Characterization of Differences in the Composition and Content of Volatile Compounds in Cucumber Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Flavor Quality Evaluation
2.3. Instruments and Chemical Reagents
2.4. SPME Sampling
2.5. GC–MS Analysis
2.6. Statistical Analysis
3. Results
3.1. Test Material Selection
3.2. Identification and Quantitative Analysis of Volatile Compounds
3.3. Principal Component and Cluster Analysis
3.4. Differential Metabolite Selection
3.5. K-Means Clustering Analysis of Differential Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, S.; Li, R.; Zhang, Z.; Li, L.; Gu, X.; Fan, W.; Lucas, W.J.; Wang, X.; Xie, B.; Ni, P. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 2009, 41, 1275–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercke, P.; Kappers, I.F.; Verstappen, F.W.; Vorst, O.; Dicke, M.; Bouwmeester, H.J. Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol. 2004, 135, 2012–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Feng, S.; Yuan, J.; Wang, C.; Lu, T.; Wang, H.; Yu, C. The Formation of Fruit Quality in Cucumis sativus L. Front. Plant Sci. 2021, 12, 729448. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Chen, S.; Wang, C.; Chen, Q.; Wan, X.; Shen, X.; Cheng, Z.; Meng, H. Aroma components and their contents in cucumbers from different genotypes. J. Northwest A F Univ. Nat. Sci. Ed. 2013, 41, 139–146. [Google Scholar]
- Wang, C.; Ren, H. Food flavor chemical progress. China Condiment 2011, 36, 8–11. [Google Scholar]
- Zhang, R.; Hao, L.; Shan, S.; Meng, H.; Yang, Y.; Qi, F.; Liu, Y.; Chen, S. Analyzing the contents and components of volatile compounds with relevant factors in cucumber (Cucumis sativus) fruits of different location. J. Agric. Biotechnol. 2015, 23, 1031–1039. [Google Scholar]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef]
- Utama, I.M.S.; Wills, R.B.; Ben-Yehoshua, S.; Kuek, C. In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J. Agric. Food Chem. 2002, 50, 6371–6377. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Silva, L.R.; de Pinho, P.G.; Gil-Izquierdo, A.; Valentão, P.; Silva, B.M.; Pereira, J.A.; Andrade, P.B. Volatile profiling of Ficus carica varieties by HS-SPME and GC–IT-MS. Food Chem. 2010, 123, 548–557. [Google Scholar] [CrossRef]
- De Freitas, A.S.; Magalhães, H.; Alves Filho, E.G.; Garruti, D. Chemometric analysis of the volatile profile in peduncles of cashew clones and its correlation with sensory attributes. J. Food Sci. 2021, 86, 5120–5136. [Google Scholar] [CrossRef] [PubMed]
- Esteras, J.L.; Rambla, G.; Sánchez, M.P.; López-Gresa, M.C.; González-Mas, J.P.; Fernández-Trujillo, J.P.; Bellés, J.M.; Granell, A.; Picó, M.B. Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding. J. Sci. Food Agric. 2018, 98, 3915–3925. [Google Scholar] [CrossRef] [PubMed]
- Mayobre, C.; Pereira, L.; Eltahiri, A.; Bar, E.; Lewinsohn, E.; Garcia-Mas, J.; Pujol, M. Genetic dissection of aroma biosynthesis in melon and its relationship with climacteric ripening. Food Chem. 2021, 353, 129484. [Google Scholar] [CrossRef] [PubMed]
- Guler, Z.; Karaca, F.C.; Yetişir, H. Volatile compounds in the peel and flesh of cucumber (Cucumis sativus L.) grafted onto bottle gourd (Lagenaria siceraria) rootstocks. J. Hortic. Sci. Biotechnol. 2013, 88, 123–128. [Google Scholar] [CrossRef]
- Wei, G.; Tian, P.; Zhang, F.; Qin, H.; Miao, H.; Chen, Q.; Hu, Z.; Cao, L.; Wang, M.; Gu, X.; et al. Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus). Plant Physiol. 2016, 172, 603–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; He, Q. Advances in the Study on Cucumber Flavor Compounds. Acta Hortic. Sin. 2004, 31, 269–273. [Google Scholar]
- Werkhoff, P.; Brennecke, S.; Bretschneider, W.; Güntert, M.; Hopp, R.; Surburg, H. Chirospecific analysis in essential oil, fragrance and flavor research. Z. Für Lebensm. Unters. Und Forsch. 1993, 196, 307–328. [Google Scholar] [CrossRef]
- Forss, D.; Dunstone, E.; Ramshaw, E.; Stark, W. The flavor of cucumbers. J. Food Sci. 1962, 27, 90–93. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Ndip, R.; Clarke, A. Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.A.D.; Sousa, I.P.; Furtado, N.A.; Costa, F.B.D. Combined OPLS-DA and decision tree as a strategy to identify antimicrobial biomarkers of volatile oils analyzed by gas chromatography–mass spectrometry. Rev. Bras. De Farmacogn. 2018, 28, 647–653. [Google Scholar] [CrossRef]
- Portnoy, V.; Benyamini, Y.; Bar, E.; Harel-Beja, R.; Gepstein, S.; Giovannoni, J.J.; Schaffer, A.A.; Burger, J.; Tadmor, Y.; Lewinsohn, E. The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Mol. Biol. 2008, 66, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Shalit, M.; Katzir, N.; Tadmor, Y.; Larkov, O.; Burger, Y.; Shalekhet, F.; Lastochkin, E.; Ravid, U.; Amar, O.; Edelstein, M. Acetyl-CoA: Alcohol acetyltransferase activity and aroma formation in ripening melon fruits. J. Agric. Food Chem. 2001, 49, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Liu, J. GC-O-MS technique and its applications in food flavor analysis. Food Res. Int. 2018, 114, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J.B. The biochemistry of fruits and their products. Phytochemistry 1971, 10, 2857. [Google Scholar] [CrossRef]
- Rouseff, R.L.; Ruiz Perez-Cacho, P.; Jabalpurwala, F. Historical review of citrus flavor research during the past 100 years. J. Agric. Food Chem. 2009, 57, 8115–8124. [Google Scholar] [CrossRef]
- Ding, N. Food Flavor Chemistry, 1st ed.; China Light Industry Press: Beijing, China, 1996; pp. 1–18. [Google Scholar]
- Ninkovic, V.; Markovic, D.; Rensing, M. Plant volatiles as cues and signals in plant communication. Plant Cell Environ. 2021, 44, 1030–1043. [Google Scholar] [CrossRef]
- Harley, P.C.; Monson, R.K.; Lerdau, M.T. Ecological and evolutionary aspects of isoprene emission from plants. Oecologia 1999, 118, 109–123. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Tong, H. Progress in research of tea sensory quality assessment by sensory evaluation techniques. J. Food Saf. Qual. 2015, 6, 1542–1547. [Google Scholar]
- Wang, W.; Liu, Y. Electronic tongue for food sensory evaluation. In Evaluation Technologies for Food Quality; Elsevier: Amsterdam, The Netherlands, 2019; pp. 23–36. [Google Scholar]
- Liu, M.; Wang, J.; Li, D.; Wang, M. Electronic tongue coupled with physicochemical analysis for the recognition of orange beverages. J. Food Qual. 2012, 35, 429–441. [Google Scholar] [CrossRef]
- Liu, C.; He, Q.; Meng, J. Correlationship between sensory analysis, major volatile compounds and sugar content in cucumber fruit. China Veg. 2005, 1, 8–10. [Google Scholar]
- Palma-Harris, C.; McFeeters, R.F.; Fleming, H.P. Fresh cucumber flavor in refrigerated pickles: Comparison of sensory and instrumental analysis. J. Agric. Food Chem. 2002, 50, 4875–4877. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; He, Q.; Liu, S. Ratio Changes of Trans-2-cis-6-nonadienal Content Trans-2-nonenal Content on Cucumber Fruits. J. Laiyang Agric. Coll. 2003, 20, 276–278. [Google Scholar]
- Shang, M.; Wu, Y.; Chen, J.; Lou, Q. Identification and Comparison of Aroma Components in Peel and Flesh of Cucumber. Acta Agric. Boreali-Occident. Sin. 2021, 30, 1365–1373. [Google Scholar]
- Nakamura, A.; Ono, T.; Yagi, N.; Miyazawa, M. Volatile compounds with characteristic aroma of boiled sweet potato (Ipomoea batatas L. cv Ayamurasaki, I. batatas L. cv Beniazuma and I. batatas L. cv Simon 1). J. Essent. Oil Res. 2013, 25, 497–505. [Google Scholar] [CrossRef]
- Obando-Ulloa, J.M.; Moreno, E.; García-Mas, J.; Nicolai, B.; Lammertyn, J.; Monforte, A.J.; Fernández-Trujillo, J.P. Climacteric or non-climacteric behavior in melon fruit: 1. Aroma volatiles. Postharvest Biol. Technol. 2008, 49, 27–37. [Google Scholar] [CrossRef]
- Kourkoutas, D.; Elmore, J.S.; Mottram, D.S. Comparison of the volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chem. 2006, 97, 95–102. [Google Scholar] [CrossRef]
- Han, Y.; Wang, H.; Wang, X.; Li, K.; Dong, M.; Li, Y.; Zhu, Q.; Shang, F. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool. Hortic. Res. 2019, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tieman, D.; Liu, Z.; Chen, K.; Klee, H.J. Identification of a lipase gene with a role in tomato fruit short-chain fatty acid-derived flavor volatiles by genome-wide association. Plant J. 2020, 104, 631–644. [Google Scholar] [CrossRef]
- Liu, C.; He, Q.; Liu, Y. Head-space Solid Phase Microextraction and GC-MS Analysis of Fragrance of Cucumber. Acta Hortic. Sin. 2002, 29, 581. [Google Scholar]
- Sotiroudis, G.; Melliou, E.; Sotiroudis, T.G.; Chinou, I. Chemical analysis, antioxidant and antimicrobial activity of three Greek cucumber (Cucumis sativus) cultivars. J. Food Biochem. 2010, 34, 61–78. [Google Scholar] [CrossRef]
- Saito, K.; Matsuda, F. Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. 2010, 61, 463–489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mao, L.; Chen, H.; Bu, F.; Li, G.; Sun, J.; Li, S.; Sun, H.; Jiao, C.; Blakely, R. Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell 2015, 27, 1595–1604. [Google Scholar] [CrossRef] [Green Version]
- Spadafora, N.D.; Cocetta, G.; Cavaiuolo, M.; Bulgari, R.; Dhorajiwala, R.; Ferrante, A.; Spinardi, A.; Rogers, H.J.; Müller, C.T. A complex interaction between pre-harvest and post-harvest factors determines fresh-cut melon quality and aroma. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Padilla, M.N.; Hernández, M.L.; Sanz, C.; Martínez-Rivas, J.M. Stress-dependent regulation of 13-lipoxygenases and 13-hydroperoxide lyase in olive fruit mesocarp. Phytochemistry 2014, 102, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Baldwin, E.A.; Bai, J. Recent advance in aromatic volatile research in tomato fruit: The metabolisms and regulations. Food Bioprocess Technol. 2016, 9, 203–216. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y.; Wang, X.; Dong, X.; Zhang, T.; Yang, Y.; Chen, S. Relationship between key environmental factors and profiling of volatile compounds during cucumber fruit development under protected cultivation. Food Chem. 2019, 290, 308–315. [Google Scholar] [CrossRef] [PubMed]
#. | Cultivar | Fresh Cucumber-Like Flavors | Sweetness | Astringency | Total Soluble Solids (%) |
---|---|---|---|---|---|
1 | YX | 5.25 ± 0.83 | 3.4 ± 0.54 | 0.96 ± 0.36 | 5.2 ± 0.25 |
2 | YN | 5.13 ± 0.51 | 3.2 ± 1.76 | 1.05 ± 0.32 | 5.1 ± 0.47 |
3 | C17 | 4.85 ± 1.16 | 3.15 ± 0.57 | 1.15 ± 1.13 | 5.1 ± 0.26 |
4 | JM83 | 5.1 ± 2.54 | 3.25 ± 0.86 | 1.32 ± 0.88 | 5 ± 0.36 |
5 | Baixiu | 5.15 ± 1.56 | 3.2 ± 0.47 | 1.12 ± 0.48 | 5.08 ± 0.58 |
6 | C7 | 4.78 ± 1.7 | 2.95 ± 1.12 | 1.4 ± 0.67 | 4.9 ± 0.48 |
7 | Haiyang | 5.15 ± 1.23 | 3.1 ± 1.04 | 1.25 ± 2.21 | 5 ± 0.95 |
8 | Jin5-508 | 4.32 ± 0.78 | 3.11 ± 1.37 | 1.6 ± 1.36 | 4.37 ± 0.67 |
9 | Deruite1 | 4.98 ± 1.28 | 3.1 ± 2.11 | 1.3 ± 1.09 | 4.95 ± 0.57 |
10 | Baipi | 5.05 ± 0.87 | 3.18 ± 1.23 | 1.15 ± 1.16 | 5.12 ± 0.79 |
11 | Zhexiu | 4.72 ± 1.28 | 2.8 ± 2.15 | 1.5 ± 1.27 | 4.95 ± 0.87 |
12 | Pingwang | 4.7 ± 1.36 | 2.84 ± 0.86 | 1.45 ± 1.57 | 4.9 ± 0.37 |
13 | Jingtong | 5.12 ± 0.76 | 3.2 ± 1.29 | 1 ± 0.27 | 5 ± 0.18 |
14 | YL | 4.56 ± 0.93 | 2.92 ± 1.82 | 2.1 ± 0.79 | 4.6 ± 0.66 |
15 | CFCY | 4.67 ± 2.21 | 2.75 ± 1.67 | 2.32 ± 2.54 | 4.5 ± 0.37 |
16 | KX | 4.62 ± 1.66 | 2.83 ± 1.52 | 1.18 ± 0.69 | 4.35 ± 0.08 |
17 | ZN12 | 4.51 ± 2.18 | 3.51 ± 0.75 | 1.7 ± 2.68 | 4.5 ± 0.78 |
18 | KP2 | 4.6 ± 2.23 | 2.32 ± 1.08 | 1.84 ± 0.95 | 4.17 ± 0.38 |
19 | Xinyan | 3.88 ± 0.91 | 3.05 ± 1.67 | 1.36 ± 1.78 | 4.95 ± 0.67 |
20 | 9930 | 4.45 ± 1.78 | 2.52 ± 1.39 | 1.26 ± 2.37 | 4.06 ± 0.46 |
21 | Gy14 | 3.55 ± 1.89 | 2.52 ± 2.56 | 1.1 ± 1.09 | 4.12 ± 0.53 |
22 | YL | 4.56 ± 1.36 | 2.92 ± 0.92 | 2.1 ± 2.39 | 4.6 ± 0.48 |
23 | GX | 3.4 ± 1.63 | 2.1 ± 1.17 | 1.3 ± 1.73 | 3.9 ± 0.37 |
24 | JC4 | 4.07 ± 1.89 | 2.18 ± 1.36 | 2.05 ± 1.66 | 4.2 ± 0.43 |
25 | JY6 | 4.4 ± 2.1 | 2.49 ± 0.47 | 1.15 ± 2.15 | 3.96 ± 0.53 |
26 | XF | 4.8 ± 1.78 | 2.65 ± 1.89 | 2.25 ± 1.67 | 4.5 ± 0.27 |
27 | JZ2 | 3.5 ± 1.89 | 2.8 ± 2.84 | 1.5 ± 2.24 | 4.11 ± 0.43 |
28 | ZN18 | 4.32 ± 1.27 | 2.75 ± 1.71 | 1.18 ± 1.82 | 4.41 ± 0.33 |
29 | JY118 | 4.1 ± 1.49 | 2.11 ± 0.74 | 1.5 ± 2.06 | 3.8 ± 0.31 |
30 | JY30 | 4.45 ± 1.22 | 2.83 ± 0.79 | 1.18 ± 1.71 | 4.35 ± 0.51 |
SC a | Compounds | Classification | YX | KX | GX |
---|---|---|---|---|---|
1 | Hexanal | Aldehyde | 207, 381 | 95, 710 | 153, 429 |
1 | (Z)-6-Nonenal | Aldehyde | 221, 623 | 82, 261 | 124, 408 |
1 | 1-Hepten-3-one | Ketone | 34, 832 | 14, 186 | 19, 223 |
1 | 3-Octen-2-one | Ketone | 53, 015 | 26, 222 | 40, 003 |
1 | 3,5-Octadien-2-one | Ketone | 1, 138, 250 | 541, 297 | 861, 772 |
1 | Eicosane | Hydrocarbons | 74, 188 | 31, 574 | 44, 022 |
1 | Heneicosane | Hydrocarbons | 503, 109 | 245, 410 | 415, 171 |
1 | Pentadecane, 2,6,10-trimethyl- | Hydrocarbons | 738, 487 | 226, 650 | 424, 901 |
1 | 3,5,5-Trimethyl-2- hexene | Hydrocarbons | 15, 794 | 7, 245 | 9, 498 |
1 | 1-Ethyl-6-ethylidene- cyclohexene | Hydrocarbons | 26, 013 | 12, 437 | 15, 118 |
1 | Dimethylphosphinic fluoride | Other | 39, 357 | 18, 034 | 26, 355 |
1 | 1-Chloro-3-diethylboryloxy-2,2-dimethyl-propane | Other | 9, 196 | 2, 464 | 4, 232 |
1 | 1-Bromo-3-methyl- cyclohexane | Other | 11, 414 | 4, 467 | 6, 260 |
1 | 2-Bromo-1,1,3-trimethyl- cyclopropane | Halogenated hydrocarbon | 13, 685 | 2, 787 | 4, 834 |
1 | Hexadecanoic acid, butyl ester | Ester | 4, 291 | 2, 136 | 3, 612 |
1 | 4-Hexyn-3-ol | Alcohol | 85, 161 | 30, 715 | 46, 654 |
1 | 2,4-Diamino-6-methyl-1,3,5- triazine | Heterocyclic compound | 32, 258 | 12, 697 | 16, 842 |
2 | 1-Amino-4,4-dimethyl-1-(3- pyridyl)-pent-1-en-3-one | Heterocyclic compound | 3, 420 | 7, 124 | 12, 151 |
2 | 1,4-Dimethyl-2,3-diazabicyclo [2.2.1]hept-2-ene | Heterocyclic compound | 3, 462 | 7, 426 | 8, 387 |
2 | Phytol, acetate | Alcohol | 39, 578 | 91, 293 | 94, 381 |
2 | 3,7,11,15-Tetramethyl-2- hexadecen-1-ol | Terpenoid | 33, 424 | 72, 255 | 69, 560 |
2 | 1-Iodo-hexadecane | Halogenated hydrocarbon | 1 | 14, 185 | 10, 972 |
3 | 2-Nonenal, (E)- | Aldehyde | 294, 342 | 70, 452 | 79, 612 |
3 | 2,6-Nonadienal, (E,Z)- | Aldehyde | 2, 703, 944 | 957, 611 | 1, 013, 669 |
3 | Pentadecane | Hydrocarbon | 301, 783 | 146, 788 | 122, 120 |
3 | 1,7-Nonadiene, 4,8-dimethyl- | Hydrocarbon | 118, 356 | 30, 569 | 37, 015 |
3 | Bicyclo(3.3.1)non-2-ene | Hydrocarbon | 147, 340 | 72, 365 | 69, 739 |
3 | 1-Pyridineethanamine, beta.-(2-furanyl)hexahydro- | Heterocyclic compound | 11, 673 | 5, 048 | 3, 241 |
3 | (5R,8aR)-5- Propyloctahydroindolizine | Heterocyclic compound | 28, 341 | 4, 739 | 4, 565 |
3 | Pyrimido[1,6-a]indole, 1,2,3,4-tetrahydro-2,5-dimethyl- | Heterocyclic compound | 28, 775 | 15, 547 | 5, 831 |
3 | 2-n-Butyl furan | Heterocyclic compound | 23, 856 | 12, 474 | 11, 187 |
3 | 2,2′,5,5′-Tetrahydro-2,2′-bifuran | Heterocyclic compound | 146, 740 | 29, 805 | 40, 074 |
3 | Caryophyllene oxide | Terpenoid | 52, 982 | 22, 729 | 21, 174 |
3 | alpha-Cadinol | Terpenoid | 28, 669 | 8, 525 | 2, 101 |
3 | l-Alanine, N-(2,3,4-trifluorobenzoyl)-, methyl ester | Ester | 30, 477 | 9, 536 | 4, 179 |
3 | 5-Azulenemethanol, 1,2,3,4,5,6,7,8-octahydro-alpha, alpha,3,8-tetramethyl-acetate, [3S-(3-alpha,5-alpha,8-alpha)]- | Ester | 31, 660 | 10, 633 | 3, 405 |
3 | 1-Phenylcyclohexylamine | Amine | 37, 419 | 20, 625 | 15, 406 |
4 | Bicyclo[5.2.0]nonane, 2-methylene-4,8,8-trimethyl-4- vinyl- | Terpenoid | 35, 810 | 35, 886 | 4, 460 |
4 | 1,4,7-Cycloundecatriene, 1,5,9,9-tetramethyl-, Z,Z,Z- | Hydrocarbon | 311, 884 | 181, 323 | 42, 570 |
4 | 1-Hexen, 2-(p-anisyl)-5-methyl- | Hydrocarbon | 17, 985 | 12, 749 | 5, 681 |
4 | Cyclobutanecarboxamide, N-(3-methylphenyl) | Amine | 25, 999 | 25, 703 | 1, 856 |
4 | 4-(Benzyl-ethyl-amino)-butyric acid, methyl ester | Ester | 12, 004 | 8, 754 | 3, 792 |
4 | 3a,7-Methano-3aH- cyclopentacyclooctene, 1,4,5,6,7,8,9,9a-octahydro-1,1,7- trimethyl-, [3aR-(3a-alpha,7-alpha,9a-beta)]- | Terpenoid | 17, 788 | 16, 926 | 5, 272 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Gu, X.; Yan, W.; Lou, L.; Xu, X.; Chen, X. Characterization of Differences in the Composition and Content of Volatile Compounds in Cucumber Fruit. Foods 2022, 11, 1101. https://doi.org/10.3390/foods11081101
Zhang J, Gu X, Yan W, Lou L, Xu X, Chen X. Characterization of Differences in the Composition and Content of Volatile Compounds in Cucumber Fruit. Foods. 2022; 11(8):1101. https://doi.org/10.3390/foods11081101
Chicago/Turabian StyleZhang, Jie, Xiuchao Gu, Wenjing Yan, Lina Lou, Xuewen Xu, and Xuehao Chen. 2022. "Characterization of Differences in the Composition and Content of Volatile Compounds in Cucumber Fruit" Foods 11, no. 8: 1101. https://doi.org/10.3390/foods11081101
APA StyleZhang, J., Gu, X., Yan, W., Lou, L., Xu, X., & Chen, X. (2022). Characterization of Differences in the Composition and Content of Volatile Compounds in Cucumber Fruit. Foods, 11(8), 1101. https://doi.org/10.3390/foods11081101