. Sci. Food Agric. 2017, 97, 1725–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, C.; Medina, E.; Mateo, M.A.; Brenes, M. New by-products rich in bioactive substances from the olive oil mill processing. J. Sci. Food Agric. 2018, 98, 225–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinda, A.; Castellano, J.M.; Santos-Lozano, J.M.; Delgado-Hervás, T.; Gutiérrez-Adánez, P.; Rada, M. Determination of major bioactive compounds from olive leaf. LWT-Food Sci. Technol. 2015, 64, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Peragón, J. Time course of pentacyclic triterpenoids from fruits and leaves of olive tree (Olea europaea L.) cv. Picual and cv. Cornezuelo during ripening. J. Agric. Food Chem. 2013, 61, 6671–6678. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Navarro, M.E.; Cebrián-Tarancón, C.; Oliva, J.; Salinas, M.R.; Alonso, G.L. Oleuropein degradation kinetics in olive leaf and its aqueous extracts. Antioxidants 2021, 10, 1963. [Google Scholar] [CrossRef]
- Ramírez, E.; Medina, E.; Brenes, M.; Romero, C. Endogenous enzymes involved in the transformation of oleuropein in Spanish table olive varieties. J. Agric. Food Chem. 2014, 62, 9569–9575. [Google Scholar] [CrossRef] [Green Version]
- Paiva-Martins, F.; Pinto, M. Isolation and characterization of a new hydroxytyrosol derivative from olive (Olea europaea) leaves. J. Agric. Food Chem. 2008, 56, 5582–5588. [Google Scholar] [CrossRef]
- Ortega-García, F.; Blanco, S.; Peinado, M.A.; Peragón, J. Polyphenol oxidase and its relationship with oleuropein concentration in fruits and leaves of olive (Olea europaea) cv. ‘Picual’ trees during fruit ripening. Tree Physiol. 2008, 28, 45–54. [Google Scholar] [CrossRef]
- García-Rodríguez, R.; Romero-Segura, C.; Sanz, C.; Pérez, A.G. Modulating oxidoreductase activity modifies the phenolic content of virgin olive oil. Food Chem. 2015, 171, 364–369. [Google Scholar] [CrossRef] [Green Version]
- De Leonardis, A.; Macciola, V.; Cuomo, F.; López, F. Evidence of oleuropein degradation by olive leaf protein extract. Food Chem. 2015, 175, 568–574. [Google Scholar] [CrossRef]
- Ramírez, E.; Brenes, M.; García, P.; Medina, E.; Romero, C. Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes. Food Chem. 2016, 206, 204–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motamed, N.; Ebrahgimzadeh, H.; Vatankhah, E. Changes of soluble protein, peroxidase and polyphenol oxidase in leaves and buds of ripening olive. J. Food Biochem. 2007, 31, 703–713. [Google Scholar] [CrossRef]
- García, A.; Romero, C.; Medina, E.; García, P.; de Castro, A.; Brenes, M. Debittering of olives by polyphenol oxidation. J. Agric. Food Chem. 2008, 56, 11862–11867. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, C.Q.; Hu, X.L. Developmental expression of β-glucosidase in olive leaves. Biol. Plant. 2009, 53, 138–140. [Google Scholar] [CrossRef]
- Jemai, H.; Bouaziz, M.; Sayadi, S. Phenolic composition, sugar contents and antioxidant activity of Tunisian sweet olive cultivar with regard to fruit ripening. J. Agric. Food Chem. 2009, 57, 2961–2968. [Google Scholar] [CrossRef]
- Liu, M.; Yong, Q.; Yu, S. Efficient bioconversion of oleuropein from olive leaf extract to antioxidant hydroxytyrosol by enzymatic hydrolysis and high-temperature degradation. Biotechnol. Appl. Biochem. 2018, 65, 680–689. [Google Scholar] [CrossRef]
- Delgado-Povedano, M.; Priego-Capote, F.; Luque de Castro, M.D. Selective ultrasound-enhanced enzymatic hydrolysis of oleuropein to its aglycon in olive (Olea europea L.) leaf extracts. Food Chem. 2017, 220, 282–288. [Google Scholar] [CrossRef]
- Hachicha Hbaieb, R.; Kotti, F.; García-Rodríguez, R.; Gargouri, M.; Sanz, C.; Pérez, A.G. Monitoring endogenous enzymes during olive fruit ripening and storage: Correlation with virgin olive oil phenolic profiles. Food Chem. 2015, 174, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Nicoli, F.; Negro, C.; Vergine, M.; Aprile, A.; Nutricati, E.; Sabella, E.; Miceli, A.; Luvisi, A.; De Bellis, L. Evaluation of phytochemical and antioxidant properties of 15 Italian Olea europaea L. cultivar leaves. Molecules 2019, 24, 1998. [Google Scholar] [CrossRef]
- Edziri, H.; Jaziri, R.; Chehab, H.; Verschaeve, L.; Flamini, G.; Boujnah, D.; Hammami, M.; Aouni, M.; Mastouri, M. A comparative study on chemical composition, antibiofilm and biological activities of leaves extracts of four Tunisian olive cultivars. Heliyon 2019, 5, e01604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Mohamed, M.; Guasmi, F.; Ben Ali, S.; Radhouani, F.; Faghim, J.; Triki, T.; Kammoun, N.G.; Baffi, C.; Lucini, L.; Benincasa, C. The LC-MS/MS characterization of phenolic compounds in leaves allows classifying olive cultivars grown in South Tunisia. Biochem. Syst. Ecol. 2018, 78, 84–90. [Google Scholar] [CrossRef]
- Breakspear, I.; Guillaume, C. A quantitative phytochemical comparison of olive leaf extracts on the Australian market. Molecules 2020, 25, 4099. [Google Scholar] [CrossRef] [PubMed]
- Majetić Germek, V.; Žurga, P.; Koprivnjak, O.; Grozić, K.; Previšić, I.; Marcelić, Š.; Goreta Ban, S.; Pasković, I. Phenolic composition of Croatian olive leaves and their infusions obtained by hot and cold preparation. Czech J. Food Sci. 2021, 39, 393–401. [Google Scholar] [CrossRef]
- Dai, Y.; Meng, Q.; Mu, W.; Zhang, T. Recent advances in the applications and biotechnological production of mannitol. J. Funct. Foods 2017, 36, 404–409. [Google Scholar] [CrossRef]
- Mitsopoulos, G.; Papageorgiou, V.; Komaitis, M.; Hagidimitriou, M. Phenolic profile of leaves and drupes in major Greek olive varieties. Not. Bot. Horti. Agrobo. 2016, 44, 162–166. [Google Scholar] [CrossRef]
Variety | Orchard | Phenolic Compounds | Triterpenic Acids | Sugars | |||||
---|---|---|---|---|---|---|---|---|---|
Oleuropein | Others | Maslinic Acid | Oleanolic Acid | Sucrose | Glucose | Fructose | Mannitol | ||
Aloreña | 1 | 55.06 (2.67) | 6.23 (0.56) | 2.80 (0.02) | 15.11 (0.08) | 3.57 (0.36) | 4.22 (0.52) | 3.15 (0.32) | 22.76 (0.10) |
2 | 62.77 (2.06) | 9.59 (0.84) | 3.06 (0.22) | 14.43 (2.08) | 7.18 (0.27) | 4.57 (0.34) | 4.01 (0.13) | 22.12 (0.06) | |
3 | 67.59 (4.51) | 4.98 (0.78) | 2.32 (0.10) | 15.38 (1.08) | 14.37 (0.05) | 5.40 (0.61) | 3.10 (0.51) | 23.51 (0.98) | |
4 | 64.29 (2.96) | 3.34 (0.31) | 1.84 (0.27) | 13.92 (2.08) | 7.38 (1.43) | 8.57 (1.27) | 4.51 (0.08) | 22.78 (1.91) | |
Cacereña | 1 | 66.13 (3.78) | 4.51 (0.18) | 4.02 (0.09) | 12.36 (0.08) | 3.97 (0.20) | 3.42 (0.17) | 3.37 (0.33) | 22.76 (1.04) |
2 | 83.08 (3.98) | 6.60 (1.12) | 2.33 (0.20) | 18.26 (2.08) | 4.88 (0.77) | 5.86 (0.65) | 3.33 (0.17) | 21.97 (0.46) | |
3 | 79.53 (7.76) | 2.97 (0.62) | 2.27 (0.41) | 10.53 (4.08) | 6.98 (0.59) | 9.49 (2.42) | 4.28 (0.57) | 21.58 (0.77) | |
Empeltre | 1 | 75.12 (1.12) | 6.01 (0.75) | 4.30 (0.38) | 16.97 (3.08) | 4.30 (0.47) | 3.83 (0.47) | 3.13 (0.23) | 25.24 (2.37) |
2 | 65.85 (8.55) | 6.33 (0.21) | 3.91 (0.06) | 16.79 (0.08) | 3.93 (0.44) | 3.47 (0.45) | 3.95 (0.36) | 21.66 (0.30) | |
3 | 76.54 (0.52) | 4.34 (0.56) | 2.97 (0.14) | 13.41 (1.08) | 4.74 (0.36) | 8.46 (0.44) | 4.27 (0.17) | 24.92 (0.09) | |
Hojiblanca | 1 | 60.41 (1.58) | 4.87 (0.43) | 3.14 (0.10) | 19.91 (1.08) | 2.79 (0.39) | 3.49 (0.01) | 3.44 (0.00) | 23.06 (0.15) |
2 | 77.00 (17.96) | 6.74 (0.08) | 2.71 (0.41) | 18.83 (4.08) | 2.07 (0.01) | 3.36 (0.72) | 3.12 (0.19) | 18.39 (1.68) | |
3 | 57.82 (1.20) | 3.47 (0.12) | 2.97 (0.03) | 16.71 (0.08) | 4.18 (0.13) | 3.15 (0.22) | 3.46 (0.39) | 21.22 (0.06) | |
4 | 67.57 (6.03) | 3.52 (0.20) | 1.77 (0.32) | 14.45 (3.08) | 4.76 (2.36) | 7.93 (0.31) | 4.13 (0.07) | 19.68 (0.34) | |
Manzanilla | 1 | 94.51 (5.74) | 4.70 (1.12) | 3.33 (0.02) | 16.98 (0.08) | 3.30 (0.10) | 3.68 (0.32) | 2.70 (0.24) | 16.29 (5.11) |
2 | 71.60 (10.38) | 4.08 (0.20) | 3.36 (0.05) | 18.13 (0.08) | 4.44 (0.53) | 5.76 (0.98) | 3.75 (0.75) | 23.75 (0.40) | |
3 | 85.92 (10.18) | 7.70 (0.54) | 3.33 (0.85) | 16.65 (8.08) | 4.47 (0.24) | 5.17 (0.25) | 3.85 (0.18) | 19.61 (0.22) | |
4 | 67.41 (0.79) | 2.56 (0.23) | 2.57 (0.24) | 15.30 (2.08) | 5.02 (0.15) | 10.15 (1.13) | 5.03 (0.21) | 19.42 (2.14) | |
Verdial | 1 | 74.86 (3.42) | 4.35 (0.40) | 3.15 (0.06) | 13.29 (0.08) | 4.25 (0.45) | 3.63 (0.65) | 3.68 (0.50) | 19.53 (1.51) |
2 | 80.61 (0.30) | 5.19 (0.18) | 3.40 (0.27) | 18.68 (2.08) | 2.95 (0.24) | 3.53 (0.21) | 3.79 (0.07) | 24.04 (1.25) | |
3 | 61.83 (4.69) | 5.61 (0.69) | 3.41 (0.02) | 16.04 (0.08) | 8.01 (0.17) | 6.34 (0.25) | 3.20 (0.06) | 21.30 (0.91) | |
4 | 67.60 (3.38) | 4.24 (0.26) | 1.96 (0.08) | 11.00 (0.08) | 5.09 (0.33) | 10.99 (0.31) | 4.93 (0.88) | 19.32 (0.85) | |
Gordal | 1 | 58.17 (1.60) | 4.90 (1.30) | 3.72 (0.04) | 17.21 (0.08) | 3.05 (0.01) | 3.08 (0.10) | 3.11 (0.51) | 24.79 (1.19) |
2 | 45.62 (5.78) | 5.73 (0.17) | 3.89 (0.77) | 18.90 (7.08) | 4.67 (0.22) | 4.72 (0.17) | 3.04 (0.38) | 25.98 (0.75) | |
3 | 40.06 (6.87) | 5.98 (0.59) | 4.88 (0.19) | 19.15 (1.08) | 4.01 (0.28) | 4.09 (0.09) | 3.97 (0.02) | 24.32 (0.13) | |
4 | 56.55 (17.86) | 3.69 (1.62) | 2.21 (0.25) | 13.76 (2.08) | 4.40 (0.34) | 6.50 (0.47) | 3.89 (0.33) | 23.59 (1.38) | |
Morona | 1 | 69.24 (3.58) | 4.90 (1.21) | 2.91 (0.13) | 16.76 (1.08) | 4.78 (0.11) | 7.15 (0.38) | 4.49 (0.41) | 23.53 (0.91) |
2 | 74.20 (10.38) | 3.92 (0.80) | 2.42 (0.05) | 14.37 (0.08) | 5.24 (1.45) | 6.70 (0.23) | 3.89 (0.05) | 20.89 (0.28) | |
3 | 67.10 (8.23) | 3.39 (1.67) | 3.79 (0.03) | 19.08 (0.08) | 6.45 (0.09) | 5.70 (0.38) | 4.43 (0.39) | 25.83 (0.30) | |
4 | 45.34 (3.12) | 1.60 (0.55) | 2.32 (0.55) | 14.91 (5.08) | 5.35 (0.93) | 13.25 (0.49) | 5.58 (0.64) | 24.18 (2.37) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez, E.M.; Brenes, M.; Romero, C.; Medina, E. Chemical and Enzymatic Characterization of Leaves from Spanish Table Olive Cultivars. Foods 2022, 11, 3879. https://doi.org/10.3390/foods11233879
Ramírez EM, Brenes M, Romero C, Medina E. Chemical and Enzymatic Characterization of Leaves from Spanish Table Olive Cultivars. Foods. 2022; 11(23):3879. https://doi.org/10.3390/foods11233879
Chicago/Turabian StyleRamírez, Eva María, Manuel Brenes, Concepción Romero, and Eduardo Medina. 2022. "Chemical and Enzymatic Characterization of Leaves from Spanish Table Olive Cultivars" Foods 11, no. 23: 3879. https://doi.org/10.3390/foods11233879
APA StyleRamírez, E. M., Brenes, M., Romero, C., & Medina, E. (2022). Chemical and Enzymatic Characterization of Leaves from Spanish Table Olive Cultivars. Foods, 11(23), 3879. https://doi.org/10.3390/foods11233879